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Abstract 

The main purpose of doing logic programming in Hopfield network is to 
obtain suitable models for the corresponding logical clauses. In order to 
represent the logical clauses, the conjunctive normal form (CNF) and the 
disjunctive normal form (DNF) have been proposed. In this paper, we will 
illustrate the effectiveness of CNF and DNF in representing the logical 
clauses. We will also discuss the ways to convert DNF formulas to CNF 
formulas. The satisfiability aspects of Horn clauses in the form of CNF 
will be also discussed. We have proved that CNF representation is better 
than DNF in logical reasoning system. Computer simulation has also been 
carried out to verify the proposed theory. 

I. Introduction 

Logic program and neural networks are two important paradigms in artificial 
intelligence. Logic describes relationship among propositions. Consequently, logic 
must have descriptive symbolic tools to represent propositions. Representation of 
neural networks on the other hand is in non-symbolic form. Neural networks are 
massively parallel with self-learning capabilities. Neural networks are specified by 
the net topology, node characteristics, and training or learning rules. Thus, logic 
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programs and neural networks seem to be rather complementary. It would be 
desirable to integrate both approaches in order to combine their remarkable abilities 
[1]. Suitable methods for the extraction of knowledge from neural networks are 
therefore being sought within many ongoing research projects worldwide [1, 2]. 
Some other publications, for example, [3, 4], also underscore the importance of these 
two paradigms. By having a logical framework, knowledge reasoning techniques can 
be employed. 

In 1982, Hopfield [2] proposed a fully connected neural network model of 
associative memory in which patterns can be stored by distributed among neurons, 
and we can retrieve one of the previously presented patterns from an example which 
is similar to, or a noisy version of it. The dynamical behavior of the neurons in 
neural network depends on synaptic strength between neurons. The specification of 
the synaptic weights is conventionally known as learning. Hopfield applied Hebbian 
learning rule [3] to determine weights. However, many alternative algorithms for 
learning and associative recalling have been proposed to improve the performance of 
the Hopfield networks [4, 5]. 

Wan Abdullah [6] proposed a method of doing logic program on a Hopfield   
network. Optimization of logical inconsistency is carried out by the network after   
the connection strengths are defined from the logic program; the network relaxes     
to neural states which are models (i.e., viable logical interpretations) for the 
corresponding logic program. Clauses can either be represented in Conjunctive 
Normal Form (CNF) or Disjunctive Normal Form (DNF). However, CNF is widely 
been used to represent clauses. In this paper, we will prove the equalities between 
the CNF and DNF conversion in carrying out logic program in Hopfield network. 
We will also discuss the advantages and disadvantages of both the representation of 
logical clauses. This work is an extension to our previous work [6]. 

II. Logic Programming on a Hopfield Network 

In order to keep this paper self-contained, we briefly review the Little-Hopfield 
model. The Hopfield model is a standard model for associative memory. The Little 
dynamics is asynchronous, with each neuron updating their state deterministically. 
The system consists of N formal neurons, each of which is described by an Ising 
variable ( ) ( )....,,2,1 NitSi =  Neurons are bipolar, { },1,1−∈iS  obeying the dynamics 
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( ),sgn ii hS →  where the field ( ) ( )∑ +=
j

ijiji JVJh ,12  i and j running over all neurons 

N, ( )2
ijJ  is the synaptic strength from neuron j to neuron i, and iJ−  is the threshold 

of neuron i. 

Restricting the connections to be symmetric and zero-diagonal, ( ) ( ),22
jiij JJ =  

( ) ,02 =iiJ  allows one to write a Lyapunov or energy function, 

 ( ) ( )∑∑ ∑−−=
i j i

iijiij SJSSJE 12
2
1  (1) 

which monotone decreases with the dynamics. 

