FACTORISATION OF GRAPHS

C. SUNIL KUMAR

Department of Mathematics
Mahatma Gandhi College
Trivandrum, Kerala, India
e-mail: drcsunil@gmail.com

Abstract

A graph G is decomposable into the subgraphs $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ of G if no $G_{i}(i=1,2,3, \ldots, n)$ has isolated vertices and the edge set $E(G)$ can be partitioned into the subsets $E\left(G_{1}\right), E\left(G_{2}\right), \ldots, E\left(G_{n}\right)$. If $G_{i} \cong H$ for every i, we say that G is H-decomposable and we write $H \mid G$. A graph F without isolated vertices is a least common multiple of the graphs G_{1} and G_{2}, if F is a graph of minimum size such that F is both G_{1}-decomposable and G_{2}-decomposable. The size (the number of edges) of a least common multiple of two graphs G_{1} and G_{2} is denoted by $\operatorname{lcm}\left(G_{1}, G_{2}\right)$. Chartrand et al. [Periodica Math. Hungar. 27(2) (1993), 95-104] found $\operatorname{lcm}\left(C_{2 k}, K_{1, l}\right)$ and $\operatorname{lcm}\left(C_{3}, K_{1, l}\right)$. They also introduced a conjecture about $\operatorname{lcm}\left(C_{n}, K_{1, l}\right)$, when n is an odd integer ≥ 5. Wang [Utilitas Math. 53 (1998), 231-242] proved the conjecture is true when $n=5$. We proved that the conjecture is not true for some cases. For some cases we obtained a formula in [Far East J. Appl. Math. 6(2) (2002), 191-200]. In this paper, we show that the conjecture is true for the case when $(n, l)=1$ and $\left\lceil\frac{2 l+n}{n^{2}}\right\rceil$ is odd. When $1<d<n$ and $\frac{n}{d} \cdot \frac{d+1}{2} \geq \frac{2 l}{d}+1$, where $d=\operatorname{gcd}(n, l)$, we establish a new formula.

[^0]Keywords and phrases: decomposition, least common multiple.
Received November 18, 2005

Introduction

In this paper we only consider simple graphs. A graph G is said to be H-decomposable, denoted by $H \mid G$, if $E(G)$ can be partitioned into subgraphs such that each subgraph is isomorphic to H. Such a factorization is called isomorphic factorization. The concept of isomorphic factorization was studied by Harary et al. [3]. Wilson [6] proved that for every graph F without isolated vertices, there can be found a complete graph K_{n} such that K_{n} is F-decomposable. Using this theorem Chartrand et al. [1] proved that any two graphs have a least common multiple. The size of a least common multiple of G_{1} and G_{2} is denoted by $\operatorname{lcm}\left(G_{1}, G_{2}\right)$. We follow standard notation in graph theory, the cardinality of the vertex set of a graph G, the order of G is denoted by $p(G)$ and the cardinality of the edge set of G, the size of G is denoted by $q(G)$.

Theorem 1 [1]. $\operatorname{lcm}\left(C_{3}, K_{1, l}\right)=\frac{3 k l}{d}$, where

$$
d=\operatorname{gcd}(3, l) ; \quad k=\left\lceil\frac{d(2 l+3)}{9}\right\rceil
$$

For general odd integer n, they made the following conjecture [1]:

$$
\operatorname{lcm}\left(C_{n}, K_{1, l}\right)=\frac{n k l}{d}, \text { where } d=\operatorname{gcd}(n, l) ; \quad k=\left\lceil\frac{d(2 l+n)}{n^{2}}\right\rceil .
$$

The following theorem shows that the above conjecture does not hold good in general.

