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Abstract 

A graph G is decomposable into the subgraphs nGGGG ...,,,, 321  of G if 

no ( )niGi ...,,3,2,1=  has isolated vertices and the edge set ( )GE  can 

be partitioned into the subsets ( ) ( ) ( )....,,, 21 nGEGEGE  If HGi ≅  for 

every i, we say that G is H-decomposable and we write .GH |  A graph F 

without isolated vertices is a least common multiple of the graphs 1G  

and ,2G  if F is a graph of minimum size such that F is both 

1G -decomposable and 2G -decomposable. The size (the number of edges) 

of a least common multiple of two graphs 1G  and 2G  is denoted by 

( ).,lcm 21 GG  Chartrand et al. [Periodica Math. Hungar. 27(2) (1993), 

95-104] found ( )lk KC ,12 ,lcm  and ( ).,lcm ,13 lKC  They also introduced a 

conjecture about ( ),,lcm ,1 ln KC  when n is an odd integer .5≥  Wang 

[Utilitas Math. 53 (1998), 231-242] proved the conjecture is true when 

.5=n  We proved that the conjecture is not true for some cases. For 

some cases we obtained a formula in [Far East J. Appl. Math. 6(2) 
(2002), 191-200]. In this paper, we show that the conjecture is true for 

the case when ( ) 1, =ln  and 






 +
2

2

n

nl  is odd. When nd <<1  and 

≥+⋅
2

1d
d
n

 ,12 +
d
l

 where ( ),,gcd lnd =  we establish a new formula. 
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Introduction 

In this paper we only consider simple graphs. A graph G is said to be 

H-decomposable, denoted by ,GH |  if ( )GE  can be partitioned into 

subgraphs such that each subgraph is isomorphic to H. Such a 

factorization is called isomorphic factorization. The concept of isomorphic 

factorization was studied by Harary et al. [3]. Wilson [6] proved that for 

every graph F without isolated vertices, there can be found a complete 

graph nK  such that nK  is F-decomposable. Using this theorem 

Chartrand et al. [1] proved that any two graphs have a least common 

multiple. The size of a least common multiple of 1G  and 2G  is denoted by 

( ).,lcm 21 GG  We follow standard notation in graph theory, the 

cardinality of the vertex set of a graph G, the order of G is denoted by 

( )Gp  and the cardinality of the edge set of G, the size of G is denoted by 

( ).Gq  

Theorem 1 [1]. ( ) ,3,lcm ,13 d
klKC l =  where 

( ) ( )
.

9
32

;,3gcd 



 +== ld

kld  

For general odd integer n, they made the following conjecture [1]: 

( ) ,,lcm ,1 d
nklKC ln =  where ( ) ( )

.
2

;,gcd
2 



 +==

n

nld
klnd  

The following theorem shows that the above conjecture does not hold 
good in general. 

Theorem 2 [4]. Let l be a multiple of n. Then 

 ( ) ;
2

1,lcm ,1 lnKC ln ⋅+=  when 
2

1+< nk  

kl=  when ;
2

1+≥ nk  where .12 +⋅=
n
lk  

Theorem 3. Let l and n be relatively prime positive integers with 
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.5≥n  Suppose that n and ,2
2 



 +=

n

nlk  are odd. Then ( )ln KC ,1,lcm  

.nkl=  

Proof. 

( ) nlnl =,lcm  

( ) ,,lcm ,1 nlsKC ln ⋅=  

where s is a positive integer. 

Let F be a graph of size snl such that FCn |  and .,1 FK l |  Then F 

should be decomposable into sn stars lK ,1  and into sl cycles .nC  Every 

edge of a cycle should be incident with the centre of one of the stars. 

Therefore ,
2 







≤

sn
sl  

n
lsn 21 ≥−  

2
2

n

nls +≥  

.ks ≥  

Therefore, ( ) .,lcm ,1 nklKC ln ≥  

We show that there exists a graph G of size nkl such that GCn |  and 

.,1 GK l |  

Firstly we consider the case when .1=k  Though the proof for the 

general case is similar, the proof in this case helps us to make the idea 
behind the general proof clear. 

Since 12
2

==



 + k

n

nl  and ( ),mod0 nl ≡  .12
2

<+

n

nl  Hence <l  

( )
.

2
1−⋅ nn
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Construction of a Cycle nC  

We want to construct a graph of size nkl which is lK ,1 -decomposable 

and nC -decomposable. We give below two methods of forming cycles of 

length n. We use either of these or both depending on n and l, in our 

construction. 

