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Abstract 

The asymptotic inferences about the difference ( )12 ppd −=  or ratio 

( )12 ppR =  of two proportions ( )21 and pp  are very common in 

medicine and in applied statistics, in general. Both the cases may be 
included within the general case of inferences about the parameter 

12 ppL β−α−=  (recently interest has been shown about this parameter 

from the perspective of clinical trials). In this article, the authors review 
the 12 principal statistics proposed in the relevant literature, propose 15 
new ones, group them into families, correct existing errors in the 
definitions of some and, finally, define and analyze the most desirable 
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properties they should have. In addition, they offer a simple formula that 
allows all the cases to be analyzed in a similar fashion, together with             
a computer program (http://www.ugr.es/local/bioest/Z_LINEAR.EXE) 
which permits asymptotic tests related to L to be carried out. 

1. Introduction 

Many clinical trials are aimed at contrasting the proportions of successes of a 
new treatment ( )2p  with a standard treatment or a placebo ( ).1p  When the 

difference of proportion ( )12 ppd −=  is the focus of comparison, it is useful to 

contrast the hypotheses δ≤dHd :  vs. ,: δ>dKd  where .11 +<δ<−  In 

particular, when ,0=δ  the classic test of superiority is obtained, the aim of which is 
to prove that the new treatment is superior to the standard one; when ,0<δ  the test 
of non-inferiority is obtained, the aim of which is to prove that the new treatment is 
not substantially inferior to the standard one [1], where δ is a prespecified small 
quantity; finally, when ,0>δ  this can be used when we wish to prove that the new 

treatment is substantially superior to the standard one [2], where δ refers here to the 
minimum difference d that is biologically significant. From another point of view, 
the test for dH  is also useful for obtaining confidence intervals for the parameter d 

when it is inverted [3] (see Section 4). When the ratio of proportions ( )12 ppR =  

is the focus of comparison (as occurs in vaccine efficacy studies), then the test to be 
used will be ρ≤RHR :  vs. ,: ρ>RKR  where ∞<ρ<0  [4]. In this case, 

values 1,1 =ρ<ρ  and 1>ρ  exercise a similar role to that of the previous values 

,0<δ  0=δ  and .0>δ  In the case of d, the value of δ is usually set by the 

regulatory agencies (FDA in USA, CPMP in Europe); but often δ is not a single 
value, but varies depending on the value of 1p (for  example, 15.0−=δ  for 

85.01 =p  and 10.0−=δ  for ).95.01 =p  In order to adapt to these circumstances, 

Phillips [5] proposed assuming that δ is a linear function of ,1p  and this led him to 

suggest the test 12: ppHL β+α≤  vs. 12: ppKL β+α>  (in which case, 

575.0−=α  and 5.1=β  in the previous example). The same occurs in the case of 

the model R if it is assumed that ρ is a linear function of .1 1p  

Cases d and R have been the subject of abundant publications - see the reviews 
[3, 6, 7] - and there are hundreds of articles in which the various statistics that allow 
the asymptotical test to be carried out are proposed and/or analyzed. This huge 
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amount of data is the reason that, all too frequently, researchers “rediscover” old 
methods that were already known. The prime aim of this paper is to offer a 
panorama of existing statistics while also proposing new ones. Little attention has 
been paid to case L. Nevertheless, it has the added advantage of containing the 
particular case of the classic cases d and R, given that their null hypotheses can also 
be given as δ+≤ 12: ppHd  and ,: 12 ppH R ρ≤  respectively. As a result, any 

property of case L is immediately transferred to cases d and R. Thus, the second aim 
of this article is the detailed analysis of case L. 

In all of the cases, the border of the parametric space defining the null 
hypothesis is a function ( ) 112 ppfp β+α==  of the unknown parameter ,1p  

which acts as a nuisance parameter which must be estimated by some means. As it is 
customary to state the above tests under a null hypothesis formed solely by the said 
border (see Section 5), in the following it is assumed that the null hypotheses to be 
contrasted are, for each model: 

( ) { } { } ,1;1min;0maxwhere,::Model 1112 sBd pppppHd =δ−≤≤δ−=δ+=  

 (1) 

( ) { } ,1;1min0where,::Model 1112 sBR pppppHR =ρ≤≤=ρ=  (2) 

( ) ,1112
1;1min;0maxwhere,::Model sBL pppppHL =

⎭⎬
⎫

⎩⎨
⎧

β
α−≤≤

⎭⎬
⎫

⎩⎨
⎧

β
α−=β+α=  

 (3) 

while the alternative hypotheses K are those already mentioned ,( 12 pp β+α>  in 

general). In expressions (1) and (2), the possible values for the parameters ,1p  

( )11 +<δ<−δ  and ( )∞<ρ<ρ 0  are the classic ones published [8]. In expression 

(3), the possible values for the parameters ( )0>ββ  and ( )1<α<β−α  proceed 

from the fact that the straight line 12 pp β+α=  must not decrease in 1p  [9] and 

must cut the rectangle [ ] [ ];1,01,0 ×  moreover, the limits 1p  can be deduced from 

conditions .10 ≤≤ ip  Note that when δ=α  and 1=β  (or 0=α  and )ρ=β  

model L yields model d (or model R). 

Finally, it must be pointed out that, in order to make the article easier to follow, 
the main body of this article is devoted to setting out the results, while most of the 
principal proofs will be found in the Appendices. The Appendices containing the full 
proofs may be requested from the authors. 
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2. Estimating the Parameters 

During the inference process, it is necessary to estimate the parameters 1p  and 

.2p  To do so, we require two independent samples of size in  and their number of 

successes ,ix  where .2,1=i  Let ,iii xny −=  ,21 nnn +=  211 xxa +=  and 

.2112 yyana +=−=  As ( )iii pnBx ;~  are two independent random binomial 

variables, then the probability of the observed results will be: 

( ) ( ) ( ) .1where,;;,,Pr 2211
221122112121 ii
yxyx pqqpqpxnCxnCppxxL −==|=  (4) 