Theorem 2 [4]. Let l be a multiple of n. Then

$$
\begin{aligned}
\operatorname{lcm}\left(C_{n}, K_{1, l}\right) & =\frac{n+1}{2} \cdot l ; \text { when } k<\frac{n+1}{2} \\
& =k l \text { when } k \geq \frac{n+1}{2} ; \text { where } k=2 \cdot \frac{l}{n}+1
\end{aligned}
$$

Theorem 3. Let l and n be relatively prime positive integers with
$n \geq 5$. Suppose that n and $k=\left\lceil\frac{2 l+n}{n^{2}}\right\rceil$, are odd. Then $\operatorname{lcm}\left(C_{n}, K_{1, l}\right)$ $=n k l$.

Proof.

$$
\begin{aligned}
& \operatorname{lcm}(l, n)=n l \\
& \operatorname{lcm}\left(C_{n}, K_{1, l}\right)=s \cdot n l
\end{aligned}
$$

where s is a positive integer.
Let F be a graph of size snl such that $C_{n} \mid F$ and $K_{1, l} \mid F$. Then F should be decomposable into sn stars $K_{1, l}$ and into $s l$ cycles C_{n}. Every edge of a cycle should be incident with the centre of one of the stars. Therefore $s l \leq\binom{ s n}{2}$,

$$
\begin{aligned}
& s n-1 \geq \frac{2 l}{n} \\
& s \geq \frac{2 l+n}{n^{2}} \\
& s \geq k .
\end{aligned}
$$

Therefore, $\operatorname{lcm}\left(C_{n}, K_{1, l}\right) \geq n k l$.
We show that there exists a graph G of size $n k l$ such that $C_{n} \mid G$ and $K_{1, l} \mid G$.

Firstly we consider the case when $k=1$. Though the proof for the general case is similar, the proof in this case helps us to make the idea behind the general proof clear.

Since $\left\lceil\frac{2 l+n}{n^{2}}\right\rceil=k=1$ and $l \equiv 0(\bmod n), \frac{2 l+n}{n^{2}}<1$. Hence $l<$ $\frac{n \cdot(n-1)}{2}$.

Construction of a Cycle C_{n}

We want to construct a graph of size $n k l$ which is $K_{1, l}$-decomposable and C_{n}-decomposable. We give below two methods of forming cycles of length n. We use either of these or both depending on n and l, in our construction.

Let H be a set of $n k=n$ vertices $v_{1}, v_{2}, \ldots, v_{n}$. We can form $\frac{n-1}{2}$ edge-disjoint spanning cycles of the complete graph on these n vertices (which are also referred to as spanning cycles of H for simplicity).

Method 1. Form one of the spanning cycles of H say $C: v_{1}, v_{2}$, $v_{3}, \ldots, v_{n}, v_{1}$. Select an edge say $v_{i-1} v_{i}$. We add $\frac{n-1}{2}$ new vertices x_{1}, $x_{2}, \ldots, x_{\frac{n-1}{2}}$ and form a new path $v_{i}, x_{1}, v_{i+1}, x_{2}, v_{i+2}, x_{\frac{n-3}{2}}, v_{i+\frac{n-3}{2}}$, $x_{\frac{n-1}{2}}, v_{i-1}$. This path and the edge $v_{i-1} v_{i}$ form a cycle C_{n}. Similarly form cycles C_{n} for each edge of C.

Let the new graph be $K . K$ can be decomposed into n cycles of length n.

For every v_{i} in $H, d_{K}\left(v_{i}\right)=2 \cdot \frac{n-1}{2}+2=n+1$. Of these $(n+1)$ edges, $(n-1)$ edges join v_{i} to vertices that are not in H. Two edges are incident with the vertices of H. They are edges of the spanning cycle C. In $K, d\left(v_{i}\right)=n+1$, even. All vertices of K, not in H are of degree 2. Clearly K is connected. Hence K is Eulerian. Let L be an Eulerian circuit of K. Assuming an orientation for L, for every v_{i} in H, there is one edge of L that enters v_{i} on L, and one edge of L that exits v_{i} on L. Define H_{i} to be the subgraph induced by the edges in H that exit v_{i} on L.