Let H be a set of nnk =  vertices ....,,, 21 nvvv  We can form 
2

1−n  

edge-disjoint spanning cycles of the complete graph on these n vertices 

(which are also referred to as spanning cycles of H for simplicity). 

Method 1. Form one of the spanning cycles of H say ,,: 21 vvC  

.,...,, 13 vvv n  Select an edge say .1 ii vv −  We add 
2

1−n  new vertices ,1x  

2
12 ...,, −nxx  and form a new path ,,,,,,,

2
3

2
32211 −+−++ n

i
niii vxvxvxv  

., 1
2

1 −− in vx  This path and the edge ii vv 1−  form a cycle .nC  Similarly 

form cycles nC  for each edge of C. 

Let the new graph be K. K can be decomposed into n cycles of length 

n. 

For every iv  in H, ( ) .12
2

12 +=+−⋅= nnvd iK  Of these ( )1+n  

edges, ( )1−n  edges join iv  to vertices that are not in H. Two edges are 

incident with the vertices of H. They are edges of the spanning cycle C. In 

K, ( ) ,1+= nvd i  even. All vertices of K, not in H are of degree 2. Clearly 

K is connected. Hence K is Eulerian. Let L be an Eulerian circuit of K. 

Assuming an orientation for L, for every iv  in H, there is one edge of L 

that enters iv  on L, and one edge of L that exits iv  on L. Define iH  to be 

the subgraph induced by the edges in H that exit iv  on L. 

Number of such edges .11 nn =−+=  

Hence ....,,3,2,1;,1 niKH ni =≅  
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Hence K can be decomposed into n stars nK ,1  whose central vertices 

are the vertices nvvv ...,,, 21  of H. 

Conclusion. Using Method 1, for every spanning cycle of H, we can 

construct a graph which can be decomposed into n stars nK ,1  and n 

cycles of length n. 

Illustration. .5=n  

 

 

Method 2. Consider a Hamilton path formed by the vertices of H, say 

....,,,, 321 nvvvv  Form a path 3P  say .: 321
1 vvvP  Add 

2
1−n  new 

vertices 
2

121 ...,,, −nxxx  and form the path ...,,,,,,,, 8362412 vxvxvxv  

.,,, 1
2

132
2

3 vxvx nnn −−+−  This path and the edge 21vv  form a cycle .nC  

Again add 
2

1−n  new vertices 
2

121 ...,,, −nyyy  and form the path ,, 13 yv  

.,,,...,,,, 2
2

133
2

3725 vyvyvyv nnn −−+−  This path and the edge 32vv  form 

another cycle .nC  
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Let this graph of two cycles be denoted by F. Clearly F can be 

decomposed into two cycles ,nC  

( ) 42 =vd  and ( ) ....,,4,3,1;2 nivd i ==  

The two edges incident with nivi ...,,4,3,1; =  forms a star .2,1K  Of the 

four edges incident with ,2v  one edge is included in the star centered at 

1v  and the other in the star centered at .3v  The remaining two edges 

incident with 2v  forms a star .2,1K  Thus F can be decomposed into n 

stars 2,1K  centered at ....,,, 21 nvvv  

Conclusion. Using Method 2, given any 3P  contained in H, we can 

construct a graph which can be decomposed into 2 cycles of length n and 

n stars 2,1K  centered at the vertices of H. Further, the only edges from H 

in this graph are the edges of 3P  that we started with. 

Illustration. .9=n  

 

Similarly form another path 3P  say 2P  which is edge-disjoint from the 

path .1P  Form two cycles nC  as above, corresponding to the two edges of 
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.2P  These two new cycles can also be decomposed into n stars .2,1K  

In general, we form x edge-disjoint paths 3P  from a spanning path of 

n vertices of H, where .
2

1−≤ nx  

Let this graph be S. Clearly S can be decomposed into 2x cycles .nC  S 

can also be decomposed into n stars xK 2,1  centered at ....,,, 21 nvvv  

To Find ( )ln KC ,1,lcm  

By division algorithm, let ;yxnl +=  x, y are non-negative integers; 

.0 ny <<  

Since 
( )

.
2

1,
2

1 −<−⋅< nx
nn

l  

Case 1. When y is even. 