If we ignore the null hypothesis, then the estimators of maximum likelihood for 

ip  are the classic .iii nxp =  It is more appropriate to bear the model in mind and 

carry out the estimation under the condition that ,12 pp β+α=  which implies that 

only the parameter 1p  need to be estimated. From the conditional point of view [1], 

the only possible values of 1p  are the ones where the total number of successes 1a  

remains constant. In this case, ( )121122111 pnpnpnpna β+α+=+=  and so the 

conditioned estimators for the ip  values will be ( ) ( )β+α−= 21211
~ nnnap  and 

.~~
12 pp β+α=  The estimators ( ) nnap δ−= 211

~  in the case d and =1
~p  

( )ρ+ 211 nna  in the case R were proposed by Dunnett and Gent [1] and Farrington 

and Manning [10], respectively. In all the cases, we should proceed with logical 
caution: when 1

~p  is not an allowed value - because it does not verify expressions (1) 

to (3) - then it must be made equal to ( )sI pp  if ( ).~~
11 sI pppp ><  Note that 1

~p  is 

the solution to the equation: 

 ( ) ( ) .where,0 12222111 ppppnppn β+α==−+−  (5) 

From the unconditional viewpoint - Mee [11] in the case d; Koopman [12] in the 
case R - the estimators ip̂  are obtained, which are more complicated but more 

efficient in the inference. Now, 1p̂  is the value of 1p  which verifies the equality: 

( ) ( ) ( ) ,0log 222221111111 =−β+−== qpppnqpppnphdpLd  

 where ,12 pp β+α=  (6) 

although, when ( ) 01 ≠ph  in ,1 sI ppp ≤≤  then Ipp =1ˆ  if 0<h  or spp =1ˆ  if 



ASYMPTOTIC INFERENCES ABOUT A LINEAR COMBINATION ... 257 

.0>h  In Appendix A, it is proven that { } ,3cos2ˆ 3
5.0

21 cBcp ϕ+−=  where 

( ) ,1 10 xc α−α=  ( ) ( ),21 12111 xnnac +αβ−α−α−β=  [( ) ( )2112 xnnnc +−α+β=  

( )],12 xn +β−  ,2
3 β= nc  ,3 31

2
2 cccB −=  [ ( )] 3cos 231 BA−+π=ϕ −  and =A  

( ) .35.4 3
230213 cccccc −−  In particular, when 1=β  (model d) the value 1p̂  given 

by Miettinen and Nurminen [8] is obtained. The expressions are simpler when 

0=α  (model R); now, [ { } ] ,24ˆ 5.0
1

2
1 ρρ−−= nnabbp  where ( ) +−= 2ynb  

( ) .1 ρ− yn  

One consequence is that, according to expression (6), the quantities ( )11 p̂p −  

and ( )22 p̂p −  should have opposing signs; this is also true for ip~  because of 

expression (5). Hence, if ,ˆ11 pp ≤  then ,ˆˆ 122 ppp β+α=≥  that is ( ).ˆ 2
1

1 pfp −≤  

Thus, ( )2
1

11 ˆ pfpp −≤≤  and ( ) .ˆ 2211 pppff ≤≤=  As this argument also works 

the other way round, then: 

( ) ( ) ( ) 22122
1

21112 ˆ1ˆ ppfppfpppfp ≤≤⇔β+βα−=≤≤⇔β+α=≥ −  (7) 

which, for models d and R becomes δ+⇔δ−≤≤⇔δ+≥ 121112 ˆ pppppp  

22ˆ pp ≤≤  and ,ˆˆ 22121112 pppppppp ≤≤ρ⇔ρ≤≤⇔ρ≥  respectively. 

Appendix A contains the proof also that 1p̂  increases with ,ip  decreases with 

α and decreases with ( );0if ≤αβ  it also decreases (increases) with ( )21 nn  when 

.12 fp ≥  In particular, 1p̂  will decrease with δ (model d) and ρ (model R). The 

properties of 1p̂  (model d) are all well-known from the published literature [2, 13]. 

In all the cases, it is to be understood that neither the increase nor the decrease is 
strict. 

3. Type z Statistics 

3.1. Classic statistics 

Because contrasting ( ) 12: ppH BL β+α=  is equivalent to contrasting α−2p  

,01 =β− p  the contrast statistic will be .12 pp β−α−  As its asymptotic mean is                  

0 ( ( ) )BLHunder  and its asymptotic variance is ( ) ( ) +=β+ 222
2

12 nqppVpV  
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,111
2 nqpβ  then the classic statistic z to be compared with value γ−1z  (the γ−1  

percentage point of a standard normal distribution) is the square root of the statistic 
[5]: 

 ( ) { ( ) ( ) }.11 111
2

222
2

12
2 nppnppppzL −β+−β−α−=  (8) 

In particular, for models d and R, we obtain the statistics 2
dz  and 2

Rz  of Dunnett and 

Gent [1] and Katz et al. [14], respectively. 

In order to carry out the test, it is necessary to estimate the parameters ip  of 

expression (8). When the estimators ip  are used, we obtain the statistic [5]: 

 ( ) { },111
2

222
2

12
2 nqpnqpppzL β+β−α−=  (9) 

whose particular cases 2
dz  and 2

Rz  were first given by Dunnett and Gent [1] and 

Katz et al. [14], respectively, although they were rediscovered by Laster et al. [15]. It 
is better to substitute ip  with ip~  in expression (8), in which case the new statistic 

2~
Lz  is obtained. Its particular case 2~

dz  was given by Dunnett and Gent [1] and 

rediscovered by Wallenstein [16] and Parmet and Schechtman [17]. For model R, the 

statistic 2~
Rz  [10] is obtained which, when ip~  is allowed, is simplified to: 

 ( ) [ { ( ) }].1~ 2
2111

2
1221

2 ρ+ρ−ρρ−= nnnaappnnzR  (10) 

It is even better to substitute ip  with ip̂  in expression (8), so obtaining the new 

statistic .ˆ2
Lz  Its particular cases are the statistics 2ˆdz  of Mee [11] - rediscovered by 

Parmet and Schechtman [17] - and 2ˆRz  of Miettinen and Nurminen [8]. Note that 

statistic 2
Lz  is known, but the statistics 2~

Lz   and 2ˆLz  are new, with all three having 

the advantage of containing as particular cases the statistics for the cases d and R 
(that are already known). Something similar occurs with the other statistics indicated 
below. 

