

Far East Journal of Mathematical Sciences (FJMS)
Volume 47, Number 2, 2010, Pages 185-200
Published Online: December 19, 2010
This paper is available online at http://pphmj.com/journals/fjms.htm
© 2010 Pushpa Publishing House

 :tionClassificaject Sub sMathematic 2010 68T27.
 Keywords and phrases: logic programming, Hopfield, CNF, DNF.

Received August 10, 2010

NORMAL FORM REPRESENTATION IN DOING LOGIC
PROGRAMMING IN HOPFIELD NETWORK

SARATHA SATHASIVAM

School of Mathematical Sciences
Universiti Sains Malaysia
11800 USM, Penang, Malaysia
e-mail: saratha@cs.usm.my

Abstract

The main purpose of doing logic programming in Hopfield network is to
obtain suitable models for the corresponding logical clauses. In order to
represent the logical clauses, the conjunctive normal form (CNF) and the
disjunctive normal form (DNF) have been proposed. In this paper, we will
illustrate the effectiveness of CNF and DNF in representing the logical
clauses. We will also discuss the ways to convert DNF formulas to CNF
formulas. The satisfiability aspects of Horn clauses in the form of CNF
will be also discussed. We have proved that CNF representation is better
than DNF in logical reasoning system. Computer simulation has also been
carried out to verify the proposed theory.

I. Introduction

Logic program and neural networks are two important paradigms in artificial
intelligence. Logic describes relationship among propositions. Consequently, logic
must have descriptive symbolic tools to represent propositions. Representation of
neural networks on the other hand is in non-symbolic form. Neural networks are
massively parallel with self-learning capabilities. Neural networks are specified by
the net topology, node characteristics, and training or learning rules. Thus, logic

SARATHA SATHASIVAM 186

programs and neural networks seem to be rather complementary. It would be
desirable to integrate both approaches in order to combine their remarkable abilities
[1]. Suitable methods for the extraction of knowledge from neural networks are
therefore being sought within many ongoing research projects worldwide [1, 2].
Some other publications, for example, [3, 4], also underscore the importance of these
two paradigms. By having a logical framework, knowledge reasoning techniques can
be employed.

In 1982, Hopfield [2] proposed a fully connected neural network model of
associative memory in which patterns can be stored by distributed among neurons,
and we can retrieve one of the previously presented patterns from an example which
is similar to, or a noisy version of it. The dynamical behavior of the neurons in
neural network depends on synaptic strength between neurons. The specification of
the synaptic weights is conventionally known as learning. Hopfield applied Hebbian
learning rule [3] to determine weights. However, many alternative algorithms for
learning and associative recalling have been proposed to improve the performance of
the Hopfield networks [4, 5].

Wan Abdullah [6] proposed a method of doing logic program on a Hopfield
network. Optimization of logical inconsistency is carried out by the network after
the connection strengths are defined from the logic program; the network relaxes
to neural states which are models (i.e., viable logical interpretations) for the
corresponding logic program. Clauses can either be represented in Conjunctive
Normal Form (CNF) or Disjunctive Normal Form (DNF). However, CNF is widely
been used to represent clauses. In this paper, we will prove the equalities between
the CNF and DNF conversion in carrying out logic program in Hopfield network.
We will also discuss the advantages and disadvantages of both the representation of
logical clauses. This work is an extension to our previous work [6].

II. Logic Programming on a Hopfield Network

In order to keep this paper self-contained, we briefly review the Little-Hopfield
model. The Hopfield model is a standard model for associative memory. The Little
dynamics is asynchronous, with each neuron updating their state deterministically.
The system consists of N formal neurons, each of which is described by an Ising
variable () ()....,,2,1 NitSi = Neurons are bipolar, { },1,1−∈iS obeying the dynamics

NORMAL FORM REPRESENTATION IN DOING LOGIC … 187

(),sgn ii hS → where the field () ()∑ +=
j

ijiji JVJh ,12 i and j running over all neurons

N, ()2
ijJ is the synaptic strength from neuron j to neuron i, and iJ− is the threshold

of neuron i.