Form x edge-disjoint spanning cycles say xCCC ...,,, 21  of H. This is 

possible as .
2

1−< nx  Then by using Method 1, corresponding to each of 

the spanning cycle ,iC  we can form a graph ,iG  which can be decomposed 

into n cycles of length n and also into n stars nK ,1  each centered at a 

vertex of H. We note that these graphs are edge-disjoint. Let K be the 

union of these graphs .1, niGi ≤≤  We note that K is the edge-disjoint 

union of nx cycles of length n and n stars nxK ,1  each centered at a vertex 

of H. 

Since ,
2

1−< nx  there is a spanning cycle 1+xC  of H, edge-disjoint 

from the cycles ....,,, 21 xCCC  This cycle contains a path of length y 

since .ny <  This path can be considered to be a union of 
2
y  paths of 

length 2. Corresponding to each of these 
2
y  paths, we can construct a 
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graph which can be decomposed into n stars 2,1K  centered at the 

vertices of H and two cycles of length n. Let these graphs be 

....,,,
2

21 yHHH  

Let F be the union of these graphs. Then F is the edge-disjoint union 

of 
2
yn  stars 2,1K  centered at vertices of H 

2
( y  copies of 2,1K  at each 

vertex of H) and y cycles of length n. 

Then we let G to be the graph which is the union of F and K. Then, by 

our construction G is the edge-disjoint union ( ) lynx =+  cycles of length 

n. Further, at each vertex of H, there are 
2
y  copies of 2,1K  and x copies 

of ,,1 nK  edge-disjoint. These together form a lK ,1  at each vertex of H. 

Thus G is decomposable into n copies of .,1 lK  

Therefore G is a graph of size knl which is nC -decomposable and also 

lK ,1 -decomposable. (An illustration is provided at the end of the proof.) 

Case 2. When y is odd. 

Let yxnl +=  as in Case 1, with .0 ny <<  

Let ( ) ( ).1 ynnxl ++−=  

As .2, nynny <+<  Also yn +  is even, since n and y are odd. 

As in Case 1, using the ( )1−x  edge-disjoint spanning cycles of H, we 

can form a graph K which is the edge-disjoint union of ( )nx 1−  cycles of 

length n and n stars ( )nxK 1,1 −  each centered at a vertex of H. 

Since, .2
2

11,
2

1 −−≤−−< nxnx  

Hence there are at least 2 edge-disjoint spanning cycles of H, also 

edge-disjoint from K. 
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Since ,2nny <+  these two cycles will contain 
2

ny +  edge-disjoint 

copies of .3P  Then by using Method 2, as in Case 1, we can construct a 

graph F, edge-disjoint from K, which can be decomposed into ( )yn +  

cycles of length n and nny ⋅+
2

 copies of 2,1K  
2

( ny +  copies of 2,1K  at 

each vertex of H). 

As before, let G be the union of K and F. Then G is the edge-disjoint 

union of ( ) ( ) lyxnynnx =+=++− 1  copies of nC  and n stars ,,1 lK  

each centered at a vertex of H. This graph G of size knl is a least common 

multiple of nC  and .,1 lK  

Here we have assumed ,nl >  since we take .01 >−x  

If ,nl <  then we form the graph of size ( )nl 1−  which is 

decomposable into nC  and 1,1 −lK  by Case 1 and add an edge-disjoint 

spanning cycle. Thus G can be decomposed into ( ) ll =+− 11  cycles of 

length n and ll KKK ,11,11,1 =− ∪  at each vertex of H. 

Illustration 1. ( ).,lcm 20,17 KC  

.140,20,7,1,20,7 ====== nklklnkkln  

Let ,67220 +×==l  6 is even. 

Let H be a set of 7=nk  vertices say 1, 2, 3, 4, 5, 6, 7. 

We can form 3 edge-disjoint spanning cycles from the vertices of H: 

(1) 1, 2, 6, 3, 5, 4, 7, 1. 

(2) 1, 3, 2, 7, 5, 6, 4, 1. 

(3) 1, 5, 2, 4, 3, 7, 6, 1. 

Form two spanning cycles and form a graph which can be decomposed 

into 14722 =×=n  cycles 7C  as in Method 1. 
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This can also be decomposed into 7 stars .14,177,1 KK =+  

Consider the vertices in order of the next spanning cycle: 1, 5, 2, 4, 3, 
7, 6, 1. 

Form three edge-disjoint subpaths of length 2 each: 1, 5, 2; 2, 4, 3; 

3, 7, 6 and form 632 =×  cycles 7C  as described in Method 2. 

