ON THE NICHOLS ALGEBRA ASSOCIATED TO

$$
\left(q_{i j}\right)=\left(\begin{array}{ccc}
\omega & \omega^{2} & 2 \omega-1 \\
1 & -1 & -1 \\
\frac{1}{2 \omega-1} & 1 & -1
\end{array}\right) \text {, OF RANK } 3
$$

TADAYOSHI TAKEBAYASHI

Department of Mathematics
School of Science and Engineering
Waseda University
Ohkubo Shinjuku-ku, Tokyo, 169-8555, Japan
e-mail: takeba@aoni.waseda.jp

Abstract

We examine the defining relations of the Nichols algebra associated to $$
\left(q_{i j}\right)=\left(\begin{array}{ccc} \omega & \omega^{2} & 2 \omega-1 \\ 1 & -1 & -1 \\ \frac{1}{2 \omega-1} & 1 & -1 \end{array}\right) \text {, of rank } 3 \text { by using the results by }
$$

Angiono [2] and the method by Nichols [1].

1. Introduction

Nichols algebras are graded braided Hopf algebras with the base field in degree 0 and which are coradically graded and generated by its primitive elements ([3], [4], [5], [6], [7]). Let V be a vector space and $c: V \otimes V \rightarrow V \otimes V$ be a linear isomorphism. Then (V, c) is called a braided vector space, if c is a solution of the braid equation, that is $(c \otimes i d)(i d \otimes c)(c \otimes i d)=(i d \otimes c)(c \otimes i d)(i d \otimes c)$. The 2010 Mathematics Subject Classification: 20 F55.

Keywords and phrases: Nichols algebra, diagonal type, rank 3.
Received September 25, 2010
pair (V, c) determines the Nichols algebras up to isomorphism. Let G be a group. A Yetter-Drinfeld module V over $\mathbb{K} G$ is a G-graded vector space $V=\oplus_{g \in G} V_{g}$, which is a G-module such that $g \cdot V_{h} \subset V_{g h g^{-1}}$, for all $g, h \in G$. The category ${ }_{G}^{G} Y D$ of $\mathbb{K} G$-Yetter-Drinfeld module is braided. For $V, W \in{ }_{G}^{G} Y D$, the braiding $c: V \otimes W \rightarrow W \otimes V$ is defined by $c(v \otimes w)=(g \cdot w) \otimes v, \quad v \in V_{g}, \quad w \in W$. Let V be a Yetter-Drinfeld module over G and let $T(V)=\oplus_{n \geq 0} T(V)(n)$ denote the tensor algebra of the vector space V. Let S be the set of all ideals and coideals I of $T(V)$ which are generated as ideals by \mathbb{N}-homogeneous elements of degree ≥ 2, and which are Yetter-Drinfeld submodules of $T(V)$. Let $I(V)=\sum_{I \in S} I$. Then $B(V)$ $:=T(V) / I(V)$ is called the Nichols algebra of $V \in_{G}^{G} Y D$. In this article, we examine the defining relations of the Nichols algebra $B(V)$ associated to $\left(q_{i j}\right)=$ $\left(\begin{array}{ccc}\omega & \omega^{2} & 2 \omega-1 \\ 1 & -1 & -1 \\ \frac{1}{2 \omega-1} & 1 & -1\end{array}\right)$, of rank 3