Restricting the connections to be symmetric and zero-diagonal, () (),22
jiij JJ =

() ,02 =iiJ allows one to write a Lyapunov or energy function,

 () ()∑∑ ∑−−=
i j i

iijiij SJSSJE 12
2
1 (1)

which monotone decreases with the dynamics.

The two-connection model can be generalized to include higher order
connections. This modifies the “field” to be

 () () (),123∑∑ ∑ +++=
j k j

ijijkjijki JSJSSJh (2)

where “…” denotes still higher orders, and an energy function can be written as
follows:

 () () ()∑∑∑ ∑∑ ∑−−−=
i j k i j i

iijiijkjiijk SJSSJSSSJE 123
2
1

3
1 (3)

provided that ()
[]
()33
ijkijk JJ = for i, j, k distinct, with [] denoting permutations in cyclic

order, and () 03 =ijkJ for any i, j, k equal, and that similar symmetry requirements are

satisfied for higher order connections. The updating rule maintains

 () ()[].sgn1 thtS ii =+ (4)

In the simple propositional case, logic clauses take the form ←nAAA ...,,, 21

mBBB ...,,, 21 which says that ()nAAA ororor 21 if ();andandand 21 nBBB

they are program clauses if 1=n and :0≥m we can have rules, e.g., CBA ,←

saying () ,CBACBA ∨∨≡∧∨ ¬ and assertions, e.g., ←D saying that D is true.

SARATHA SATHASIVAM 188

A logic program consists of a set of program clauses and is activated by an
initial goal statement. In Conjunctive Normal Form (CNF), the clauses contain one
positive literal. Basically, logic programming in Hopfield model [7] can be treated as
a problem in combinatorial optimization. Therefore, it can be carried out in a neural
network to obtain the desired solution. Our objective is to find a set of interpretation
(i.e., truth values for the atoms in the clauses which satisfy the clauses (which yields
all the clauses true). In other words, we want to find ‘models’.

The following algorithm shows how a logic program can be done in a Hopfield
network based on Wan Abdullah’s method:

 (i) Given a logic program, translate all the clauses in the logic program into
basic Boolean algebraic form.

 (ii) Identify a neuron to each ground neuron.

(iii) Initialize all connections strengths to zero.

(iv) Derive a cost function that is associated with the negation of all the clauses

such that ()xS+12
1 represents the logical value of a neuron X, where xS is the

neuron corresponding to X. The value of xS is define in such a way that it carries

the values of 1 if X is true and –1 if X is false. Negation (neuron X does not occur)

is represented by ();12
1

xS− a conjunction logical connective is represented by

multiplication whereas a disjunction connective is represented by addition.

 (v) Obtain the values of connection strengths by comparing the cost function
with the energy, H.

(vi) Let the neural networks evolve until minimum energy be reached. Then
checked whether the solution obtained is a global solution.

The applied methodology may be summarized in the following way: given an
optimization problem, find the cost function that describes it, design a Hopfield
network whose energy function must reach (one of) its minima at the same point in
configuration space as the cost function, so that the stable configurations of the
network correspond to solutions of the problem. We do not provide a detail review
regarding neural network logic programming in this paper, but instead refer the
interested reader to Wan Abdullah [8]. Part of this section had been published in
earlier works [9-12].

NORMAL FORM REPRESENTATION IN DOING LOGIC … 189

III. Normal Forms Representation

In Boolean logic, a formula is in conjunctive normal form if it is a conjunction
of clauses, where a clause is a disjunction of literals, where a literal and its
compliment cannot appear in the same clauses. As a normal form, it is useful in
automated theorem proving. It is similar to the canonical product of sums form used
in circuit theory.

 (i) Disjunctive normal form (DNF)

A formula F is a Disjunctive Normal Form (DNF) if and only if F is of the
form: ,21 nFFFF ∨∨∨= ,1≥n where each iF is a conjunction of literal(s).

,...,,, 21 nFFF 1≥n is its disjuncts.