The two-connection model can be generalized to include higher order 
connections. This modifies the “field” to be 

 ( ) ( ) ( ),123∑∑ ∑ +++=
j k j

ijijkjijki JSJSSJh  (2) 

where “…” denotes still higher orders, and an energy function can be written as 
follows: 

 ( ) ( ) ( )∑∑∑ ∑∑ ∑−−−=
i j k i j i

iijiijkjiijk SJSSJSSSJE 123
2
1

3
1  (3) 

provided that ( )
[ ]
( )33
ijkijk JJ =  for i, j, k distinct, with [ ]  denoting permutations in cyclic 

order, and ( ) 03 =ijkJ  for any i, j, k equal, and that similar symmetry requirements are 

satisfied for higher order connections. The updating rule maintains 

 ( ) ( )[ ].sgn1 thtS ii =+  (4) 

In the simple propositional case, logic clauses take the form ←nAAA ...,,, 21  

mBBB ...,,, 21  which says that ( )nAAA ororor 21  if ( );andandand 21 nBBB  

they are program clauses if 1=n  and :0≥m  we can have rules, e.g., CBA ,←  

saying ( ) ,CBACBA ∨∨≡∧∨ ¬  and assertions, e.g., ←D  saying that D is true. 
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A logic program consists of a set of program clauses and is activated by an 
initial goal statement. In Conjunctive Normal Form (CNF), the clauses contain one 
positive literal. Basically, logic programming in Hopfield model [7] can be treated as 
a problem in combinatorial optimization. Therefore, it can be carried out in a neural 
network to obtain the desired solution. Our objective is to find a set of interpretation 
(i.e., truth values for the atoms in the clauses which satisfy the clauses (which yields 
all the clauses true). In other words, we want to find ‘models’. 

The following algorithm shows how a logic program can be done in a Hopfield 
network based on Wan Abdullah’s method: 

  (i) Given a logic program, translate all the clauses in the logic program into 
basic Boolean algebraic form. 

 (ii) Identify a neuron to each ground neuron. 

(iii) Initialize all connections strengths to zero. 

(iv) Derive a cost function that is associated with the negation of all the clauses 

such that ( )xS+12
1  represents the logical value of a neuron X, where xS  is the 

neuron corresponding to X. The value of xS  is define in such a way that it carries  

the values of 1 if X is true and –1 if X is false. Negation (neuron X does not occur)    

is represented by ( );12
1

xS−  a conjunction logical connective is represented by 

multiplication whereas a disjunction connective is represented by addition. 

  (v) Obtain the values of connection strengths by comparing the cost function 
with the energy, H. 

(vi) Let the neural networks evolve until minimum energy be reached. Then 
checked whether the solution obtained is a global solution. 

The applied methodology may be summarized in the following way: given an 
optimization problem, find the cost function that describes it, design a Hopfield 
network whose energy function must reach (one of) its minima at the same point in 
configuration space as the cost function, so that the stable configurations of the 
network correspond to solutions of the problem. We do not provide a detail review 
regarding neural network logic programming in this paper, but instead refer the 
interested reader to Wan Abdullah [8]. Part of this section had been published in 
earlier works [9-12]. 
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III. Normal Forms Representation 

In Boolean logic, a formula is in conjunctive normal form if it is a conjunction 
of clauses, where a clause is a disjunction of literals, where a literal and its 
compliment cannot appear in the same clauses. As a normal form, it is useful in 
automated theorem proving. It is similar to the canonical product of sums form used 
in circuit theory. 

 (i) Disjunctive normal form (DNF) 

A formula F is a Disjunctive Normal Form (DNF) if and only if F is of the 
form: ,21 nFFFF ∨∨∨=  ,1≥n  where each iF  is a conjunction of literal(s). 

,...,,, 21 nFFF  1≥n  is its disjuncts. 

(ii) Conjunctive normal form (CNF) 

A formula F is a Conjunctive Normal Form (CNF) if and only if F is of the 
form: 

,1,21 ≥∧∧= nFFFF n  

where each iF  is a disjunction of literal(s). 

,...,,, 21 nFFF  1≥n  is its conjuncts. 

In Boolean logic, CNF is much more commonly used in the area of logical 
reasoning systems. CNF is a method which is widely been used for standardizing 
and normalizing logical formulas. The main advantage of it is its uniformly formed 
form, which makes it suitable to automatic processing which needs to define the rule 
for machine learning to recognize the logic it operates. 