 

These 6 cycles of length 7 can be decomposed into 7 stars 6,1K  

centered at 1, 2, 3, 4, 5, 6, 7. Thus G can be decomposed into 20 cycles 7C  

and G can also be decomposed into 7 stars ,20,1K  

( ) .140=Gq  

Thus ( ) .140,lcm 20,17 nklKC ==  

Illustration 2. ( ).,lcm 19,17 KC  

133,19,7,1,19,7 ====== nklklnkkln  

.57219 +×==l  

Therefore, let .1271 +×=l  

Let H be a set of 7=nk  vertices say 1, 2, 3, 4, 5, 6, 7. 

We can form 3 edge-disjoint spanning cycles from the vertices of H: 

(1) 1, 2, 6, 3, 5, 4, 7, 1. 

(2) 1, 3, 2, 7, 5, 6, 4, 1. 
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(3) 1, 5, 2, 4, 3, 7, 6, 1. 

Form a spanning cycle and form a graph which can be decomposed 

into 7=n  cycles 7C  as in Method 1. This can also be decomposed into 7 

stars .7,1K  

Consider the vertices in order of the next two spanning cycles and 
form three edge-disjoint subpaths of length 2 each corresponding to the 
vertices of each spanning cycle that can be formed. 

As in illustration, corresponding to each set, form 6 cycles .7C  This 

can be decomposed into 7 stars .12,166,1 KK =+  

Thus G can be decomposed into 19 cycles 7C  and 7 stars .19,1K  

Thus ( ) .197133,lcm 19,17 nklKC =×==  

Now we shall explain the construction of cycles nC  from nk vertices 

by the following methods when .2≥k  

Method 1. From n vertices, (n odd) we can form 
2

1−n  edge-disjoint 

Hamilton cycles. For each Hamilton cycle, we can form a graph which can 
be decomposed into n cycles ,nC  as well as into n stars nK ,1  as in 

Method 1, of the case .1=k  

Method 2. n and k are odd positive integers. 

Consider a null graph H on nk vertices: ....,,3,2,1 nk  

Arrange these nk vertices as k sets of n vertices say 

(1) { };...,,3,2,1 n  

(2) { };2...,,2,1 nnn ++  

(3) { };3...,,22,12 nnn ++  

 …………………… 

(k) ( ){ }....,,11 nknk +−  (A) 
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Consider one such set of n vertices say ....,,3,2,1 n  

Form a path ,2,1, ++ iii  where { }.2...,,3,2,1 −∈ ni  

For the edge ,1, +ii  we add 
2

1−n  new vertices 
2

1321 ...,,,, −nxxxx  

and form the path ,1,,3...,,7,,5,,3,,1
2

3321 −−++++ − nxnixixixi n  

.,
2

1 ix n−  (Addition is performed modulo n.) 

This path and the edge 1, +ii  form a cycle .nC  

For the edge ,1+i  ,2+i  we add 
2

1−n  new vertices ...,,,, 321 yyy  

2
1−ny  and form the path ,2...,,8,,6,,4,,2 321 −++++ niyiyiyi  

.1,,,
2

1
2

3 +−− iyny nn  

This path and the edge 2,1 ++ ii  forms a cycle ,nC  

( ) .41deg =+i  

Degree of all other vertices .2=  The two edges incident with the vertices: 

nii ...,,2,...,,3,2,1 +  form a star .2,1K  

Of the four edges incident with ,1+i  two edges are accounted for the 

stars centered at i and .2+i  The remaining two edges incident with 1+i  

form a star .2,1K  

Thus this graph can be decomposed into 2 cycles nC  and also into n 

stars .2,1K  

Similarly construct two cycles nC  for each of the k sets of n vertices 

in (A). This is a graph with k components. This graph can be decomposed 

into 2k cycles .nC  This graph can also be decomposed into nk stars 2,1K  

whose central vertices are the vertices of H. 
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(Corresponding to each of the k sets of n vertices of (A), we can form  

2
1−n  edge-disjoint subpaths each of length 2. [For example say ;23,12  

( ) ( ) ( ) ;1,12...;;45,34 nnnn −−−  for the first set n vertices of (A).] 

Corresponding to each such subpaths of length 2, we can form two cycles 

,nC  as described above. Consequently for each set of n vertices, there can 

be formed n stars 2,1K  for each subpath whose central vertices are the 

vertices of each set of H.) 