(ii) Conjunctive normal form (CNF)

A formula F is a Conjunctive Normal Form (CNF) if and only if F is of the
form:

,1,21 ≥∧∧= nFFFF n

where each iF is a disjunction of literal(s).

,...,,, 21 nFFF 1≥n is its conjuncts.

In Boolean logic, CNF is much more commonly used in the area of logical
reasoning systems. CNF is a method which is widely been used for standardizing
and normalizing logical formulas. The main advantage of it is its uniformly formed
form, which makes it suitable to automatic processing which needs to define the rule
for machine learning to recognize the logic it operates.

Every propositional formula can be converted into an equivalent formula that is
in CNF. This transformation is based on rules about logical equivalences: the double
negative law, De Morgan’s laws and the distributive law. Since all logical formulae
can be converted into an equivalent formula in conjunctive normal form, proofs are
often based on the assumption that all formulae are CNF. However, in some cases,
this conversion to CNF can lead to an exponential explosion [13] of the formula.
But, in our logic programming, we just handle with Horn clauses. So, satisfiability
problem and explosion problem does not occurred [14].

We focused on five types of logical operations: negation, conjunction,
disjunction, implication and equality.

SARATHA SATHASIVAM 190

• Logical negation ()P¬ produces a value of true if its operand is false and vice

versa. Logical conjunction ()QP ∧ produces a value of true if and only if

both of its operands are true. Otherwise, they are all evaluated to false.

• Logical disjunction ()QP ∨ produces a value of true if and only if at least

one of its operands it true. Otherwise, it results to false.

• Logical implication ()QP → produces a value of false just in the singular

case the first operand is true and the second operand is false. The rest will
give us a true evaluation.

• Logical equality ()QPQP ↔≡ , produces a value of true if and only if both

operands are false or both operands are true. Otherwise, it results to false.

QP → is logically equivalent to QP ∨¬ and QP ↔ is logically equivalent

to () ().PQQP →∧→

Table 1. Truth table for the basic Boolean operators
P Q P¬ QP ∧ QP ∨ QP → QP ↔

T T F T T T T
T F F F T F F
F T T F T T F
F F T F F T T

We can transform any logical formula into a normal form by applying the
following rules:

 (i) Use the laws:

() ()FGGFGF →∧→=↔

GFGF ∨=→ ¬

to eliminate → and ↔

(ii) Repeatedly use the law:

() FF =¬¬

and the De Morgan’s laws:

NORMAL FORM REPRESENTATION IN DOING LOGIC … 191

() GFGF ¬¬¬ ∧=∨

() GFGF ¬¬¬ ∨=∧

to bring negation signs immediately before atoms.

(iii) Repeatedly use the distributive laws:

() () ()HFGFHGF ∨∧∨=∧∨

() () ()HFGFHGF ∧∨∧=∨∧

 and the other laws as necessary.

So, by using De Morgan’s laws, we can convert DNF clauses to CNF clauses. Let us
look at an example for DNF to CNF conversion by using this law:

() () ()DNFFORMDCBA ∧∨∧

()() ()()DCBDCA ∧∨∧∧∨≡

() () () () ().CNFFORMDBCBDACA ∨∧∨∧∨∧∨≡

IV. Satisfiability Aspects of Horn Clauses in CNF Representation

Satisfiability or SAT is a very basic problem in computer science. One way to

solve SAT would be to try out every possible truth assignment. There are n2 such
assignments and l literals to set for each assignment. Such an approach requires

()nlO 2⋅ operations. So, in general, SAT is an NP-complete problem [15].

Deciding whether a given logical formula F is satisfiable constitutes the
satisfiability problem. Being one of the hard computational problems, the
satisfiability problem is very important both theoretically and practically. It plays a
central role in the complexity theory as the seed of the class of NP-complete
problems [16], and deciding satisfiability presents an inevitable and most frequent
employed process in logic program.