Number of such edges $=1+n-1=n$.
Hence $H_{i} \cong K_{1, n} ; i=1,2,3, \ldots, n$.

Hence K can be decomposed into n stars $K_{1, n}$ whose central vertices are the vertices $v_{1}, v_{2}, \ldots, v_{n}$ of H.

Conclusion. Using Method 1, for every spanning cycle of H, we can construct a graph which can be decomposed into n stars $K_{1, n}$ and n cycles of length n.

Illustration. $n=5$.

Method 2. Consider a Hamilton path formed by the vertices of H, say $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$. Form a path P_{3} say $P^{1}: v_{1} v_{2} v_{3}$. Add $\frac{n-1}{2}$ new vertices $x_{1}, x_{2}, \ldots, x_{\frac{n-1}{2}}$ and form the path $v_{2}, x_{1}, v_{4}, x_{2}, v_{6}, x_{3}, v_{8}, \ldots$, $x_{\frac{n-3}{2}}, v_{2+n-3}, x_{\frac{n-1}{2}}, v_{1}$. This path and the edge $v_{1} v_{2}$ form a cycle C_{n}. Again add $\frac{n-1}{2}$ new vertices $y_{1}, y_{2}, \ldots, y_{\frac{n-1}{2}}$ and form the path v_{3}, y_{1}, $v_{5}, y_{2}, v_{7}, \ldots, y_{\frac{n-3}{2}}, v_{3+n-3}, y_{\frac{n-1}{2}}, v_{2}$. This path and the edge $v_{2} v_{3}$ form another cycle C_{n}.

Let this graph of two cycles be denoted by F. Clearly F can be decomposed into two cycles C_{n},

$$
d\left(v_{2}\right)=4 \text { and } d\left(v_{i}\right)=2 ; \quad i=1,3,4, \ldots, n
$$

The two edges incident with $v_{i} ; i=1,3,4, \ldots, n$ forms a star $K_{1,2}$. Of the four edges incident with v_{2}, one edge is included in the star centered at v_{1} and the other in the star centered at v_{3}. The remaining two edges incident with v_{2} forms a star $K_{1,2}$. Thus F can be decomposed into n stars $K_{1,2}$ centered at $v_{1}, v_{2}, \ldots, v_{n}$.

Conclusion. Using Method 2, given any P_{3} contained in H, we can construct a graph which can be decomposed into 2 cycles of length n and n stars $K_{1,2}$ centered at the vertices of H. Further, the only edges from H in this graph are the edges of P_{3} that we started with.

Illustration. $n=9$.

Similarly form another path P_{3} say P^{2} which is edge-disjoint from the path P^{1}. Form two cycles C_{n} as above, corresponding to the two edges of
P^{2}. These two new cycles can also be decomposed into n stars $K_{1,2}$.

In general, we form x edge-disjoint paths P_{3} from a spanning path of n vertices of H, where $x \leq \frac{n-1}{2}$.

Let this graph be S. Clearly S can be decomposed into $2 x$ cycles C_{n}. S can also be decomposed into n stars $K_{1,2 x}$ centered at $v_{1}, v_{2}, \ldots, v_{n}$.

$$
\text { To Find } \operatorname{lcm}\left(C_{n}, K_{1, l}\right)
$$

By division algorithm, let $l=x n+y ; x, y$ are non-negative integers; $0<y<n$.

Since $l<\frac{n \cdot(n-1)}{2}, x<\frac{n-1}{2}$.

Case 1. When y is even.
Form x edge-disjoint spanning cycles say $C_{1}, C_{2}, \ldots, C_{x}$ of H. This is possible as $x<\frac{n-1}{2}$. Then by using Method 1 , corresponding to each of the spanning cycle C_{i}, we can form a graph G_{i}, which can be decomposed into n cycles of length n and also into n stars $K_{1, n}$ each centered at a vertex of H. We note that these graphs are edge-disjoint. Let K be the union of these graphs $G_{i}, 1 \leq i \leq n$. We note that K is the edge-disjoint union of $n x$ cycles of length n and n stars $K_{1, n x}$ each centered at a vertex of H.