Moreover, the classic Pearson chi-squared statistic (which is obtained by using 
the score method) can be written as (see Appendix B): 

 ( )
( )

( )
( ) ,11 222

2
222

111

2
1112

ppn
pnx

ppn
pnx

L −
−

+
−

−
=χ  (11) 
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a quantity to be compared with the value 2
21 γ−χ  (the γ− 21  percentage point of a 

chi-squared distribution with one degree of freedom). This new statistic contains the 

particular case of the statistics 2
dχ  given by Dunnett and Gent [1] and 2

Rχ  given by 

Koopman [12]. As in case ,2
Lz  in order to carry out this test, it is necessary to 

estimate ,ip  which gives rise to the statistics 2~
Lχ  and 2ˆ Lχ  by substituting ip  with 

ip~  or ,ˆ ip  respectively ( 2
Lχ  is excluded because ).02 =χL  In particular, through 

expression (5): 

( )
⎭
⎬
⎫

⎩
⎨
⎧ +−=χ

222111

2
111

2
~~

1
~~

1~~
qpnqpnpnxL  

 ( ) .~
1

~
1

~
1

~
1~

22221111

2
111 ⎭

⎬
⎫

⎩
⎨
⎧ +++−= qnpnqnpnpnx  (12) 

Case ,~2
dχ  in its longest format, was first given by Dunnett and Gent [1]. Cases 

2ˆ dχ  and 2ˆ Rχ  were the work of Nam [18] and Koopman [12], respectively. 

A point of interest is the possible relation between the type 2z  and type 2χ  

statistics. Dunnett and Gent [1] found experimentally that ;~~ 22
dd z≠χ  in general, it 

also happens that .~~ 22
LL z≠χ  However (see Appendix B), the following equality does 

occur .ˆˆ 22
LL z=χ  This equality was first proved by Nam [18] and rediscovered by 

Andrés and Tejedor [2] in case d and by Gart and Nam [19] in case R. In Appendix 

B, it is also proved that 2ˆ Lχ  can be written in the following alternative formats: 

 ( ) ( ) ( ) ( ) 22
1

22
2

2
12

2
2

2
22

2
1

2
11

2 ˆˆˆˆ LL zfppppp =σβ+σ−=σ−+σ−=χ  (13) 

( ) ( ) ( ) ( ) 2
21222

2
11211 ˆˆ σ−−=βσ−−= fpppfppp  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧

βσ
+

σ
β−−= 2

1
2
2

2211
1ˆˆ pppp  (14) 

( ) ( ) ( ) ( ) ,1ˆ1ˆ 2
2

2
2

2
1

22
22

2
1

2
1

22
2

2
11 σσσβ+−=σσβσ+−= pppp  (15) 

where ( ) ( ) 12222
2
2111

2
1 ˆˆ,ˆ1ˆ,ˆ1ˆ ppnppnpp β+α=−=σ−=σ  and .11 pf β+α=  
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For cases d and R both, expressions (13) have already been referred to above. For 
case d, the first two expressions (14) are the work of Andrés and Tejedor [2]. For 
case R, the first expression (15) is owed to Nam [18] and the second to Gart and 
Nam [19]. 

When expressions (13) to (15) are particularized to models d and R, some 

simplifications are obtained. In case d, the relevant simplification is that =− 12 fp  

,δ−d  where .12 ppd −=  In particular, the first two expressions of (14) are the 

cause of: 

 ( ) ( )
( )

( ) ( )
( ) ( ) .ˆ1ˆ

ˆ
ˆ1ˆ

ˆˆˆ
11

122
11

11122
δ−−δ+
δ−δ−−

=
−

δ−−
==χ

pp
dppn

pp
dppnzdd  (16) 

In case R, the second expression in (13) and expressions (15) give rise to: 

 ( ) ( )1211
2

1221
22 ˆˆˆˆ pnnnpppnnzRR ρ−ρ+ρρ−==χ  (17) 

( )
( )

( )
( )

( )
( )

( )
( ) .ˆ1

ˆ11ˆ1ˆ
ˆ

ˆ1
ˆ11ˆ1ˆ

ˆ
11
12

112

2
122

12
11

111

2
111

⎭
⎬
⎫

⎩
⎨
⎧

ρ−
−ρ

+
ρ−ρ

−
=

⎭
⎬
⎫

⎩
⎨
⎧

−ρ
ρ−

+
−

−
=

pn
pn

ppn
pnx

pn
pn

ppn
pnx  (18) 

Note that the classic test for comparing two proportions ( )12: ppH =  is 

obtained from model L making 0=α  and .1=β  Now, napp 111
~ˆ ==  and 

( ) ( ),ˆ~ˆ~
2121

2
1221

2222 nnaayxyxnzz LLLL −=χ=χ==  with which the classic test is 

obtained. 

3.2. Statistics based on the logarithmic transformation 

Inferences about R are frequently made using the statistic .log R  If we do the 

same for model L, then we have to think of the null hypothesis −2log p  

( ) .0log 1 =β+α p  The contrast statistic will now be ( ),loglog 12 pp β+α−  whose 

asymptotic mean is 0 ( ( ) )BLHunder  and whose asymptotic variance is ( )222 pnq  

[ ( ) ].2
1111

2 pnqp β+αβ+  This yields the following statistic: 

 [ { ( )}] { ( ) }.log 2
1111

2
222

2
12

2 pnqppnqppLzL β+αβ+β+α=  (19) 

On substituting ip  with ii pp ~,  or ,ˆ ip  the statistics 22 ~, LL zLzL  and 2ˆLzL  are 
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obtained, respectively. The case of most interest is that of model R, in which: 

{ ( )} { ( )} ,11log11log
11
1

22
22

212211

22 ⎟
⎠
⎞

⎜
⎝
⎛ −

+
−

ρ=⎟
⎠
⎞

⎜
⎝
⎛ −+ρ= pn

p
pn
pRnn

n
pnpnRLzR  (20) 

which yields the statistics 22 ˆ,~
RR zLzL  and the classic statistic of Woolf [20]: 

 { ( )} ( ) ( ) ( ){ }.11log 2121
22 nnnxxRzL R −+ρ=  (21) 

3.3. Statistics based on the Sterne method 

Another way of making the inference is by using the method of Sterne [21]. So, 
Peskun [22] indicated that the test for ( ) δ+= 12: ppH Bd  will be significant to the 

error γ when it is so for the whole value of .1p  This means that 2
1

2
γ−≥ zzd  in all 

possible values of ,1p  which means working with the statistic .min 22
1 dpd zMz =  