In general, selecting x edge-disjoint subpaths 




 −≤

2
1nx  of length 2, 

from each of the k sets of n vertices of (A), we can form 2x cycles .nC  This 

graph can be decomposed into nk stars ,2,1 xK  each centered at ,3,2,1  

;..., nk  the vertices of H. This graph can also be decomposed into 2xk 

cycles .nC  

This also proves that for any even integer ( ) .,lcm, ,1 knlKCnl ln ≤≤  

Construction 

Suppose k is an odd integer. Therefore nk is odd. 

Let H be a null graph on nk vertices: ....,,3,2,1 nk  

Formation of kl cycles :nC  

2
2

n

nlk +>  

12 +⋅>
n
lnk  

n
lnk ⋅>− 21  

( ) lknknk 21 >−  
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( )
.

2
1−< nknk

kl  

Therefore, 
( )

.
2

1−< nkn
l  

Let ,ynxl +⋅=  where x and y are non-negative integers and 

,0 ny <<  by division algorithm. 

Case 1. y is even r2=  (say), 

.
2

1−< nkx  

Corresponding to each spanning cycle of the nk vertices we can form 

a graph which is decomposable into nk cycles nC  and nk stars nK ,1  

centered at vertices of H as in Case 1 of .1=k  Let K be the union of such 

graphs formed from x edge-disjoint Hamilton cycles. This can be 

decomposed into xnk cycles nC  and nk stars nxK ,1  centered at the 

vertices of H. 

Now .
2

1−≤ nr  Choose a Hamilton cycle of H edge-disjoint from x 

cycles already chosen. Now the cycle can be decomposed into k sets of n 

adjacent vertices in an obvious way. [Suppose the cycle is ,...,,, 21 nkvvv  

we can take .]...;...,,;...,,;...,,, 2122121 nnnnn vvvvvvv ++  Now, if we 

choose one copy of 3P  from each set of vertices and proceed as in Method 

2, and take the union of graphs, we will get a graph decomposable into 2k 

cycles nC  and a 2,1K  at each vertex of H. Choosing r copies of 3P  from 

each set and taking the union of the graphs, we get a graph say F, which 

is decomposable into 2rk cycles of nK  and rK 2,1  at each vertex of H. So, 

if we let G to be the union of K and F, then G can be decomposed into 

( ) klyxnkrkxnk =+=+ 2  cycles nC  and nk stars .,12,1 lrnx KK =+  

Case 2. y is odd. 

Here as nlk >> ,1  and hence .1≥x  
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Let ( ) ( ) ,1 1ytnnynxl +=++−=  where 1y  is even and 1yn <  

.2n<  

Since .2
2

1,1
2

1 −−≤−−≤ nktnkx  

As in Case 1, let K be the union of such graphs formed from 1−x  

edge-disjoint Hamilton cycles. This can be decomposed into ( )nkx 1−  

cycles nC  and nk stars ( )nxK 1,1 −  centered at the vertices of H. 

Now, choose two Hamilton cycles edge-disjoint from 1−x  cycles 

already chosen. Form a graph G which is decomposable into ( )kny +  

cycles nC  and nk stars nyK +,1  centered at the vertices of H. 

Let G be the union of K and F. Then G can be decomposed into 

( ) ( ) klknynkx =++− 1  cycles nC  and nk stars ( ) .,11,1 lnynx KK =++−  

Hence G is a least common multiple of nC  and .,1 lK  

Remark. When k is even. 

nk is even. Let H be a null graph on nk vertices. 

There can be formed 




 − 1

2
nk  edge-disjoint Hamilton cycles by the 

nk vertices of H. 

Number of edges in these 




 − 1

2
nk  cycles .1

2
nknk ⋅





 −=  

Therefore when ,1
2

nknkkl ⋅




 −≤  the same construction as in Case 

2 holds. Hence, when ( ) ,1, =nl  the only case where we are not able to 

prove that ( ) nklKC ln =,1,lcm  is when k is even and lnnk <




 −

2
2  

.
2

1 nnk





 −<  
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Theorem 4. Let n be an odd integer 5≥  and ( ).,gcd lnd =  We 

assume ,1 nd <<  and .12
2

1 +≥+
d
ld

d
n  Then ( ) .