Since $x<\frac{n-1}{2}$, there is a spanning cycle C_{x+1} of H, edge-disjoint from the cycles $C_{1}, C_{2}, \ldots, C_{x}$. This cycle contains a path of length y since $y<n$. This path can be considered to be a union of $\frac{y}{2}$ paths of length 2. Corresponding to each of these $\frac{y}{2}$ paths, we can construct a
graph which can be decomposed into n stars $K_{1,2}$ centered at the vertices of H and two cycles of length n. Let these graphs be $H_{1}, H_{2}, \ldots, H_{\frac{y}{2}}$.

Let F be the union of these graphs. Then F is the edge-disjoint union of $\frac{y n}{2}$ stars $K_{1,2}$ centered at vertices of $H\left(\frac{y}{2}\right.$ copies of $K_{1,2}$ at each vertex of H) and y cycles of length n.

Then we let G to be the graph which is the union of F and K. Then, by our construction G is the edge-disjoint union $(n x+y)=l$ cycles of length n. Further, at each vertex of H, there are $\frac{y}{2}$ copies of $K_{1,2}$ and x copies of $K_{1, n}$, edge-disjoint. These together form a $K_{1, l}$ at each vertex of H. Thus G is decomposable into n copies of $K_{1, l}$.

Therefore G is a graph of size $k n l$ which is C_{n}-decomposable and also $K_{1, l}$-decomposable. (An illustration is provided at the end of the proof.)

Case 2. When y is odd.
Let $l=x n+y$ as in Case 1, with $0<y<n$.
Let $l=(x-1) n+(n+y)$.

As $y<n, n+y<2 n$. Also $n+y$ is even, since n and y are odd.

As in Case 1, using the $(x-1)$ edge-disjoint spanning cycles of H, we can form a graph K which is the edge-disjoint union of $(x-1) n$ cycles of length n and n stars $K_{1,(x-1) n}$ each centered at a vertex of H.

Since, $x<\frac{n-1}{2}, x-1 \leq \frac{n-1}{2}-2$.
Hence there are at least 2 edge-disjoint spanning cycles of H, also edge-disjoint from K.

Since $y+n<2 n$, these two cycles will contain $\frac{y+n}{2}$ edge-disjoint copies of P_{3}. Then by using Method 2 , as in Case 1 , we can construct a graph F, edge-disjoint from K, which can be decomposed into $(n+y)$ cycles of length n and $\frac{y+n}{2} \cdot n$ copies of $K_{1,2}\left(\frac{y+n}{2}\right.$ copies of $K_{1,2}$ at each vertex of H).

As before, let G be the union of K and F. Then G is the edge-disjoint union of $(x-1) n+(n+y)=x n+y=l$ copies of C_{n} and n stars $K_{1, l}$, each centered at a vertex of H. This graph G of size $k n l$ is a least common multiple of C_{n} and $K_{1, l}$.

Here we have assumed $l>n$, since we take $x-1>0$.
If $l<n$, then we form the graph of size $(l-1) n$ which is decomposable into C_{n} and $K_{1, l-1}$ by Case 1 and add an edge-disjoint spanning cycle. Thus G can be decomposed into $(l-1+1)=l$ cycles of length n and $K_{1, l-1} \cup K_{1,1}=K_{1, l}$ at each vertex of H.

Illustration 1. $\operatorname{lcm}\left(C_{7}, K_{1,20}\right)$.

$$
n=7, \quad l=20, \quad k=1, \quad n k=7, \quad k l=20, \quad n k l=140 .
$$

Let $l=20=2 \times 7+6,6$ is even.
Let H be a set of $n k=7$ vertices say $1,2,3,4,5,6,7$.
We can form 3 edge-disjoint spanning cycles from the vertices of H :
(1) $1,2,6,3,5,4,7,1$.
(2) $1,3,2,7,5,6,4,1$.
(3) $1,5,2,4,3,7,6,1$.