This argument may be extended to any statistic, in particular, to the statistic .2
Lz  In 

Appendix B, it is proven that if ( ) ( ):22 1210 βα−β+= nnnnp  

( ) ( )

( ) {( ) ( )}⎪⎩

⎪
⎨
⎧

β−α−α+β+β−α−

><==
=

otherwise,,144

,orif,orfor

21
2

21
2

1221

01011
2

2

nnnnppnnn

ppppppppz
Mz ssIL

L  

 (22) 

( ) ( ) { } ( )

( ) ( ) ( )⎪⎩

⎪
⎨
⎧

≤δδ−δ−

>δδ−δδ−
=

,max2if,44

,max2if,1min
2

21
22

21

2
2

ii

iiii
d

nnnnndnnn

nndn
Mz  (23) 

( ) ( ){ } ( )

( ) ( ) ( )

{( ) ( )}⎪
⎪
⎩

⎪
⎪
⎨

⎧

ρ+ρ−

+>ρ−ρρ−

+<ρρ−ρρ−

=

otherwise.,4

,if,1

,if,1

2
211221

22
2

121

11
2

122
2

nnppnnn

nnnppn

nnnppn

MzR  (24) 

For Peskun [22], the value 2
dMz  is that of the second expression in (23): but this 

is incorrect, because the value ( ) ( )nnnp 22 10 δ−=  in which this minimum is 

calculated is not always an allowed value of .1p  Feigin and Lumelskii [23] made the 

same error when they rediscovered the procedure. 
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3.4. Continuity correction and Agresti type statistics 

One interesting point is whether it is right [24] to carry out a continuity 
correction when the distribution of a discrete random variable (such as the )ix  is 

approached through that of a continuous random variable (such as the normal one). 
From the viewpoint of conditional inference, it is usual to carry out Yates’ classic 

correction. This implies [25] substituting the term ( )2111
~pnx −  in expression (12) 

with the term { } .5.0~ 2
111 −− pnx  From the unconditional viewpoint, no corrections 

are usually performed, although Andrés and Tejedor [26] advise using a rather slight 

correction in case .2
dz  Their argument, applied to models L, d and R (see Appendix 

C), leads them to propose that the correction should consist of substituting                   

the numerators ,12 pp β−α−  δ−d  and 12 pp ρ−  of the statistics 2z  or 2Mz  

with the quantities ( ) ( ) ,2112 Npp β+−β−α−  ( ) Nd 1−δ−  and ( ) −ρ− 12 pp  

( ) ,21 Nρ+  respectively, where .21nnnN +=  It can so be seen that the correction 

is irrelevant when the in  values are not excessively small. 

A different point is the custom of adding a constant h to all the outcomes when 
using a statistic based on .ip  In these cases, the statistic is obtained by exchanging 

ix  and in  for ( )hxi +  and ( ),2hni +  respectively. The value 5.0=h  is customary 

[14] in the statistic ,2
RzL  so obtaining the new statistic ( ).5.02 +RzL  The value 1=h  

is newer and is applied to the statistics 2
dz  [27] and 2

RzL  [7] in order to obtain the 

statistics ( )12 +dz  and ( ),12 +RzL  respectively. 

3.5. Excluded statistics 

The above list of statistics is not exhaustive, but it includes the ones that are 
most relevant. Other options are: (a) the likelihood ratio statistic for models d and R 
[1, 28-31], whose general expression for model L is [ ( ) ( )111111 ˆlogˆlog2 qqyppx +−  

( ) { }];ˆlogˆlog 222222 qqyppx ++  (b) the statistic based on the arc sine 

transformation for model d [31]; (c) the statistic 2z  with a correction for skewness 

[19, 32, 33]; (d) the statistic 2z  based on an unbiased estimator of ,11qp  rather than 
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the one ( )2ˆLz  based on an unbiased estimator of ;1p  and (e) the statistic based on the 

individual confidence intervals for ip  [34]. 

4. Tests and Confidence Intervals 

The statistics in the previous section were defined on the basis of the null 
hypothesis ( ) .: 12 ppH BL β+α=  In order to determine the p-value of the observed 

value, it is necessary to decide if the alternative hypothesis is 12: ppKL β+α>  

(that of Section 1), 12: ppKL β+α<′  or .: 12 ppKL β+α≠′′  If 2
LS  refers to any 

of the statistics in this paper and ( )[ ] ,Ssign 2
L12 ppSL β−α−=  then the p-values 

are, respectively, 

 { } { } { },Pr2andPr,Pr LLLLLL SzPSzPSzP ≥=′′≤=′≥=  (25) 

where z refers to the standard normal random variable. 

When the aim is to obtain confidence intervals for the difference of               
proportions ,12 ppd −=  then it is sufficient to invert the opportune test [4]. In               

the case that concerns us here, this implies obtaining the two allowed solutions Lδ(  

and )Uδ  to the equation .22
21 dSz =γ−  Then ,Ud δ≤  Ld δ≥  or UL d δ≤≤δ  

will be the confidence intervals for one-tail (right), for one-tail (left) or for two-          
tails, for the errors ,2γ  2γ  or γ, respectively. The same applies if the interval                       

is required for .12 ppR =  Determining the two values for δ (or for )ρ  which 

verify equation 22
21 dSz =γ−  (or )2

RS  may be more or less complex depending                  

on the degree of the polynomial to be solved. In elementary textbooks, it is                  
usual to chose the simplest solution (of degree 1) given by the statistics                        

2
dz  and ,2

RzL  that is 2221112112 nqpnqpzppd +±−∈ γ−  and ∈R  

( ) { ( ) ( ) ( )}.11exp 21212112 nnnxxzpp −+± γ−  

The statistics 2~
dz  [16, 35], 2

dMz  [20] and 2
RMz  yield an explicit, simple 

solution (of degree 2). In particular, the first statistic yields the solution (c is                     
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the continuity correction; make 0=c  if one does not want this) ( )AB 2−∈δ  