Every propositional formula can be converted into an equivalent formula that is 
in CNF. This transformation is based on rules about logical equivalences: the double 
negative law, De Morgan’s laws and the distributive law. Since all logical formulae 
can be converted into an equivalent formula in conjunctive normal form, proofs are 
often based on the assumption that all formulae are CNF. However, in some cases, 
this conversion to CNF can lead to an exponential explosion [13] of the formula.  
But, in our logic programming, we just handle with Horn clauses. So, satisfiability 
problem and explosion problem does not occurred [14]. 

We focused on five types of logical operations: negation, conjunction, 
disjunction, implication and equality. 
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• Logical negation ( )P¬  produces a value of true if its operand is false and vice 

versa. Logical conjunction ( )QP ∧  produces a value of true if and only if 

both of its operands are true. Otherwise, they are all evaluated to false. 

• Logical disjunction ( )QP ∨  produces a value of true if and only if at least 

one of its operands it true. Otherwise, it results to false. 

• Logical implication ( )QP →  produces a value of false just in the singular 

case the first operand is true and the second operand is false. The rest will 
give us a true evaluation. 

• Logical equality ( )QPQP ↔≡ ,  produces a value of true if and only if both 

operands are false or both operands are true. Otherwise, it results to false. 

QP →  is logically equivalent to QP ∨¬  and QP ↔  is logically equivalent 

to ( ) ( ).PQQP →∧→  

Table 1. Truth table for the basic Boolean operators 
P Q P¬  QP ∧  QP ∨  QP → QP ↔

T T F T T T T 
T F F F T F F 
F T T F T T F 
F F T F F T T 

We can transform any logical formula into a normal form by applying the 
following rules: 

 (i) Use the laws: 

( ) ( )FGGFGF →∧→=↔  

GFGF ∨=→ ¬  

to eliminate →  and ↔  

(ii) Repeatedly use the law: 

( ) FF =¬¬  

and the De Morgan’s laws: 
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( ) GFGF ¬¬¬ ∧=∨  

( ) GFGF ¬¬¬ ∨=∧  

to bring negation signs immediately before atoms. 

(iii) Repeatedly use the distributive laws: 

( ) ( ) ( )HFGFHGF ∨∧∨=∧∨  

( ) ( ) ( )HFGFHGF ∧∨∧=∨∧  

 and the other laws as necessary. 

So, by using De Morgan’s laws, we can convert DNF clauses to CNF clauses. Let us 
look at an example for DNF to CNF conversion by using this law: 

( ) ( ) ( )DNFFORMDCBA ∧∨∧  

( )( ) ( )( )DCBDCA ∧∨∧∧∨≡  

( ) ( ) ( ) ( ) ( ).CNFFORMDBCBDACA ∨∧∨∧∨∧∨≡  

IV. Satisfiability Aspects of Horn Clauses in CNF Representation 

Satisfiability or SAT is a very basic problem in computer science. One way to 

solve SAT would be to try out every possible truth assignment. There are n2  such 
assignments and l literals to set for each assignment. Such an approach requires 

( )nlO 2⋅  operations. So, in general, SAT is an NP-complete problem [15]. 

Deciding whether a given logical formula F is satisfiable constitutes the 
satisfiability problem. Being one of the hard computational problems, the 
satisfiability problem is very important both theoretically and practically. It plays a 
central role in the complexity theory as the seed of the class of NP-complete 
problems [16], and deciding satisfiability presents an inevitable and most frequent 
employed process in logic program. 

Propositional satisfiability was the first problem shown to be NP-complete    
[17]. For Horn formula in CNF form, there is a more efficient algorithm to test 
satisfiability of a formula F. F is an example of Horn clauses in the CNF form 
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( ) ( ) ( ) ( )ZYXXYXZYXF ∨∨∧∧∨∧∨∨=  

( ) ( ) ( ).UWYZWXWZ ∨∧∨∨∧∨∨∧  

Assume that X is true. We now see that certain clauses are satisfiable only if 
their respective positive literal is also made true. We can rewrite formula F in the 
context of the logic program as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )., →∧→∧→∧→∧→∧→∧→ WUWZYZWXZXYXYXYZX  

For instance, with X being true ( )YX ∨  is only satisfied if Y is made true.          