Propositional satisfiability was the first problem shown to be NP-complete
[17]. For Horn formula in CNF form, there is a more efficient algorithm to test
satisfiability of a formula F. F is an example of Horn clauses in the CNF form

SARATHA SATHASIVAM 192

() () () ()ZYXXYXZYXF ∨∨∧∧∨∧∨∨=

() () ().UWYZWXWZ ∨∧∨∨∧∨∨∧

Assume that X is true. We now see that certain clauses are satisfiable only if
their respective positive literal is also made true. We can rewrite formula F in the
context of the logic program as:

() () () () () () ()., →∧→∧→∧→∧→∧→∧→ WUWZYZWXZXYXYXYZX

For instance, with X being true ()YX ∨ is only satisfied if Y is made true.

After setting X and Y to true, we notice that Z also needs to make true to satisfy

().ZYX ∨∨ We also need to set W to true to satisfy ().YZW ∨∨ Note that this

process guarantees that all clauses containing at most one positive literal are satisfied
by a minimal truth assignment. This implies that Horn clauses in CNF representation
always satisfiable and solutions are guaranteed. This form also does not yield
exponential explosion since the solutions searching tasks can be done in linear time.
So, in our work, we can use Horn clauses in CNF to represent the logical clauses in
doing logic programming without creating any satisfiability problem.

V. Comparison between CNF and DNF

In this section, we will use truth table analysis to compare the performance
between CNF and DNF representation for the same set of logical clauses. Table 2,
Table 3 and Table 4 illustrate the clauses with two literals, three literals and four
literals, respectively.

Logical Clause: XY ←

Truth Table 2(a). YX ∨¬ (DNF)

X Y YX ∨¬

1 1 1
1 –1 –1

–1 1 1
–1 –1 1

NORMAL FORM REPRESENTATION IN DOING LOGIC … 193

Truth Table 2(b). ()YX ¬¬ ∧ (CNF)

X Y ()YX ¬¬ ∧

1 1 1
1 –1 –1

–1 1 1
–1 –1 1

Logical Clause: YZX ←,

Truth Table 3(a). ()YZX ¬∨∨ (DNF)

X Y Z ()YZX ¬∨∨

1 1 1 1
1 1 –1 1
1 –1 1 1
1 –1 –1 1

–1 1 1 1
–1 1 –1 –1
–1 –1 1 1
–1 –1 –1 1

Truth Table 3(b). ()ZYX ¬¬¬ ∧∧ (CNF)

X Y Z ()ZYX ¬¬¬ ∧∧

1 1 1 1
1 1 –1 1
1 –1 1 1
1 –1 –1 1

–1 1 1 1
–1 1 –1 –1
–1 –1 1 1
–1 –1 –1 1

SARATHA SATHASIVAM 194

Clause: JYZX ,, ←

Truth Table 4(a). JZYX ¬¬ ∨∨∨ (DNF)

X Y Z J JZYX ¬¬ ∨∨∨
1 1 1 1 1
1 1 1 –1 1
1 1 –1 1 1
1 1 –1 –1 1
1 –1 1 1 1
1 –1 1 –1 1
1 –1 –1 1 1
1 –1 –1 –1 1

–1 1 1 1 1
–1 1 1 –1 1
–1 1 –1 1 –1
–1 1 –1 –1 1
–1 –1 1 1 1
–1 –1 1 –1 1
–1 –1 –1 1 1
–1 –1 –1 –1 1

Truth Table 4(b). ()JZYX ∧∧∧ ¬¬¬ (CNF)
X Y Z J ()JZYX ∧∧∧ ¬¬¬
1 1 1 1 1
1 1 1 –1 1
1 1 –1 1 1
1 1 –1 –1 1
1 –1 1 1 1
1 –1 1 –1 1
1 –1 –1 1 1
1 –1 –1 –1 1

–1 1 1 1 1
–1 1 1 –1 1
–1 1 –1 1 –1
–1 1 –1 –1 1
–1 –1 1 1 1
–1 –1 1 –1 1
–1 –1 –1 1 1
–1 –1 –1 –1 1