{( ) ( )} ,2 5.02 ACAB −±  where [( ) ] ,2121
2

12
2

21 nnnnnnnzA ++−= γ−  =B  

( ) ( ) ( )cdnnnaannz ±−−−γ− 211212
2

21 2  and ( ) .21
2

21
2

21 aazcdnnnC γ−−±=  

The statistics which behave best (see Section 6) yield more complex solutions: 

of degree 3 in the case of 2ˆRz  [18] and of degree 4 in the case of .ˆ2
dz  In Appendix D, 

it can be seen that, when ,12 pp β+α≠  then the outcomes ix  and ,in  the 

parameters α and β and the statistic 2ˆLz  are directly related (without the need for the 

intermediate calculation of the value )ˆ1p  using the equality: 

 ( ) 01221 =λ−β+α+β−+β= nRRy  (26) 

with ( ) ,0ˆ 12
2 ≠β−α−β=λ ppzL  ( )λ−−+λ= 11

2
1

22
1 22 xnnR  and +λ= 22

2R  

( ) .22 22
22

2 λ−β+β xnn  This means that expression (26) may be used to determine 

the unique solution 0ˆ2 ≠Lz  for it or ( )2
21

2ˆmaking γ−= zzL  the two allowed solutions 

Iα  and Sα  ( )SI ββ andor  which permit the two-tailed CI for α (or for β) to the 

error γ to be obtained. This equation may also be used for carrying out the test 
simply, without requiring the calculation of 1p̂  (see Appendix D). All the above is 

also valid if we wish to work with the statistic 2ˆLcz  with any continuity correction c; 

for this, we only need to make {( ) ( )}2
1212

2ˆ cppppzLc −β−α−β−α−β=λ  in 

expression (26). 

5. Conditions to be Verified by any Statistic 

For a statistic 2
LS  to be useful in inference, it has to verify certain coherence 

properties. Thus, in the context of the exact tests for ( )BdH  [9], it is necessary for 

the critical regions not to have holes. Because the critical region is constructed by 
ordering the points of the sample space from the higher to lower value of a statistic 

dS  in case ,dK  the absence of gaps implies that dS  should increase (decrease) in 

( ).12 pp  This is what is known as Barnard’s two convexity properties (which we 
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shall call spatial convexity here). The argument may be extended to the case of the 
alternative LK  and to the case of asymptotic tests. In Appendix E, it is proven that 

the statistics LLLLL zzz χχ= ~,ˆˆ,~,  and LMz  verify these properties, while the 

statistic RzL  only verifies the first (it  increases with ),2p  for which reason it will 

not yield a coherent inference. The convexity spatial of dẑ  was initially proved 

heuristically [4] and then more exactly [2, 36], and it is also true when a continuity 
correction is performed on dẑ  [31]. 

Moreover, all the statistics 2
LS  have been obtained under the null hypothesis 

( ) .: 12 ppH BL β+α=  However, the real null hypothesis is .: 12 ppH L β+α≤  

From Sterne’s principle [21], for LS  to be allowable, it is necessary that it reaches 

its minimum value on the border of ,LH  that is, it must decrease with α (property of 

parametric convexity). It is known [2] that dẑ  verifies this property, and it is proven 

in Appendix E that the statistics LLLLLL Mzzzz ,ˆˆ,~,~, χ=χ  and RzL  also verify it. 

Parametric convexity is essential if the confidence interval for the parameter of 

interest is going to be obtained by resolving the equation 22
21 LSz =γ−  rather than 

the equation .22
21 LSz ≥γ−  When the alternative is ,: 12 ppKL β+α<′  the statistic 

will be LL SS −=′  and its convexity properties are the opposite of those in case 

.: 12 ppKL β+α>  

The above reasoning is strictly valid only when the variance of the contrast 
statistic 12 pp β−α−  has not been obtained under ( ),BLH  something which does 

not occur with .ˆ2
Lz  This is because it makes no sense to apply the principle of 

maximum likelihood when determining 2ˆLz  followed by Sterne’s principle when 

validating 2ˆLz  for the whole null hypothesis. This means that 2ˆLz  should be defined 

as the value of 2
Lz  in expression (8) with ip  estimated by maximum likelihood 

within the LH  region. At the end of Appendix A, it is proven that the estimator of 

maximum likelihood of ip  is ip  when 12 fp ≤  and ip̂  when ;12 fp >  as a result 

the required statistic ( )2ˆ̂
Lz  takes the value 2

Lz  in the first case and the value 2ˆLz  in 
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the second case. However, this has no relevance in practical terms because, when 

,ˆˆ 12 fp ≤  the p-value LP  in expression (25) will be .5.0>  

Let us look at the classic hypothesis ( ) 12: ppH BL β+α=  again, which we 

shall note down for the moment as 12: ppHO β+α=  in order to remind ourselves 

that it is applied to the original outcomes. If the samples, the ip  and iq  or both 

together are permuted, then the equivalent hypotheses to OH  for the new 

presentation of outcomes are ( ) ( ) ,1: 21 ppH S β+βα−=  ( )β−α−= 1: 2qHC  

1qβ+  and ( ) ( ) ,11: 21 qqHSC β+β−β+α=  respectively, all of which verify 

model L. It appears logical to expect that any statistic 2
LS  takes the same value in all 

four cases (properties of equivalence). This is what occurs with all the statistics 

described so far, except for .2
LLz  However, 2

RLz  does take the same value for OH  

and .SH  

6. Selection of the Best Statistic Based on Published Results 

Many of the statistics contemplated in this article have been proposed in the 
context of the hypothesis tests, in the context of the confidence intervals or in both 
contexts. This has resulted in the various authors comparing different groups of 
statistics from one perspective or the other. When the comparison is made from the 
perspective of the hypothesis tests, the authors focus on the power for each test and 

on the difference ∗γ−γ  between the objective ( )γ  and real errors ( ).∗γ  In the case 

of the confidence intervals, the centre of attention is the length and the difference 
∗γ−γ  between its real ( )∗γ−1  and objective coverage ( ).1 γ−  But, in essence, 

both approaches are the same. In the first, because by inverting a hypothesis tests a 
confidence interval [3] is obtained, and also the other way round [37]. In the second 
place (and related to the above), because the more powerful a test is, the lesser the 
length of the confidence interval it induces. As a result, the following conclusions 
published in the relevant literature are analyzed without differentiating between the 
origin of the comparisons (tests or intervals). 