2
1,lcm ,1

+= d
d
nlKC ln  

Proof. ( ) .,lcm
d
nlln =  

Therefore, ( ) ,,lcm ,1 d
nlsKC ln ⋅=  where s is a positive integer. Let F 

be a graph of size 
d
nls ⋅  such that FCn |  and .,1 FK l |  Then F can be 

decomposed into 
d
ns  stars lK ,1  and 

d
ls  cycles .nC  Maximum length of 

the cycle that can be formed by the vertices of F such that each edge of 

this cycle is incident with a centre of a star is .2
d
ns⋅  

Hence, 

n
d
ns ≥⋅2  

.
2
ds ≥  

As d is odd, .
2

1+≥ ds  

We show that there exists a graph G of size 
2

1+d
d
nl  such that 

GCn |  and .,1 GK l |  

For convenience, let .
2

1 pd
d
n =+⋅  

Let H be a set of p vertices: ....,,,, 321 pvvvv  

Since ,12
2

1 +≥+
d
ld

d
n  we can form 

d
l  spanning cycles by the 

vertices of H. 

We form cycles nC  as follows. 
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Notation. By a spanning cycle of H, we mean a spanning cycle of the 

complete graph with H as set of vertices. 

Form a spanning cycle pC  of H. Partition this cycle pC  into 
2

1+d  

edge-disjoint paths each of length 
d
n  say: 

....;12...,,1;1...,3,2,1 +++
d
n

d
n

d
n  

Consider one such path say P. Excluding this path P, the number of 

edges remaining in the cycle .
2

1
2

1 −⋅=−+⋅= d
d
n

d
nd

d
nCp  

For each of these 
2

1−⋅ d
d
n  edges, we add a new vertex and join it 

with the end vertices of the corresponding edges. These newly formed 

2
12 −⋅⋅ d

d
n  edges and the path P form a cycle of length +−⋅⋅

2
12 d

d
n  

.n
d
n =  

Similarly form cycles nC  for each of the subpaths of .pC  

(We illustrate for the case ( ),,lcm 6,19 KC  

.6
2

1,3,3,6,9 =+⋅==== d
d
n

d
ndln  

Let H be a set of 6 vertices 1, 2, 3, 4, 5, 6. Form a spanning cycle C say 

1, 2, 3, 4, 5, 6, 1. Partition this cycle into 2
2

1 =+d  edge-disjoint 

subpaths of length 3 say 1, 2, 3, 4; 4, 5, 6, 1. 
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The construction outlined above applied to the path yields the graph 

shown above. Clearly, this graph can be decomposed into 2 cycles of 

length 9 and also into 6 stars 3,1K  centered at the vertices of H. A 

similar construction with respect to another edge-disjoint Hamilton cycle 

leads to a similar graph. Taking the union of these two graphs, we get a 

graph of size 36, which can be decomposed into 4 cycles of length 9 and 

also into 6 stars 6,1K  centered at the vertices of H.) 

Proof of the theorem resumed. 

This graph can be decomposed into 
2

1+d  cycles .nC  

For every vertex iv  in ( ) .1
2

122, +=−⋅+= ddvdH i  

Of these, ( )1−d  edges join iv  to vertices that are not in H. 2 edges 

join iv  to vertices of H (edges of the spanning cycle). 

This graph can be decomposed into p stars dK ,1  centered at the 

vertices of H. 
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Similarly form 
d
l  spanning cycles by joining the vertices of H. For 

each of these cycles, construct 
2

1+d  cycles nC  as explained above. This 

completes the construction of G. 

Number of edge-disjoint cycles nC  in .
2

1+⋅= d
d
lG  

Size of .
2

1+= d
d
nlG  

G is nC -decomposable. 

For every iv  in ( ) ( ).1, +⋅= d
d
lvdH i  

Of these, ( )1−⋅ d
d
l  edges join iv  to vertices that are not in H. 

2⋅
d
l  edges (edges of the spanning cycle) join iv  to vertices of H. 

They form an Eulerian circuit say C [assuming an orientation]. Thus for 

every iv  in H, there are 
d
l  edges of C that enter iv  on C and 

d
l  edges of 

C that exit iv  on C. 

Let iH  be the subgraph induced by the edges that enter iv  on C and 

the edges that are not incident with the vertices of H. 

Number of such edges ( ) .1 ld
d
l

d
l =−⋅+=  

Hence, .,1 li KH ≅  

The subgraphs ;iH  
2

1...,,3,2,1 +⋅= d
d
ni  constitute a 

lK ,1 -decomposition of G. 

Thus G is lK ,1 -decomposable. 

Thus ( ) .
2

1,lcm ,1
+= d

d
nlKC ln  
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