2. Nichols Algebras of Cartan Type

Let \mathbb{K} be an algebraically closed field of characteristic 0 . Let G be an abelian group and V be a finite dimensional Yetter-Drinfeld module. Then the braiding is given by a nonzero scalar $q_{i j} \in \mathbb{K}, 1 \leq i, j \leq \theta$, in the form $c\left(x_{i} \otimes x_{j}\right)=$ $q_{i j} x_{j} \otimes x_{i}$, where $x_{1}, \ldots, x_{\theta}$, is a basis of V. If there is a basis such that $g \cdot x_{i}=\chi_{i}(g) x_{i}$ and $x_{i} \in V_{g_{i}}$, then V is called diagonal type. For the braiding, we have $c\left(x_{i} \otimes x_{j}\right)=\chi_{j}\left(g_{i}\right) x_{j} \otimes x_{i}$ for $1 \leq i, j \leq \theta$. Hence we have $\left(q_{i j}\right)_{1 \leq i, j \leq \theta}=$ $\left(\chi_{j}\left(g_{i}\right)\right)_{1 \leq i, j \leq \theta}$. Let $B(V)$ be the Nichols algebra of V. We can construct the Nichols algebra by $B(V) \cong T(V) / I$, where I denotes the sum of all ideals of $T(V)$ that are generated by homogeneous elements of degree ≥ 2 and that are coideals. If $B(V)$ is finite-dimensional, then the matrix $\left(a_{i j}\right)$ defined by for all $1 \leq i \neq j \leq \theta$ by $a_{i i}:=2$ and $a_{i j}:=-\min \left\{r \in \mathbb{N} \mid q_{i j} q_{j i} q_{i i}^{r}=1\right.$ or $\left.(r+1)_{q_{i i}}=0\right\}$ is a generalized

Cartan matrix fulfilling $q_{i j} q_{j i}=q_{i i}^{a_{i j}}$ or ord $q_{i i}=1-a_{i j} .\left(a_{i j}\right)$ is called the Cartan matrix associated to $B(V)$. To examine the defining relations of $B(V)$, we use the results [3] and [2].

Proposition 2.1 ([3]). (1) For all $1 \leq i \leq \theta$, there exists a uniquely determined (id, σ)-derivation $D_{i}: B(V) \rightarrow B(V)$ with $D_{i}\left(x_{j}\right)=\delta_{i j}$ (Kronecker δ) for all j.
(2) $\bigcap_{i=1}^{\theta} \operatorname{ker}\left(D_{i}\right)=\mathbb{K} 1$.

Proposition 2.2 ([2]). Let (V, c) be a braided vector space that $\operatorname{dim} V=3$, and the corresponding generalized Dynkin diagram is ${ }^{q}{ }^{q^{-1}}-r^{-1} r^{r}$. Then $B(V)$ is presented by generators x_{1}, x_{2}, x_{3}, and relations
(2.2.1) $x_{1}^{M}=x_{2}^{2}=x_{3}^{N}=x_{\alpha_{1}+2 \alpha_{2}+\alpha_{3}}^{P}=0$,
(2.1.2) $\left(a d_{c} x_{1}\right)^{2} x_{2}=\left(a d_{c} x_{3}\right)^{2} x_{2}=\left(a d_{c} x_{1}\right) x_{3}=0$,
(2.1.3) $\left[x_{\alpha_{1}+\alpha_{2}}, x_{\alpha_{1}+\alpha_{2}+\alpha_{3}}\right]_{c}=\left[x_{\alpha_{1}+\alpha_{2}+\alpha_{3}}, x_{\alpha_{2}+\alpha_{3}}\right]_{c}=0$.

If $M, N, P<\infty$, then $\operatorname{dim} B(V)=16 M N P$.
Using these, obtain the following.
Proposition 2.3. Let $\left(q_{i j}\right)=\left(\begin{array}{ccc}\omega & \omega^{2} & 2 \omega-1 \\ 1 & -1 & -1 \\ \frac{1}{2 \omega-1} & 1 & -1\end{array}\right),\left(\begin{array}{lll}\omega & \omega^{2}-1 & -1 \\ ०^{-1}\end{array}\right)$
(where ω is a primitive cube root of unity). Then the Nichols algebra $B(V)$ is described as follows:

Generators : x_{1}, x_{2}, x_{3}.
Relations: $x_{1}^{3}=0, x_{2}^{2}=0, x_{3}^{2}=0, x_{1}^{2} x_{2}+\omega x_{1} x_{2} x_{1}+\omega^{2} x_{2} x_{1}^{2}=0$,

$$
\begin{aligned}
& \left(x_{1} x_{2}\right)^{2}=\omega^{2}\left(x_{2} x_{1}\right)^{2}, x_{1} x_{3}=(2 \omega-1) x_{3} x_{1},\left(x_{2} x_{3}\right)^{2}=-\left(x_{3} x_{2}\right)^{2}, \\
& x_{2} x_{1} x_{2} x_{3}+\left(\omega^{2}-1\right) x_{2} x_{1} x_{3} x_{2}+\left(2-\omega^{2}\right) x_{2} x_{3} x_{2} x_{1}-x_{1} x_{2} x_{3} x_{2}
\end{aligned}
$$

