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Abstract 

In this paper, we introduce a nonparametric fourth-order kernel method 
for line transect sampling. This method produces a new estimator for the 
density of objects using line transect data. The asymptotic properties of 
the proposed estimator are derived under some mild assumptions. 
Moreover, an explicit formula for the smoothing parameter h is obtained 
based on minimizing the asymptotic mean square error (AMSE). Further, 
another estimator is suggested when there is no information whether the 
shoulder condition ( )( )00.,e.i =′f  is valid or not. The performances of the 

proposed estimators are studied and compared with some existing 
estimators by simulation technique. As the results demonstrated, the 
fourth-order kernel method has overall better performance than the 
traditional kernel method, and in many cases is much more effective. 

1. Introduction 

Line transect method is commonly used by biologists to estimate population 
density. In addition to its logical framework with intuitive reasoning, sampling using 



OMAR M. EIDOUS and ABEDEL-QADER AL-MASRI 66 

line transect has been a very convenient, easy and relatively cheaper method to 
obtain density of any living or non-living object in an ecosystem. To achieve the 
experiment, at least one observer moves across the population following a specific 
line with length L, looking to the right and to the left of the line. It is not sufficient 
just to record the number of observed objects, n; instead an observer must take the 
perpendicular distance (x) from the centerline to a detected object. When objects are 
observed from a line transect with a detection function ( ),xg  the distance x to 

observed object from randomly placed transect will tend to have a probability 
density ( )xf  of the same shape as ( )xg  but scaled so that the area under ( )xf  

equals to the unity. Buckland et al. [4] and Burnham et al. [6] constitute the key 
references for this distance sampling procedure. 

Logical considerations deriving from the analysis of the physical sighting 
process suggest that ( )xg  may usually be assumed monotonically decreasing and 

satisfying the shoulder condition ( ).0)(.,e.i =′ xg  Accordingly, ( )xf  is in turn 

monotonically decreasing with ( ) .00 =′f  However, recent studies have shown that 

the shoulder condition may not hold for many wildlife lines transect data such as 
whales, jack rabbits and small animals in tall grass (Buckland [2]; Mack and Quang 
[13]). The basic model for line transect sampling is introduced in the key paper by 
Burnham and Anderson [5] who obtain the fundamental relation for estimating the 
density of objects in a specific area which can be expressed as 

( ) ( ) .2
0

L
fnED =  

Accordingly, D can be estimated by 

( ) ,2
0ˆˆ

L
fnD =  

where ( )0f̂  represents a sample estimator of ( )0f  based on the n observed 

perpendicular distances nxxx ...,,, 21  which is usually supposed to be random 

sample (Buckland et al. [4]. Hence, the key aspects in line transect sampling turns 
out to be the modeling of ( )xf  as well as the estimation of ( ).0f  

In a parametric approach, let ( )xf  be the unknown probability density function 

of perpendicular distance. Then a parametric method assumes a model ( )θ,xf  
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which is a member of a family of proper probability density functions of known 
functional form but depends on an unknown parameter θ, where θ may take a vector 
value and should be estimated by using the perpendicular distances. A variety of 

approaches to estimate θ will lead to ( ) ( ).ˆ,00ˆ θ= ff  A number of parametric 

models have been proposed for ( ),xf  and there is extensive literature on the use of 

the maximum likelihood techniques for estimation of ( ).0f  See, for example, 

Burnham and Anderson [5]; Pollock [15]; Burnham et al. [6] and Buckland [2]. 

The parametric methods are very powerful, but they are highly dependent on the 
specification of the model. As an alternative method to parametric approach, recent 
works have focused on employing the nonparametric traditional kernel method 
which can be considered as the second-order kernel method to estimate ( )0f  (see 

Chen [7]; Mack et al. [14]). Eidous [9] proposed some methods to improve the 
performance of the kernel estimator using line transect data. As a nonparametric 
method Eidous [10] introduced the histogram method. He derived the asymptotic 
properties of the histogram estimator with bias correction term using line transect 
data. On the other hand, Buckland [3] introduced a semiparametric estimator for 
( )0f  based on a key half-normal with Hermite polynomial correction. Also, 

Barabesi [1] proposed a new semiparametric estimator based on the local parametric 
method. While the goal of nonparametric methods is to remove the model-
dependence of the estimator, the semiparametric methods are applied to attain the 
advantages of the parametric and nonparametric models by combining them in one 
estimator. 