After setting X and Y to true, we notice that Z also needs to make true to satisfy 

( ).ZYX ∨∨  We also need to set W to true to satisfy ( ).YZW ∨∨  Note that this 

process guarantees that all clauses containing at most one positive literal are satisfied 
by a minimal truth assignment. This implies that Horn clauses in CNF representation 
always satisfiable and solutions are guaranteed. This form also does not yield 
exponential explosion since the solutions searching tasks can be done in linear time. 
So, in our work, we can use Horn clauses in CNF to represent the logical clauses in 
doing logic programming without creating any satisfiability problem. 

V. Comparison between CNF and DNF 

In this section, we will use truth table analysis to compare the performance 
between CNF and DNF representation for the same set of logical clauses. Table 2, 
Table 3 and Table 4 illustrate the clauses with two literals, three literals and four 
literals, respectively. 

Logical Clause: XY ←  

Truth Table 2(a). YX ∨¬  (DNF) 

X Y YX ∨¬

1 1 1 
1 –1 –1 

–1 1 1 
–1 –1 1 
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Truth Table 2(b). ( )YX ¬¬ ∧  (CNF) 

X Y ( )YX ¬¬ ∧

1 1 1 
1 –1 –1 

–1 1 1 
–1 –1 1 

Logical Clause: YZX ←,  

Truth Table 3(a). ( )YZX ¬∨∨  (DNF) 

X Y Z ( )YZX ¬∨∨

1 1 1 1 
1 1 –1 1 
1 –1 1 1 
1 –1 –1 1 

–1 1 1 1 
–1 1 –1 –1 
–1 –1 1 1 
–1 –1 –1 1 

Truth Table 3(b). ( )ZYX ¬¬¬ ∧∧  (CNF) 

X Y Z ( )ZYX ¬¬¬ ∧∧

1 1 1 1 
1 1 –1 1 
1 –1 1 1 
1 –1 –1 1 

–1 1 1 1 
–1 1 –1 –1 
–1 –1 1 1 
–1 –1 –1 1 
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Clause: JYZX ,, ←  

Truth Table 4(a). JZYX ¬¬ ∨∨∨  (DNF) 

X Y Z J JZYX ¬¬ ∨∨∨  
1 1 1 1 1 
1 1 1 –1 1 
1 1 –1 1 1 
1 1 –1 –1 1 
1 –1 1 1 1 
1 –1 1 –1 1 
1 –1 –1 1 1 
1 –1 –1 –1 1 

–1 1 1 1 1 
–1 1 1 –1 1 
–1 1 –1 1 –1 
–1 1 –1 –1 1 
–1 –1 1 1 1 
–1 –1 1 –1 1 
–1 –1 –1 1 1 
–1 –1 –1 –1 1 

Truth Table 4(b). ( )JZYX ∧∧∧ ¬¬¬  (CNF) 
X Y Z J ( )JZYX ∧∧∧ ¬¬¬
1 1 1 1 1 
1 1 1 –1 1 
1 1 –1 1 1 
1 1 –1 –1 1 
1 –1 1 1 1 
1 –1 1 –1 1 
1 –1 –1 1 1 
1 –1 –1 –1 1 

–1 1 1 1 1 
–1 1 1 –1 1 
–1 1 –1 1 –1 
–1 1 –1 –1 1 
–1 –1 1 1 1 
–1 –1 1 –1 1 
–1 –1 –1 1 1 
–1 –1 –1 –1 1 
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From the tables, we can observe that the way to express the logical clauses in 
DNF is rather difficult compare to CNF. The number of evaluations needed for CNF 
is more than DNF. For an example, in Table 4, 48 evaluations are needed for DNF 
representation. On the other hand, for CNF, we just need 37 evaluations which are 
20% less than DNF. When the number of literals per clause increased, we can 
observe that the computation time and steps get larger or more complex. So, more 
computation time and effort is needed for DNF evaluations. If we represent the 
clauses in DNF for doing logic programming in Hopfield network, then the chance 
for the neurons to get trapped in local minima is higher. Furthermore, the energy 
relaxation loop will also get complex. This will increase the processing or the 
running time. So, from the truth tables analysis and theory related to CNF 
representation, we can conclude that CNF presentation is better and more effective 
than DNF in doing logic programming in Hopfield network and also other types of 
knowledge or logical reasoning. 