$$
+\left(\omega^{2}-2\right) x_{3} x_{2} x_{1} x_{2}=0
$$

Its basis is given as follows:
$\left\{1, x_{1}, x_{2}, x_{3}, x_{1}^{2}, x_{1} x_{2}, x_{1} x_{3}, x_{2} x_{1}, x_{2} x_{3}, x_{3} x_{2}, x_{2} x_{1}^{2}, x_{1} x_{2} x_{1}, x_{1} x_{2} x_{3}\right.$, $x_{1} x_{3} x_{2}, x_{2} x_{1} x_{2}, x_{2} x_{1} x_{3}, x_{2} x_{3} x_{2}, x_{3} x_{2} x_{3}, x_{3} x_{2} x_{1}, x_{1} x_{2} x_{1}^{2},\left(x_{1} x_{2}\right)^{2}$, $x_{1} x_{2} x_{1} x_{3}, x_{1} x_{2} x_{3} x_{2}, x_{1} x_{3} x_{2} x_{3}, x_{1} x_{3} x_{2} x_{1}, x_{2} x_{1} x_{2} x_{3}, x_{3} x_{2} x_{1}^{2}, x_{2} x_{3} x_{1}^{2}$ $x_{2} x_{3} x_{2} x_{1},\left(x_{2} x_{3}\right)^{2}, x_{3} x_{2} x_{3} x_{1}, x_{2} x_{3} x_{1} x_{2}, x_{2} x_{1} x_{2} x_{1}^{2}, x_{3} x_{1} x_{2} x_{1}^{2}, x_{2} x_{3} x_{2} x_{1}^{2}$,
$x_{3} x_{2} x_{3} x_{1}^{2}, x_{1} x_{2} x_{3} x_{1}^{2},\left(x_{1} x_{2}\right)^{2} x_{3}, x_{1} x_{2} x_{3} x_{2} x_{1}, x_{1}\left(x_{2} x_{3}\right)^{2}, x_{1} x_{3} x_{2} x_{3} x_{1}$,
$x_{3}\left(x_{1} x_{2}\right)^{2}, x_{2} x_{1} x_{2} x_{3} x_{2},\left(x_{2} x_{3}\right)^{2} x_{1}, x_{2} x_{3} x_{1} x_{2} x_{1}, x_{2} x_{3} x_{1} x_{2} x_{3}$,
$x_{3} x_{2} x_{3} x_{1} x_{2}, x_{1} x_{2} x_{3} x_{1} x_{2}, x_{1} x_{2} x_{3} x_{2} x_{1}^{2},\left(x_{2} x_{3}\right)^{2} x_{1}^{2}, x_{2} x_{1} x_{2} x_{3} x_{1}^{2}$,
$x_{3} x_{1} x_{2} x_{3} x_{1}^{2},\left(x_{1} x_{2}\right)^{2} x_{3} x_{2}, x_{1}\left(x_{2} x_{3}\right)^{2} x_{1}, x_{2} x_{1}\left(x_{2} x_{3}\right)^{2}, x_{3}\left(x_{1} x_{2}\right)^{2} x_{3}$,
$x_{2} x_{1} x_{2} x_{3} x_{2} x_{1}, x_{2} x_{3}\left(x_{1} x_{2}\right)^{2},\left(x_{2} x_{3} x_{1}\right)^{2},\left(x_{2} x_{3}\right)^{2} x_{1} x_{2},\left(x_{3} x_{2} x_{1}\right)^{2}$,
$x_{2} x_{1} x_{3} x_{2} x_{1}^{2}, x_{1} x_{2} x_{3} x_{1} x_{2} x_{1},\left(x_{1} x_{2} x_{3}\right)^{2}, x_{1}\left(x_{2} x_{3}\right)^{2} x_{1}^{2}, x_{2} x_{1} x_{2} x_{3} x_{2} x_{1}^{2}$,
$\left(x_{1} x_{2}\right)^{2} x_{3} x_{2} x_{1},\left(x_{1} x_{2}\right)^{2} x_{3} x_{2} x_{3}, x_{2} x_{1}\left(x_{2} x_{3}\right)^{2} x_{1}, x_{2} x_{3}\left(x_{1} x_{2}\right)^{2} x_{3},\left(x_{2} x_{3} x_{1}\right)^{2} x_{2}$,
$\left(x_{2} x_{3}\right)^{2} x_{1} x_{2} x_{1}, x_{3} x_{2} x_{3} x_{1} x_{2} x_{1}^{2},\left(x_{3} x_{2} x_{1}\right)^{2} x_{2}, x_{1} x_{2} x_{3}\left(x_{1} x_{2}\right)^{2},\left(x_{1} x_{2} x_{3}\right)^{2} x_{1}$,