This paper suggested two new estimators for ( )0f  based on the fourth-order 

kernel method. The first estimator is developed and its asymptotic properties are 
derived under the assumption that the first and third derivatives of the underlying 
probability density function are zero at the origin, that is, ( ) 00 =′f  (the shoulder 

condition) and ( ) .00 =′′′f  On the other hand, if we are not sure whether the 

shoulder condition is valid or not, then another estimator is proposed based on a 
combination between the negative exponential which does not have a shoulder at the 
origin and fourth-order kernel models. The simulation results and the real numerical 
example show that the performances of the proposed estimators are highly likely in 
line transect sampling. 
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2. The Fourth-order Kernel Estimator 

Let nXXX ...,,, 21  be a random sample of size n from a probability density 

function ( ).xf  Define ( )( )∫
∞

∞−
= ,4 duuKur j

j  where ( ) ( )uK 4  is the fourth-order 

kernel defined to have 

 0,1 3210 ==== rrrr    and   .04 ≠r  (1) 

An attractive approach is to obtain ( )( )uK 4  as a function of ( ),uK  where ( )uK  is a 

symmetric traditional kernel function satisfying the conditions 

 ( )∫ ∫ ∫
∞

∞−

∞

∞−

∞

∞−
≠== .0)(,0)(,1 2 duuKuduuuKduuK  (2) 

Define also 

 ( )( ) ( ) ( ) ,2
24

2
24

4
ss

uKussuK
−

−
=  (3) 

where 

 ( )∫
∞

∞−
= .duuKus j

j  (4) 

The fourth-order kernel density estimator ( )xf̂  of ( )xf  is (Wand and Jones [16]) 

 ( ) ( )∑
=

∞<<∞−





 −

=
n

i

i xh
XxKnhxf

1
4 ,,1ˆ  (5) 

where h is a positive number controling the smoothness of the fitted density curve, 
usually called the bandwidth. To apply equation (5) to line transect data, some 
modifications have to be made. Usually, all distances ix  are nonnegative. This 

implies that 
 ( ) 0=xf   if  .0<x  (6) 

However, the fourth-order kernel density estimator given by (5) does not necessarily 
satisfy condition (6). To make it satisfy condition (6), we replace each value ix  with 

ix  and its reflection ix− , and then applying equation (5) on the extended sample 
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.,,,,,, 2211 nn xxxxxx −−− …  If a fourth-order kernel estimator ( )xf1̂  is constructed 

from this data set of size 2n, then an estimator based on the original data set can be 
given by putting 

( ) ( )




<
≥=

0,0
,0,ˆ2ˆ 1

x
xxfxf  

for the extended sample nn xxxxxx −−− ,,,,,, 2211 …  of size 2n. Thus, if 

nxxx ,,, 21 …  is a random sample of perpendicular distances, then the fourth-order 

kernel estimator of ( )xf  is given by 

( ) ( ) ( )∑
=

≥











 +

+





 −

=
n

i

ii xh
xxKh

xxKnhxf
1

44 0,1ˆ  

and ( ) 0ˆ =xf  for .0<x  Since ( )uK  is a symmetric kernel about zero, ( ) ( )uK 4  is 

symmetric about zero, and so 

 ( ) ( )∑
=







=

n

i

i
h
xKnhf

1
4 .20ˆ  (7) 

3. Asymptotic Properties 

In this Section, we derive the asymptotic bias and variance of the fourth-order 
kernel estimator given by (7). Assume that the underlying probability density 
function ( )xf  of a random sample of perpendicular distances nxxx ,,, 21 …  has a 

continuous fourth-order derivative over the positive half line. Assume also that 
)(uK  is a symmetric function satisfying condition (2). Then the expected value of 

( )0f̂  for given the sample size n is 

( ( )) ( )∫
∞







=

0
11

1
4

20ˆ dxxfh
xKhfE  

( ) ( )∫
∞

=
0

4 ,2 dthtftK  

where .1 hxt =  Expand ( )htf  around zero by using Taylor series, then if 0→h  
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as ,∞→n  