Case d is the one that has been most analyzed in the literature. Different studies 

confirm that the statistic 2ˆdz  is the best of all, because it is better than 2
dz  [38, 39], 
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than 2~
dz  [38] and many others [34]. An exception to this is Wallenstein’s conclusion 

[16] that 2~
dz  is better than 2ˆdz  when the expected quantities are higher than 2. 

Because the calculation of 2ˆdz  is complicated, several authors have concentrated on 

other, simpler statistics. From a conditional point of view, it is known that 2~
dχ  is 

better than 2~
dz  and 2

dz  [1], all of which are calculated with Yates’ continuity 

correction. From a more general point of view, it is known that 2~
dz  is better than 

2
dMz  [16], which in turn, is better than 2

dz  [22] and ( )5.02 +dz  [23]. The final 

conclusion is to use the statistic 2ˆdz  or, if a simpler one is wanted, then the statistic 

.~2
dz  If we want an even simpler statistic, ( )12 +dz  [27] may be used for error 

%,5=γ  but never must the statistic 2
dz  be used without some correction [40, 41]. 

There are fewer results for case R. At the moment it is only known that 2ˆRz  is 

better than 2~
Rz  [10] and than 2

RzL  [12], which in turn, is better than 2
Rz  [14], while 

( )12 +RzL  acts quite well [7]. It seems clear that the best option is ,ˆ2
Rz  although if we 

are looking for a simpler option, we can use ( )12 +RzL  (which, as was pointed out in 

the previous section, has the disadvantage of not verifying all the properties of 
convexity and equivalence). 

7. Conclusions 

The asymptotic inferences about the difference 12 ppd −=  or the ratio 

12 ppR =  of two proportions ip  are very common in applied statistics, in general. 

In recent years [5], the aim has been generalized to effecting inference on the 
difference .12 ppL β−α−=  In order to realize these inferences, it is necessary to 

define a statistic of test and estimate the nuisance parameter .1p  In this context, the 

relevant literature has offered 12 different statistics for the cases d, R or ( ,, 22
dL zzL  

),and,ˆ,ˆ,~,ˆ,ˆ,~,~, 2222222222
dRRddRdRdR MzzLzzzzz χχχ  complementing these occasionally 

with different corrections. In this paper, 15 new statistics are defined ( ,ˆ,~ 22
LL zz  
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),and,ˆ,ˆ,ˆ,~,~,~,,,ˆ,~,~ 2222222222222
RLRdLRdLdLLRL MzMzzLzLzLzLzLzLzLzLχχχ  errors of 

definition for some of them are corrected, they are grouped into families, their 
desirable properties are defined and analyzed and, finally, the optimum statistics for 
the cases d and R are selected (the latter on the basis of published results). In 
particular, it is proven that almost all the statistics verify the obligatory properties of 
convexity in ,2p  in 1p  and in the parameter which is the object of the inference, 

with the notable exception of the statistic based on the logarithmic transformation 
(which is not convex in ).1p  Similarly, it is proven that almost all the statistics 

verify the desirable properties of equivalence (when the samples and/or the feature 
being studied are permuted, the absolute value of the statistic does not vary), again 
with the exception of the case of logarithmic transformation mentioned above. 

To give a single conclusion for the three cases (d, R and L), it may be said that 

the best statistic for effecting the asymptotic inference is 2ẑ  (classic z based on the 
estimator of maximum likelihood for the nuisance parameter .)1p  As this usually 

produces complex expressions, the researcher has three options: to use a computer 
program (like the one given at http://www.ugr.es/local/bioest/Z_LINEAR.EXE) or 
to apply the simplest methods recommended in this article. 
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Appendices 

A. Estimator of maximum likelihood of nuisance parameter 1p  

Function ( )1ph  of expression (6) always decreases because inph Σ−=∂∂ 1  

{ ( ) } .0222 ≤−+ iiiiii qpppqp  Moreover, ( )1ph  has a horizontal asymptote in 

0=h  and, if ,0 ii np <<  then ( )1ph  also has four vertical asymptotes in ,01 =p  

1, βα−  and ( ) ,1 βα−  respectively. Consequently, ( ) 01 =ph  on three occasions 

and 1p̂  is the second of them due to expression (3). By multiplying expression (6) 

by ( ) ( )2211 11 pppp −−  the cubic equation in Section 2 is obtained, the second 
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solution of which is the value 1p̂  given in Section 2. When ,0=α  one of the 

vertical asymptotes disappears. The effect is that the equation is reduced to a second 

degree equation of type ( ) ( ){ } ,01112
2
1 =+β−+−−β apynynpn  the solution for 

which is in Section 2. 

With the aim of studying the properties of ,ˆ Lp  we must calculate =∂∂ 1ph  

( ),0111 ≥qpn  ( ),02222 ≥β=∂∂ qpnph  { ( ) } 22
2

22222 qpppqpnh −+β−=α∂∂  

( )0≤  and [ { ( ) }] ( )222
2

22222
2
22 qpppqpqpnh −+α−−=β∂∂  ( ).0if0 ≤α≤  

Because with expression (6), ( ) ( ) ( ),ˆˆ0 11 θ×∂∂+θ∂∂==θ dpdphhddh  where 

α=θ ,, 21 pp  or β, then ( ) ( )[ ] .ˆ
11 ˆ11 ppphhdpd =∂∂θ∂∂−=θ  Because [ ]

11 ˆ1 ppph =∂∂  

,0≤  then the sign of θdpd 1ˆ  is the same as that of [ ] .
11 p̂ph =θ∂∂  Hence the 

conclusions at the end of Section 2 are obtained. 