So, we convert logical clauses in DNF representation to CNF representation 
before doing logic programming in Hopfield network. We use Microsoft C++ 
platform to simulate the program. 

VI. Simulation Result 

Firstly, we generate random program clauses. We convert any clauses in DNF to 
CNF by using rules describe in Section III. Then, we initialize initial states for the 
neurons in the clauses. Next, we let the network evolves until minimum energy is 
reached. Then we test the final state obtained whether it is a stable state. If the states 
remain unchanged for five runs, then we consider it as stable state. Following this, 
we calculate corresponding final energy for the stable state. If the difference between 
the final energy and the global minimum energy is within tolerance value, then we 
consider the solution as global solution. Then we calculate hamming distance 
between stable state and global solution and ratios of global solutions. 

We run the relaxation for 1000 trials and 100 combinations of neurons so as to 
reduce statistical error. The selected tolerance value is 0.001. All these values are 
obtained by try and error technique, where we tried several values as tolerance 
values, and selected the value which gives better performance than other values. 
Figures 1 to 6 illustrate the graphs obtained for ratio of global solutions and final 
hamming distances. 
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Figure 1. Global minima ratio for NC1. 
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Figure 2. Global minima ratio for NC2. 
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Figure 3. Global minima ratio for NC3. 
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Hamming Distance For NC1
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Figure 4. Hamming distance for NC1. 

Hamming Distance For NC2
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Figure 5. Hamming distance for NC2. 
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Figure 6. Hamming distance for NC3. 

We can observe than the ration of global solutions is almost zero for all the 
trials. Since the graphs overlapped, so we just plot the results for .40=NN  Most of 
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the neurons which are not involved in the clauses generated will be in the global 
states. The random generated program clauses relaxed to the final states, which seem 
also to be stable states, in less than five runs. Furthermore, the network never gets 
stuck in any suboptimal solutions. This indicates good solutions (global states) can 
be found in linear time or less with less complexity. 

Since all the solutions we obtained are global solution, so the distance between 
the stable states and the attractors are almost zero as shown in the figures. Supporting 
this, we obtained almost zero values for Hamming distance. So, the distance between 
the stable states and global states is almost zero. Since the loop of energy relaxation 
in doing logic programming consists only clauses in CNF form, so the network 
relaxed to global solutions without any problem. Although we increased the number 
of literals per clause but the complexity of the network never increased drastically 
due to we are just handling clauses in CNF. The neurons are able to jump the energy 
barrier to relax into global solutions. This indicates the energy landscape is nearly 
flat, which increased the capacity of the neurons to relax to global solutions.          
The ratio of global minima which is consistently around 1 shows that the CNF 
representation for the clauses are stable although the number of literals increased 
simultaneously. So, we can obtain models for the corresponding logical clauses 
without any computational complexity. 

By carrying out computer simulations of the proposed method, we verified that 
by using CNF representation in doing logic program in Hopfield network, we can 
easily obtained models for the corresponding logic program. 

VII. Conclusion 

We had analyzed the performance of both CNF and DNF representation 
theoretically and analytically. By converting DNF into CNF, we found that the 
evaluation process can greatly be reduced as the time needed for evaluation is 
reduced. The advantage of the CNF shown here is that the time to process, 
computational complexity and number of runs for CNF clauses is much less than to 
process DNF in programming logic. Besides that CNF representation also does      
not yield any satisfiability problem for Horn clauses. As a conclusion, CNF 
representation is better than DNF representation in doing logic programming and 
knowledge reasoning in Hopfield network. 
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