( ( )) ( ) ( ) ( )( ) ( ) ( )( )∫ ∫
∞ ∞

′′′+′+=
0 0

4
3

3
4 0!3

20200ˆ dttKtfhdtttKfhffE  

( )( ) ( )( ) ( )∫
∞

++
0

5
4

44
4

.0!4
2 hOdttKtfh  

Thus, the asymptotic bias of ( )0f̂  is 

( ( )) ( ) ( )( ) ( ) ( )( )∫ ∫
∞ ∞

′′′+′=
0 0

4
3

3
4 0!3

2020ˆ dttKtfhdtttKfhfBias  

( )( ) ( )( )∫
∞

+
0

4
44

4
.0!4

2 dttKtfh  (8) 

If the shoulder condition is true, then a ( )3hO  bias is achieved. While a ( )2hO  bias 

is achieved for the traditional kernel estimator under the shoulder condition 

assumption (Chen [7]), to achieve a ( )4hO  bias, the following condition should be 

valid: 

 ( ) 00 =′f   and  ( ) .00 =′′′f  (9) 

If condition (9) is not true and we aim to achieve a ( )4hO  bias, then it becomes 

necessary to use a boundary kernel to force ( )( )∫
∞

=
0 4 0dtttK  and 

( )( )∫
∞

=
0 4

3 ,0dttKt  or to assume that the first two terms in the right hand side of (8) 

are equal with different signs. But the task is still not easy to determine a kernel 
function with such of the above properties because we need to integrate over [ )∞,0 , 

not on ( )., ∞∞−  

In nonparametric density estimation using line transect sampling, a natural 
choice for the family of key probability density functions is constituted by the half-
normal model (see Chen [7]; Mack and Quang [13]), that is, 

 ( ) ( ) [ )( ),2
,0 xIxxf ∞σφ

σ
=  (10) 
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where ( )xφ  represents the standard normal probability density function and ( )xI A  

is the indicator function of the set A. If we assume that the underlying probability 
density function is as given by (10), then condition (9) will be valid and then a 

( )4hO  bias is achieved. We now turn to the variance. If condition (9) is true, then 

( ( )) ( ) 













= h

XK
nh

f 1
42 var40ˆvar  

( )( ) ( ) [ ( ) ( ( ))]∫
∞

+−=
0

22
4 .0ˆ014 fbiasfndthtftKnh  

If h is related to n in such a way that 0→h  and ∞→nh  as ,∞→n  then the 

variance of ( )0f̂  is 

 ( ( )) ( ) ( )( ) ( )∫
∞ −+=
0

12
4 .040ˆvar nOdttKfnhf  (11) 

It is obvious that the variance is of order ( ) ,1−nhO  which is the same order for the 

variance of the traditional kernel estimator (Chen [7]). Accordingly, the asymptotic 

mean square error (AMSE) of the proposed estimator ( )0f̂  is given by 

 ( ( )) ( ) ( )( )
( )( ) ( )( ) ,0576

4040ˆAMSE
0

2

0
4

44
8

2
4∫ ∫

∞ ∞









+= dttKtfhdttKfnhf  (12) 

where the first term in the right hand side of (12) is the variance and the second term 
is the squared bias. 

4. Bandwidth Selection 

To implement the new estimator in practice, we need to choose the value of the 
bandwidth h, which is the crucial problem in nonparametric density estimation. The 
bandwidth controls the smoothness of the fitted density curve. A larger h gives 
smoother estimate with smaller variance and larger bias. A smaller h produces a 
rougher estimate with larger variance and smaller bias (see equation (12)). One of 
the most common methods in nonparametric estimation is to find h that minimizes 
the AMSE and compromises between the variance and bias of the estimate. Consider 
the AMSE as a function of h ( )( ),say hd  differentiate ( )hd  with respect to h and 
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equate to zero, so as to get 

 ( ) ( )( )
( )( ) ( )( ) .020288 91

92

0
4

44
91

0
2
4

−
−∞∞

















= ∫∫ ndttKtfdttKfh  (13) 

Let ( )tK  be the standard normal kernel. Then 34 =s  and .12 =s  Thus, ( )( ) =tK 4  

( ) ( ) ,2
3 2 tKt−  where ( ) ( ) ( ).2exp21 2ttK −π=  Substituting these values back in 

(13), we have 
 ( ){ } { ( )( )} .00253064.1 9192491 −−= nffh  (14) 

The value of h given by (14) can be substituted back into (12) to give us the 

minimum achievable AMSE for ( ),0f̂  which indicates that the convergence rate for 

the MSE of ( )0f̂  is of order ,98−n  while it is of order 54−n  for the traditional 

kernel estimator (Chen [7]). In other words, as ,∞→n  the MSE of ( )0f̂  

approaches to zero in a faster way compared to the MSE of the traditional kernel 
estimator. 