$x_{1}\left(x_{2} x_{3}\right)^{2} x_{1} x_{2}, x_{2} x_{1}\left(x_{2} x_{3}\right)^{2} x_{1}^{2},\left(x_{1} x_{2}\right)^{2} x_{3} x_{2} x_{3} x_{1}, x_{3}\left(x_{1} x_{2}\right)^{2} x_{3} x_{2} x_{1}$,
$\left(x_{2} x_{3} x_{1}\right)^{2} x_{2} x_{1},\left(x_{1} x_{2} x_{3}\right)^{2} x_{1} x_{2},\left(x_{1} x_{2}\right)^{2} x_{3} x_{2} x_{1}^{2}, x_{2} x_{1}\left(x_{2} x_{3}\right)^{2} x_{1} x_{2}$,
$\left(x_{2} x_{3} x_{1}\right)^{2} x_{2} x_{3}, x_{1}\left(x_{2} x_{3}\right)^{2} x_{1} x_{2} x_{1}, x_{3} x_{2} x_{1}\left(x_{2} x_{3}\right)^{2} x_{1}^{2}, x_{1} x_{2} x_{1}\left(x_{2} x_{3}\right)^{2} x_{1}^{2}$,
$\left(x_{1} x_{2} x_{3}\right)^{2} x_{1} x_{2} x_{1}, x_{3}\left(x_{1} x_{2}\right)^{2} x_{3} x_{2} x_{1}^{2}, x_{2} x_{1}\left(x_{2} x_{3}\right)^{2} x_{1} x_{2} x_{1},\left(x_{2} x_{3}\right)^{2} x_{1} x_{2} x_{1}^{2}$,
$\left.\left(x_{1} x_{2} x_{3}\right)^{2}\left(x_{1} x_{2}\right)^{2}, x_{2} x_{3}\left(x_{1} x_{2}\right)^{2} x_{3} x_{2} x_{1}^{2}, x_{2} x_{1}\left(x_{2} x_{3}\right)^{2} x_{1} x_{2} x_{1}^{2},\left(x_{1} x_{2} x_{3}\right)^{2}\left(x_{1} x_{2}\right)^{2} x_{1}\right\}$.

Hence the Hilbert polynomial of $B(V)$ is given as follows:

$$
P(t)=1+3 t+6 t^{2}+9 t^{3}+13 t^{4}+16 t^{5}+16 t^{6}+13 t^{7}+9 t^{8}+6 t^{9}+3 t^{10}+t^{11}
$$

Proof. They are directly calculated.

References

[1] W. D. Nichols, Bialgebras of type one, Commun. Alg. 6 (1978), 1521-1552.
[2] I. Angiono, A presentation by generators and relations of Nichols algebras of diagonal type and convex orders on root systems, preprint.
[3] N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf algebras, New Directions in Hopf Algebras, Vol. 43, MSRI Publications, Cambridge Univ. Press, 2002 pp. 1-68.
[4] N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math. 154 (2000), 1-45.
[5] I. Heckenberger, Examples of finite-dimensional rank 2 Nichols algebras of diagonal type, Compositio Math. 143 (2007), 165-190.
[6] M. Graña, On Nichols algebras of low dimension, Contemp. Math. 267 (2000), 111-134.
[7] A. Milinski and H.-J. Schneider, Pointed indecomposable Hopf algebras over Coxeter groups, Contemp. Math. 267 (2000), 215-236.