Up until now, it has been seen that the estimator of maximum likelihood for the 
pair ( )21, pp  is ( )121 ˆˆ,ˆ ppp β+α=  under ( ) .: 12 ppH BL β+α=  The aim now is to 

effect the estimation of ( )21, pp  under the true null hypothesis .: 12 ppH L β+α≤  

If the sample values ip  verify that ,12 pp β+α≤  then the estimator of maximum 

likelihood for ( )21, pp  is ( ),, 21 pp  as these values yield an absolute maximum 

likelihood in expression (4). When ,12 pp β+α>  for each fixed value α, the 

estimator of maximum likelihood will be the pair ( )21 ˆ,ˆ pp  from before, where 1p̂  

is a function of α. By substituting these values in expression (4), we obtain 
[ ] [ ] [ ] ( ) [ ] =α∂∂=α⋅∂∂+α∂∂=α

111 ˆ1ˆ1ˆˆ logˆlogloglog pppp LdpdpLLdLd  

( ) ( ) ,0ˆ1ˆˆ 22222 ≥−−β ppppn  since [ ] 0log
1ˆ1 =∂∂ ppL  through expression (6) 

and 0ˆ22 ≥− pp  through expression (7). This means that ( )21 ˆ,ˆ ppL  increases 

with α and that the maximum likelihood is reached under the border of .LH  

B. Type 2z  or 2χ  statistics 

Pearson’s classic chi-square statistic is in the form ( )∑ −=χ ,22
iii EEO  

where iO  and iE  are the observed and expected quantities, respectively. For model 

L: 
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( ) ( ) ( )∑ ∑ ⎭
⎬
⎫

⎩
⎨
⎧ +−=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

+
−

=χ
iiii

iii
ii

iii
ii

iii
L qnpnpnxqn

qny
pn

pnx 112
22

2  

 ( ) ,
2

∑ −
=

ii
iii

qp
ppn  (A1) 

which yields expression (11). In order to obtain alternative expressions for statistic 

,ˆ 2
Lχ  the following equality must first be deduced (Andrés and Tejedor [2] for case 

d): 

 ( ) ( ) ( ) ( ).ˆˆ 2
1

22
212

2
111

2
222 σβ+σ−β=σ−=σ−β fppppp  (A2) 

The first part of the equality is deduced directly from expression (6). In order to see 

the second part, the term 1f±  must be added to the second numerator in expression 

(6) and, then, we must remember that ( ).ˆˆ 1112 ppfp −β=−  In this way, =0  

( ) ( ) ( ) {( ) ( ) ( +σ−−β−=σ−β+σ−β+σ− 2
21112

2
221

2
212

2
111 ˆˆˆ ppfppffppp  

) } ,2
2

2
1

2
1

2 σσσβ  and so ( ) ( ) ( ) ,ˆ 2
11

2
1

22
212 σ−=σβ+σβ− ppfp  which is the second 

equality in expression (A2). This expression allows any of the terms ( ),ˆ
2 fp −  

( )1ˆ pp −  and ( )12 fp −  to be expressed as a function of the other two. Because 

expression (A1): 

 ( ) ( ) ,ˆˆˆ 2
2

2
22

2
1

2
11

2 σ−+σ−=χ ppppL  (A3) 

then by substituting ( )211ˆ pp −  and ( )222 p̂p −  as a function of ( ) ,2
12 fp −  we 

obtain ( ) { } .ˆˆ 22
1

22
2

2
12

2
LL zfp =σβ+σ−=χ  Alternatively, in expression (A3), the 

two numerators may be written as a function of ( ) ( ) ( )11
2

22
2

11 ˆ,ˆ,ˆ pppppp −−−  

( ) ( ) ( )122212 ˆ,ˆ fpppfp −−−  or ( ) ( ),ˆˆ 2211 pppp −−  which leads to expressions 

(14) and (15). 

With respect to statistic ,2
LMz  it must be remembered that expression (8)               

may be written as ( ) ( ),1
2

1221
2 pgppnnzL β−α−=  where ( ) +β= 11

2
21 qpnpg  
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( ) ( ).1 111 ppn β−α−β+α  Because 01 =dpdg  in ( ) ( )βα−β+= nnnnp 22 1210  

and ,02 22
1

2 <β−= ndpgd  then ( )1pg  reaches maximum in 0pp =  which produces 

the minimum needed for .2
Lz  As ( ) ( )ββ−α−+= nnp 2215.0 10  then 0pβ+α  

( ) ( ),2215.0 2 nn β−α−−=  ( ) ( ) ( ) ( )nnnnnpg 4214 2
211

2
20 β−α−−+β=  and 

2
LMz  is the third expression of (22). When ( ),;0 SI ppp ∉  then Ipp <0  (or 

),0 Spp >  ( )1pg  decreases (or increases) in the allowed interval ( )SI pp ;  and its 

maximum is reached in Ipp =1  ( ).or 1 Spp =  Hence the first two expressions of 

(22). 

C. Continuity correction 

Haber [42] proposed that a continuity correction should consist of adding or 
subtracting to the random variable the half its average jump. For model L, the 
random variable is the contrast statistic .12 ppL β−α−=  Its minimum and 

maximum values are ( )β+α−  and ( ),1 α−  reached at ( ) ( )0;1; 21 =pp  and ( ),1;0  

respectively. The total jump of L  is therefore ( )β+1  and half its average jump will 

be ( ) ,1 Nc β+=  where ( )( ) 2121 111 nnnnnN +=−++=  because ( )( )11 21 ++ nn  

is the total number of possible sample points. Consequently, in the numerator of ,2
Lz  

the statistic L  must be changed for cLcL +− ,  or cL −  depending on whether 

the alternative hypothesis is ,LK  LK ′  or ,LK ′′  respectively (see the beginning of 

Section 4). Cases d and R are deduced from this case. 

D. Basic equality for inferences based on model L 

Let λ be the value for the three fractions of expression (A2). Due to the third 

one ( ),12
2 fpzL −β=λ  due to the first ( ) 0ˆˆ 1111

2
1 =−−λ−λ pnpnp  and due to 

the second ( ) .0ˆˆ 2222
2
2 =β+λ+β−λ pnpnp  The solutions to the last two equations 

are {( ) } λ±−λ= 2ˆ 111 Rnp  and {( ) } ,2ˆ 222 λ±β+λ= Rnp  where ( ) +−λ= 2
1

2
1 nR  

λ114 pn  and ( ) .4 22
2

2
2
2 λβ+β−λ= qnnR  If 12 fp >  (in which case, ),0>λ  then 

11 nR −λ≥  if 01 ≥p  and β−λ≥ 22 nR  if ;02 ≥q  this implies that ( ) 0ˆ1 <−p  

and ( ) ,1ˆ2 >+p  and so the true solutions of the above equations are ( )+1p̂  and ( ).ˆ 2 −p  
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By substitution of these values into ,ˆˆ 12 pp β+α=  and simplified, expression (26) 

is obtained. When 12 fp =  it is not necessary to solve any equation because this 

occurs iff 02 =Lz  (so that ).0=λ  

It can easily be seen that the function ( )λy  of expression (26) has the following 

features: (a) ;lim +∞=±∞→λ y  (b) has two oblique asymptotes in ( )λβ+α= 2y  

( )22112 pnqn +β−  and ( ) ( );212 2211 pnqny +β−λα−−=  (c) its second derivative 