The formula (14) is somewhat disappointing since it shows that h itself depends 
on unknown parameter ( )0f  being estimated. A natural method for choosing h in 

line transect sampling is to assume half-normal as the underlying model. Assume 
that the underlying model to be half-normal, which satisfies condition (9). Then 
plugging (10) into (14), we have 

 ,00657.1 91−σ= nh  (15) 

where σ can be estimated by using the maximum likelihood estimator σ̂  given by 

.ˆ
1

2∑
=

=σ
n

i
i nx  The simulation results given in Section 6 are obtained based on 

formula (15). 

5. A Modified Estimator 

Equation (8) implies that the fourth-order kernel achieves a ( )4hO  bias if 

condition (9) is true. If ( ) ,00 ≠′f  then ( )0f̂  achieves only a ( )hO  bias, which is 

significantly greater than ( ).4hO  As stated earlier, despite of the logical shoulder 
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condition assumption in line transect sampling, in practice in some cases, the validity 
of this condition is doubtful. Accordingly, assume that we are not sure whether the 
shoulder condition is valid or not. On this basis, a modified estimator for ( )0f  is 

introduced in this section. The proposed estimator ( ( ))0ˆsay ∗f  is considered as a 

semiparametric estimator, which combines the negative exponential model which 
does not satisfy the shoulder condition at the origin and the fourth-order kernel 
model. While the fourth-order kernel estimator performed generally well in line 
transect sampling as the simulation results indicated, some improvements can be 
obtained by using the semiparametric estimator, especially when the shoulder 
condition fails to remain valid. Gates et al. [11] suggested the negative exponential 
model to fit the perpendicular distances in line transect sampling. The model does 
not have the shoulder condition, which is given by 

( ) .0,1, ≥−
λ

=λ λ xxexf  

In this setting, we estimate the parameter ( ) λ=λ 1,0f  by using the maximum 

likelihood method which gives ( ) ,1ˆ,0 xf =λ  where x  represents the mean of the 

observed perpendicular distances .,,, 21 nxxx …  Thus, the semiparametric 

estimator in this case is of the form 

( ) ( ) ( ) ( ).0ˆˆ,010ˆ* fmfmf +λ−=  

The parameter ( )10 ≤≤ mm  is estimated from the data and its estimate m̂  is then 

used in ( )0ˆ ∗f  as the proposed estimate for ( ).0f  What is less clear in the above 

semiparametric estimator is how m should be chosen in the estimator ( ).0ˆ∗f  The 

main idea here is that we need to force m̂  to be close to unity when the shoulder 
condition for the underlying model of the data at hand holds and to be far from unity 
towards zero when the shoulder condition fails to hold. In other words, a good 

( )0ˆ ∗f  is expected to give high weight for the fourth-order kernel estimator when 

the shoulder condition holds and less weight when it does not. 

Zhang [17] proposed a procedure for testing the shoulder condition of a model 
based on line transect sampling. Assume that a random sample nxxx ...,,, 21  of 

perpendicular distances is drawn from a distribution with probability density 
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function ( ).xf  Consider the test ( ) 00:0 =′fH  vs. ( ) ,00:1 ≠′fH  according to 

Zhang [17], we reject 0H  for large value of .
1

1
2

∑
∑

=

== n
i i

n
i i

x

x
Z  Zhang constructed a 

table of critical values of the sampling distribution for Z with respect to different 
sample sizes by Monte Carlo simulation. The idea to choose the weighted parameter 
m is based on the test statistics Z. The value of Z (which always lies between zero 
and one) indicates how strongly 0H  is supported by the data. A large value of 

Z−1  leads us to accept the shoulder condition which indicates in some sense that 

( )0f  is close to the fourth-order kernel estimator ( ).0f̂  Thus, we can use this Z−1  

value to estimate the parameter m. Thus, the proposed semiparametric estimator is 

 ( ) ( ) ( ) ( ).0ˆ1ˆ,00ˆ fzfzf −+λ=∗  (16) 