NORMAL FORM REPRESENTATION IN DOING LOGIC … 195

From the tables, we can observe that the way to express the logical clauses in
DNF is rather difficult compare to CNF. The number of evaluations needed for CNF
is more than DNF. For an example, in Table 4, 48 evaluations are needed for DNF
representation. On the other hand, for CNF, we just need 37 evaluations which are
20% less than DNF. When the number of literals per clause increased, we can
observe that the computation time and steps get larger or more complex. So, more
computation time and effort is needed for DNF evaluations. If we represent the
clauses in DNF for doing logic programming in Hopfield network, then the chance
for the neurons to get trapped in local minima is higher. Furthermore, the energy
relaxation loop will also get complex. This will increase the processing or the
running time. So, from the truth tables analysis and theory related to CNF
representation, we can conclude that CNF presentation is better and more effective
than DNF in doing logic programming in Hopfield network and also other types of
knowledge or logical reasoning.

So, we convert logical clauses in DNF representation to CNF representation
before doing logic programming in Hopfield network. We use Microsoft C++
platform to simulate the program.

VI. Simulation Result

Firstly, we generate random program clauses. We convert any clauses in DNF to
CNF by using rules describe in Section III. Then, we initialize initial states for the
neurons in the clauses. Next, we let the network evolves until minimum energy is
reached. Then we test the final state obtained whether it is a stable state. If the states
remain unchanged for five runs, then we consider it as stable state. Following this,
we calculate corresponding final energy for the stable state. If the difference between
the final energy and the global minimum energy is within tolerance value, then we
consider the solution as global solution. Then we calculate hamming distance
between stable state and global solution and ratios of global solutions.

We run the relaxation for 1000 trials and 100 combinations of neurons so as to
reduce statistical error. The selected tolerance value is 0.001. All these values are
obtained by try and error technique, where we tried several values as tolerance
values, and selected the value which gives better performance than other values.
Figures 1 to 6 illustrate the graphs obtained for ratio of global solutions and final
hamming distances.

SARATHA SATHASIVAM 196

Global Minima For NC1

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NC1/NN
R

at
io NN=40

Figure 1. Global minima ratio for NC1.

Global Minima For NC2

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NC2/NN

Ra
tio NN=40

Figure 2. Global minima ratio for NC2.

Global Minima For NC3

0

0.5

1

1.5

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NC3/NN

Ra
tio NN=40

Figure 3. Global minima ratio for NC3.

NORMAL FORM REPRESENTATION IN DOING LOGIC … 197

Hamming Distance For NC1

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NC1/NN
R

at
io NN=40

Figure 4. Hamming distance for NC1.

Hamming Distance For NC2

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NC2/NN

R
at

io NN=40

Figure 5. Hamming distance for NC2.

Hamming Distance For NC3

-1

-0.5

0

0.5

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NC3/NN

Ra
tio NN=40

Figure 6. Hamming distance for NC3.

We can observe than the ration of global solutions is almost zero for all the
trials. Since the graphs overlapped, so we just plot the results for .40=NN Most of

SARATHA SATHASIVAM 198

the neurons which are not involved in the clauses generated will be in the global
states. The random generated program clauses relaxed to the final states, which seem
also to be stable states, in less than five runs. Furthermore, the network never gets
stuck in any suboptimal solutions. This indicates good solutions (global states) can
be found in linear time or less with less complexity.

Since all the solutions we obtained are global solution, so the distance between
the stable states and the attractors are almost zero as shown in the figures. Supporting
this, we obtained almost zero values for Hamming distance. So, the distance between
the stable states and global states is almost zero. Since the loop of energy relaxation
in doing logic programming consists only clauses in CNF form, so the network
relaxed to global solutions without any problem. Although we increased the number
of literals per clause but the complexity of the network never increased drastically
due to we are just handling clauses in CNF. The neurons are able to jump the energy
barrier to relax into global solutions. This indicates the energy landscape is nearly
flat, which increased the capacity of the neurons to relax to global solutions.
The ratio of global minima which is consistently around 1 shows that the CNF
representation for the clauses are stable although the number of literals increased
simultaneously. So, we can obtain models for the corresponding logical clauses
without any computational complexity.