;044 3
222

22
2

3
111

2
1

22 ≥β+β=λ RqpnRqpndyd  and (d) 0=y  in .0=λ  From 

this, it can be gathered that the function has only one minimum and two cuts 01 =λ  

and 02 ≠λ  with the axis λ, where 2λ  is the value sought. Finally, when 02 >λ  

(that is, when )12 fp >  then the function y will be negative (positive) in values 

( ),0 22 ∞<λ<λλ<λ<  so that if its value ( )γy  is calculated in 2
1

2ˆ γ−= zzL  the 

fact that 0≤γy  ( )0>γy  is indicative of the test for the alternative −2: pKL  

01 >β−α p  is significant (not significant). 

E. Properties of the various statistics 

Let us consider the hypotheses OH  and SCH  in Section 5. In the terminology 

of Section 2, 12: ppH I β+α=  is contrasted based on the data ,,,, 2121 ppnn            

α and β, while 12: ppHSC ′β′+α′=′  is contrasted based on the data ,21 nn =′  

,12 nn =′  ,1 21 pp −=′  ,1 12 pp −=′  ( ) β−β+α=α′ 1  and .1 β=β′  Similar 

arguments can be made for ip~  and ip̂  because of expressions (4) and (5). In a 

general manner, it may be affirmed that 21 1 pp −=′  and 12 1 pp −=′  with any 

estimator. Similarly, when OH  is compared with SCH  ( )CHor  it can be deduced 

that 21 pp =′  and 12 pp =′  ( ).1and1or 2211 pppp −=′−=′  With these data,                

it can at once be proven that any statistic 2
LS  takes the same value in all four         

cases. For example, ( ) ( ) ( ) ( ) ( ) =′−′′−′′+′−′′−′′=χ 22
2

22211
2

111
2 11 ppppnppppnSCL  

( ) ( ) ( ) ( ) ( ).111111 2
11

2
11122

2
222 OLppppnppppn χ=−+−−+−+−−  (The 

exception is the case of 2
LzL  in which equivalence only occurs between OH  and 
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SH  in the case of model R). In reality, the four equivalences are not independent. It 

is easy to see that if ( ) ( ) ( ),
222

SLSCLOL SSS ==  then they are also equal to ( );
2

CLS  

also, ( ) ( )
22

SCLOL SS =  iff ( ) ( ).
22

CLSL SS =  

Let us assume that the statistic 2
LS  verifies the equivalence between OH                  

and .SCH  Because under SCH  is ,1 12 pp −=′  then 112 −=′ pdpd  and so 

( ) ( ) .21 pddSpddS SCLOL ′−=  As OH  and SCH  have the same type of alternative 

( ),LK  the previous equality implies that if LS  is convex in 2p  then it is also 

convex in .1p  As all the present statistics (with the exception of )2
LzL  verify this 

property of equivalence, the conclusion is that for these, we need only to prove 
convexity in 2p  (for example), because that of 1p  is obtained as a result. Moreover, 

as ( ) ( ) ,011 2 ≥α−α′−=αβ′ dd  using the same reasoning as before, it can be 

deduced that the convexity in α implies convexity in β. In addition, as =ψddSL
2  

( ) [ ( )]( ),sign2 12 ψ−∝ψ ddSfpddSS LLL  where 12, pp=ψ  or α, then in order 

to prove the convexity of LS  in 2p  and α, we need only to prove that 02
2 ≥pddSL  

and 02 ≤αddSL  when .12 fp >  In the following, are the principal cases promised 

in Section 5. 

By deriving expression (9), we get ( ) 02 12
2 ≤−−∝α fpdzd L  and 2

2 pdzd L  

( )[ { ( ) ( )} ] .0112 21221111
2

12 ≥−+−+β−∝ nfppfnqpfp  By deriving expression 

(20), we get ( )[ ] 0log2 12
2 ≤ρ−∝ρ ppdzdL R  (now the convexity has to be in ρ 

because )0=α  and ( )[ ] .0log22 22122221112
2 ≥ρ++∝ pnpppnqpnqpdzdL R  

However, 2
RzL  is not convex in 1p  as the following counter-example shows. For 

values 1=ρ  and ,20221 === xnn  we obtain 45.92 =RzL  when 11 =x  and 

78.112 =RzL  when ,21 =x  that is, 2
RzL  increases with 1p  when .12 fp >  Lastly, 

because ( ) ( ) ( ) ( ),ˆˆˆˆˆ 11
222 ψ∂∂+ψ∂∂=ψ dpdpzzdzd LLL  where 2p=ψ  or α, then, 

from the first expression of (14), ( ) [( ) ( )21111112
2 ˆˆˆˆˆ pdpdqpppnpdzd L +−β=  
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( ){ ( ) } ] ,0ˆˆˆ 2
1

2
1

2
111112 ≥−+− qpppqpfp  ( ) [ ( ) +−−β=α 11111

2 ˆˆˆˆ qpppndzd L  

( ) ( ){ ( ) } ] ,0ˆˆˆˆ 2
1

2
1

2
1111121 ≤−+−α qpppqpfpdpd  where the final notations are 

due to the fact that when 12 fp ≥  (as is being assumed) then 11ˆ pp ≥  from 

expression (7), 0ˆ 21 ≥pdpd  because 1p̂  increases with ,2p  and 0ˆ1 ≤αdpd  

because 1p̂  decreases with α (these two last statements are due to the results at the 

end of Section 2). Therefore, from what has been pointed out in the second 

paragraph of this section, it will also occur that 0ˆ 1
2 ≤pdzd L  and .0ˆ2 ≤βdzd L  

Strictly speaking, the previous proof is valid when ;1,0ˆ1 ≠p  otherwise, we need 

only to repeat the reasoning based on the second expression of (14). 
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