6. Simulation Study 

Because the exact behavior of the proposed semiparametric estimator ( )0ˆ ∗f  is 

complex, we chose to study the sample properties of ( )0ˆ ∗f  in addition to the first 

estimator ( )0f̂  through simulation techniques. The proposed estimators were 

compared with the nonparametric traditional kernel estimator ( );0k̂f  the smoothing 

parameter h is computed by using the formula 51ˆ06.1 −σ= nh  (Chen [7]). The 

Buckland [3] semiparametric estimator ( )0ˆ
Hf  based on a key half-normal model 

with Hermite polynomial correction and the semiparametric estimator ( )0ˆ
Lf   

proposed by Barabesi [1] based on the local likelihood approach are also considered. 
Our simulation design is similar to that of Barabesi [1], in which three families of 
models which are commonly used as references in line transect studies were 
considered in the simulation. The exponential power (EP) family (Pollock [15]) 

( ) ( ) .1,0,11
1 ≥β≥

β+Γ
=

β− xxxf e  

The hazard-rate (HR) family (Hayes and Buckland [12]) 

( ) ( ) 1,0,111
1 >β≥





 −

β−Γ
=

β−− xxxf e  
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and the beta (BE) model (Eberhardt [8]) 

( ) ( ) ( ) .0,0,11 ≥β≥−β+= β xxxf  

In our simulation design, these three families were truncated at some distance w 

which required in computing of ( ).0ˆ
Hf  Four models were selected from the EP 

family with parameter values 5.2,0.2,5.1,0.1=β  and corresponding truncation 

points given by .0.2,5.2,0.3,0.5=w  Four models were selected from the HR 

family with parameter values 0.3,5.2,0.2,5.1=β  and corresponding truncation 

points given by .6,8,12,20=w  Moreover, four models were selected from the BE 

model with parameter values 0.3,5.2,0.2,5.1=β  and 1=w  for all the cases. The 

considered models cover a wide range of perpendicular distance probability density 
functions which vary near zero from spike to flat. It should be remarked that the EP 
model with 1=β  and the BE model do not satisfy the shoulder condition. This 

choice was made in order to assess the robustness of the considered estimators with 
respect to the shoulder condition. 

For each model and for sample sizes ,200,100,50=n  one thousand runs are 

iterated. For each model and for each sample size, Table 1 reports the simulated 
value of the relative bias (RB) 

( ( )) ( )
( ) ,0

00ˆ
RB f

ffE −=  

and the relative mean error (RME) 

( ( ))
( ) ,0

0ˆMSERME f
f=  

for each considered estimator. 

7. Results and Conclusion 

Depending on the simulation results given in Table 1, we conclude in summary 
the following: 

(1) The local likelihood estimator ( )0ˆ
Lf  of Barabesi [1] has very small RBs for 

each sample size and model, even if it is not very accurate, generally showing large 
RMEs. Indeed, it turns out to be the best estimator only for the EP model with 
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0.1=β  and the HR model with ,5.1=β  that is, for the most spiked model (the EP 

model with )0.1=β  and for the model that markedly falls as distance increases (the 

HR with ,)5.1=β  in which the two cases are barely suitable for line transect data. 

(2) The Hermite polynomial correction estimator ( )0ˆ
Hf  of Buckland [3] 

generally produces rather small RBs but it is not the best among the other estimators 
for any model with exception case when the model is the BE with 5.1=β  and 

.200=n  

(3) The traditional kernel estimator ( )0ˆ
Hf  of Chen [7] which can be viewed as 

a second-order kernel estimator is with large sRB  for the EP model with =β  
;5.1,0.1  for the HR model with 0.2,5.1=β  and for the BE model with different 

values of β. However, its performance is quite well for the EP and HR models when 
the shape parameter increases, which increases the smoothness of the underlying 
model near .0=x  The estimator turns out to be the best estimator for the HR model 
with 3=β  and 200,100=n  and for the NE model with .5.2=β  In the last case, 

its performance is similar to that of the fourth-order kernel estimator ( ).0f̂  

(4) The proposed estimator ( )0f̂  generally produces rather small RBs. The 

values of RBs are generally reduced when the parametric negative exponential 

estimator is introduced to form the semiparametric estimator ( ),0ˆ∗f  especially when 

the model of the simulated data does not satisfy the shoulder condition (i.e., the NE 
model with 0.1=β  and the BE model). On the other hand, comparing the sRB  

of ( )0ˆ
kf  with that of ( ),0f̂  the simulation results demonstrate clearly that the 

sRB  of ( )0f̂  is smaller than the sRB  of ( )0ˆ
kf  which coincides with our 

discussion in Section 3. 