By carrying out computer simulations of the proposed method, we verified that
by using CNF representation in doing logic program in Hopfield network, we can
easily obtained models for the corresponding logic program.

VII. Conclusion

We had analyzed the performance of both CNF and DNF representation
theoretically and analytically. By converting DNF into CNF, we found that the
evaluation process can greatly be reduced as the time needed for evaluation is
reduced. The advantage of the CNF shown here is that the time to process,
computational complexity and number of runs for CNF clauses is much less than to
process DNF in programming logic. Besides that CNF representation also does
not yield any satisfiability problem for Horn clauses. As a conclusion, CNF
representation is better than DNF representation in doing logic programming and
knowledge reasoning in Hopfield network.

NORMAL FORM REPRESENTATION IN DOING LOGIC … 199

Acknowledgement

This research is partly financed by FRGS grant (203/PMATHS/671185) from
the Ministry of Higher Education, Malaysia and RU grant (1001/PMATHS 817035)
from Universiti Sains Malaysia.

References

 [1] A. S. Avila Garcez, K. Broda and D. M. Gabbay, Neural-symbolic learning systems:
foundations and applications, Perspectives in Neural Computing, Springer, 2002.

 [2] J. J. Hopfield, Neural networks and physical systems with emergent collective
computational abilities, Proc. Natl. Acad. Sci. USA 79(8) (1982), 2554-2558.

 [3] Nikola Kasabov, Adaptation and interaction in dynamical systems; modeling and rule
discovery through evolving connectionist systems, Appl. Soft Comput. 6 (2006),
307-322.

 [4] Eyal Kolman and Michael Margaliot, Extracting symbolic knowledge from recurrent
neural networks - A fuzzy logic approach, Fuzzy Sets and Systems 160 (2009),
145-161.

 [5] S. Haykin, Neural Network: A Comprehensive Foundation, Macmillan, New York,
1998.

 [6] W. A. T. Wan Abdullah, Neural network logic, O. Benhar et al., eds., Neural
Networks: From Biology to High Energy Physics, Pisa: ETS Edit Rice, 1991, pp.
135-142.

 [7] Saratha Sathasivam, Clauses Representation Comparison in Neuro-symbolic Integration,
World Congress of Engineering, London, UK, 2008, pp. 34-37.

 [8] W. A. T. Wan Abdullah, Logic programming on a neural network, Int. J. Intelligent
Sys. 7 (1992), 513-519.

 [9] Saratha Sathasivam, Logical content in the recurrent Hopfield network without higher
order connections, European J. Scientific Research 37(3) (2009), 361-367.

 [10] Saratha Sathasivam, Learning rule performance comparison in Hopfield network,
American J. Scientific Research 6 (2009), 15-22.

 [11] Saratha Sathasivam and W. A. T. Wan Abdullah, The satisfiability aspect of logic on
Little Hopfield network, American J. Scientific Research 7 (2010), 90-105.

 [12] Saratha Sathasivam, Upgrading logic programming in Hopfield network, Sains
Malaysiana 39(1) (2010), 115-118.

SARATHA SATHASIVAM 200

 [13] P. Miltersen, J. Radhakrishnan and I. Wegener, On converting CNF to DNF,
Mathematical Foundations of Computer Science, 28th International Symposium, 2003,
pp. 612-621.

 [14] S. Sathasivam, Logic mining in neural network, Ph.D. Thesis, Malaysia, 2007.

 [15] J. E. Hopcroft and J. D. Ullmann, Introduction to Automata Theory, Language and
Computation, Addison-Wesley Publications, 1979.

 [16] K. Iwama, CNF satisfiability test by counting and polynomial average time, SIAM J.
Comput. 18 (1989), 385-391.

 [17] S. Porschen, B. Randerath and E. Speckenmeyer, Exact 3-satisfiability in decidable in

time (),2 16254.0 no Ann. Math. Artif. Intell. 43 (2005), 173-193.

