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Abstract

The aim of this research note is to obtain two results closely related to
the ¢-Saalschiitz’s summation theorem. When g — 1, we get two results

closely related to the Saalschiitz theorem for the series gFy obtained

earlier by Arora and Rathie.

1. Introduction and Results Required

The ,¢, basic hypergeometric (or g-) series [3] is defined by
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where g # 0, (gj = w and r > s+1. For | ¢ | <1, let us define
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g-Saalschiitz theorem [3]:
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When ¢ — 1, we get the following Saalschiitz theorem [2]:

3F2[ a, b, - n @_M (1.3)

e,€1+a+b-c-n ) (c-a),(c-b),’

The aim of this research note is to derive two results closely related to
(1.2).

2. Main Results

The results to be proved are
a, b, g™
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3. Proofs

In order to derive our main results, we shall use the following result
[4, Eq. (2.2)], which is also hold for the given z¢q:

(6 -a)$ =01 - a)d(aq) - a(l - b)¢(bg), (3.1)
where
_ a b g
¢ = 3¢2(C’ abelg? g, QJ-

It is easy to see that the two ¢ on the right-hand-side of (3.1) can be
evaluated by (1.2) by simply changing a by aq in the first ¢ and b by bq in

the second ¢, and after simplification we get our first result (2.1).

In exactly the same manner, the result (2.2) can also be obtained with
the help of the relation (3.1) by taking

a, b g™
¢E3¢2[ 7 ;q,q]
¢, abe 1g®™

and using the result (2.1).
4. Special Cases

In (2.1) and (2.2), if we take ¢ — 1, then we get the following results
due to Arora and Rathie [1]:
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. (4.2)

where Za(—)b f(a, b) = f(a, b)+ f(b, a).

Clearly, these results are closely related to the Saalschiitz theorem
(1.3).
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