(5) Regarding to RME, the estimator ( )0f̂  turns out to be the best estimator for 

the NE model with 5.2,0.2=β  and for the HR model with 0.3,5.2=β  in which 

the shoulder condition is valid for these models. On the other hand, some 

improvements are obtained when we use the semiparametric ( )0ˆ ∗f  instead of ( )0f̂  

especially for the BE model (in which the shoulder condition is not true) and for the 
NE model when the shape parameter decreases, which decreases the smoothness of 
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the model near .0=x  Moreover, the performance of ( )0ˆ ∗f  is better than ( )0f̂  for 

the HR model in the case that the model sharply falls as distance far away from 
0=x  (i.e., when .)0.2,5.1=β  

Finally, we have seen that fourth-order kernel approach is a useful 
nonparametric tool for analyzing line transect data. The method generally generates 
small RBs and RMEs. Some improvements over the fourth-order kernel estimator 
can be obtained by applying the semiparametric estimator in the absence of any 
information about the validity of the shoulder condition. Comparing the traditional 
kernel method with the fourth-order kernel method, the latest performed better than 
the traditional kernel method theoretically and numerically. Accordingly, the fourth-
order kernel method is recommend in line transect sampling. 

8. Numerical Example 

We apply the proposed estimator to the classical wooden stakes data set, given 
in Burnham et al. [6, p. 61]. The data are collected from line transect survey to 
estimate the density of stakes in a given area. The stakes data are the perpendicular 
distances (in meters) of detected a stake to the transect line, in which 150 stakes 
were placed at random in an area of 1000 meters long. Out of 150 stakes, 68 stakes 
are detected using line transect technique. The true form of ( )xf  is unknown, but 

the true value of ( )0f  is known which equals ( ) ,110294.00 =f  thus the actual 

density of stakes was 37.5 stakes/ha. Calculation shows that ,1624.0=Z  the 

empirical critical value for 05.0=α  and 68=n  is 0.1605 (Zhang [17]), so the 
shoulder condition is rejected. In this case, the estimator which given by (16) should 

be used. Calculation shows that 6.115, ˆ =λ  ,190.8ˆ =σ  ( ) ,163.0ˆ,0 =λf  158.5=h  

and ( ) .10639.00ˆ =f  Accordingly, the semiparametric estimator of ( )0f  is 

( ) 11567.00ˆ =∗f  and the corresponding estimator for the density of stakes is 

38.39ˆ =∗D  stakes/ha. Burnham et al. [6] analyzed the same data set by using a 
cosine series estimator, and they obtain an estimate for ( )0f  given by 0.1148 with 

corresponding density estimate 00.39ˆ =D  stakes/ha. It should be remarked that the 
cosine series estimator employs an exact value for the maximum perpendicular 
distance (take to be 20 meters for this example), that is, more information is used in 
this case. 
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Table 1. RME and RB (in parentheses) for the different five estimators of ( )0f  
Exponential 

Power Model 
n ( )0L̂f  ( )0ˆ

Hf  ( )0k̂f  ( )0f̂  ( )0ˆ∗f  

50 0.24 (–015) 0.31 (–0.28) 0.37 (–0.35) 0.31 (–0.29) 0.26 (–0.23) 
100 0.19 (–0.14) 0.29 (–0.27) 0.33 (–0.32) 0.29 (–0.28) 0.25 (–0.23) 1=β  

5=w  200 0.17 (–0.13) 0.26 (–0.24) 0.30 (–0.29) 0.27 (–0.26) 0.24 (–0.23) 
50 0.19 (–0.04) 0.16 (–0.08) 0.21 (–0.17) 0.16 (–0.11) 0.13 (–0.03) 

100 0.15 (–0.03) 0.13 (–0.08) 0.17 (–0.15) 0.13 (–0.10) 0.10 (–0.04) 5.1=β  
3=w  200 0.11 (–0.03) 0.11 (–0.08) 0.14 (–0.13) 0.11 (–0.09) 0.08 (–0.05) 

50 0.20 (0.01) 0.19 (0.01) 0.16 (–0.09) 0.14 (–0.03) 0.16 (–0.07) 
100 0.15 (0.01) 0.15 (0.02) 0.12 (–0.07) 0.11 (–0.03) 0.12 (0.05) 2=β  

5.2=w  200 0.11 (0.00) 0.11 (0.02) 0.10 (–0.06) 0.08 (–0.02) 0.08 (0.03) 
50 0.22 (0.03) 0.24 (0.06) 0.15 (–0.05) 0.15 (0.01) 0.19 (0.12) 

100 0.17 (0.02) 0.19 (0.06) 0.11 (–0.04) 0.11 (0.00) 0.14 (0.09) 5.2=β  
2=w  200 0.12 (0.01) 0.17 (0.06) 0.08 (–0.03) 0.08 (0.00) 0.10 (0.06) 

Hazard Rate 
Model 

      

50 0.22 (–0.05) 0.39 (–0.37) 0.43 (–0.42) 0.37 (–0.35) 0.33 (–0.30) 
100 0.16 (–0.05) 0.38 (–0.36) 0.39 (–0.38) 0.35 (–0.33) 0.31 (–0.30) 5.1=β  

20=w  200 0.13 (–0.03) 0.38 (–0.36) 0.33 (–0.33) 0.32 (–0.31) 0.30 (–0.29) 
50 0.20 (0.02) 0.21 (-0.10) 0.30 (–0.27) 0.23 (–0.19) 0.19 (–0.12) 

100 0.15 (0.03) 0.15 (–0.08) 0.24 (–0.22) 0.19 (–0.17) 0.16 (–0.12) 2=β  
12=w  200 0.11 (0.03) 0.14 (–0.08) 0.19 (–0.18) 0.16 (–0.14) 0.13 (–0.11) 

50 0.20 (0.05) 0.19 (0.08) 0.18 (–0.14) 0.14 (–0.05) 0.15 (0.04) 
100 0.16 (0.04) 0.15 (0.07) 0.13 (–0.10) 0.10 (–0.02) 0.11 (0.04) 5.2=β  

8=w  200 0.11 (0.03) 0.11 (0.07) 0.09 (–0.07) 0.07 (–0.01) 0.08 (0.03) 
50 0.23 (0.05) 0.20 (0.10) 0.14 (–0.06) 0.13 (0.02) 0.18 (0.11) 

100 0.17 (0.03) 0.17 (0.11) 0.10 (–0.04) 0.10 (0.03) 0.14 (0.10) 3=β  
6=w  200 0.13 (0.02) 0.16 (0.11) 0.07 (–0.02) 0.08 (0.04) 0.11 (0.09) 

Beta Model       
50 0.21 (–0.03) 0.16 (–0.03) 0.22 (–0.18) 0.18 (–0.13) 0.14 (–0.04) 

100 0.15 (–0.03) 0.12 (–0.04) 0.19 (–0.17) 0.16 (–0.13) 0.11 (–0.06) 5.1=β  
1=w  200 0.11 (–0.02) 0.09 (–0.03) 0.16 (–0.15) 0.14 (–0.12) 0.10 (–0.07) 

50 0.20 (–0.06) 0.15 (–0.08) 0.24 (–0.22) 0.20 (–0.15) 0.15 (–0.07) 
100 0.15 (–0.06) 0.12 (–0.08) 0.21 (–0.20) 0.18 (–0.15) 0.13 (–0.09) 0.2=β  

1=w  200 0.11 (–0.06) 0.11 (–0.08) 0.19 (–0.17) 0.15 (–0.14) 0.12 (–0.09) 
50 0.22 (–0.06) 0.18 (–0.13) 0.26 (–0.23) 0.21 (–0.17) 0.16 (–0.09) 

100 0.15 (–0.07) 0.15 (–0.12) 0.23 (–0.21) 0.19 (–0.17) 0.15 (–0.11) 5.2=β  
1=w  200 0.12 (–0.07) 0.14 (–0.13) 0.20 (–0.18) 0.17 (–0.15) 0.13 (–0.11) 

50 0.21 (–0.08) 0.19 (–0.15) 0.27 (–0.25) 0.22 (–0.18) 0.16 (–0.10) 
100 0.16 (–0.08) 0.18 (–0.16) 0.24 (–0.23) 0.20 (–0.18) 0.15 (–0.12) 0.3=β  

1=w  200 0.13 (–0.08) 0.17 (–0.16) 0.21 (–0.20) 0.18 (–0.17) 0.14 (–0.13) 
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