Form two spanning cycles and form a graph which can be decomposed into $2 n=2 \times 7=14$ cycles C_{7} as in Method 1 .

This can also be decomposed into 7 stars $K_{1,7+7}=K_{1,14}$.
Consider the vertices in order of the next spanning cycle: $1,5,2,4,3$, $7,6,1$.

Form three edge-disjoint subpaths of length 2 each: 1, 5, 2; 2, 4, 3; $3,7,6$ and form $2 \times 3=6$ cycles C_{7} as described in Method 2 .

These 6 cycles of length 7 can be decomposed into 7 stars $K_{1,6}$ centered at $1,2,3,4,5,6,7$. Thus G can be decomposed into 20 cycles C_{7} and G can also be decomposed into 7 stars $K_{1,20}$,

$$
q(G)=140
$$

Thus $\operatorname{lcm}\left(C_{7}, K_{1,20}\right)=140=n k l$.
Illustration 2. $\operatorname{lcm}\left(C_{7}, K_{1,19}\right)$.

$$
\begin{aligned}
& n=7, \quad l=19, \quad k=1, \quad n k=7, \quad k l=19, \quad n k l=133 \\
& l=19=2 \times 7+5
\end{aligned}
$$

Therefore, let $l=1 \times 7+12$.
Let H be a set of $n k=7$ vertices say $1,2,3,4,5,6,7$.
We can form 3 edge-disjoint spanning cycles from the vertices of H :
(1) $1,2,6,3,5,4,7,1$.
(2) $1,3,2,7,5,6,4,1$.
(3) $1,5,2,4,3,7,6,1$.

Form a spanning cycle and form a graph which can be decomposed into $n=7$ cycles C_{7} as in Method 1 . This can also be decomposed into 7 stars $K_{1,7}$.

Consider the vertices in order of the next two spanning cycles and form three edge-disjoint subpaths of length 2 each corresponding to the vertices of each spanning cycle that can be formed.

As in illustration, corresponding to each set, form 6 cycles C_{7}. This can be decomposed into 7 stars $K_{1,6+6}=K_{1,12}$.

Thus G can be decomposed into 19 cycles C_{7} and 7 stars $K_{1,19}$.
Thus $\operatorname{lcm}\left(C_{7}, K_{1,19}\right)=133=7 \times 19=n k l$.

Now we shall explain the construction of cycles C_{n} from $n k$ vertices by the following methods when $k \geq 2$.

Method 1. From n vertices, (n odd) we can form $\frac{n-1}{2}$ edge-disjoint Hamilton cycles. For each Hamilton cycle, we can form a graph which can be decomposed into n cycles C_{n}, as well as into n stars $K_{1, n}$ as in Method 1 , of the case $k=1$.

Method 2. n and k are odd positive integers.
Consider a null graph H on $n k$ vertices: $1,2,3, \ldots, n k$.
Arrange these $n k$ vertices as k sets of n vertices say
(1) $\{1,2,3, \ldots, n\}$;
(2) $\{n+1, n+2, \ldots, 2 n\}$;
(3) $\{2 n+1,2 n+2, \ldots, 3 n\}$;
(k) $\{(k-1) n+1, \ldots, n k\}$.

Consider one such set of n vertices say $1,2,3, \ldots, n$.
Form a path $i, i+1, i+2$, where $i \in\{1,2,3, \ldots, n-2\}$.
For the edge $i, i+1$, we add $\frac{n-1}{2}$ new vertices $x_{1}, x_{2}, x_{3}, \ldots, x_{\frac{n-1}{2}}$ and form the path $i+1, x_{1}, i+3, x_{2}, i+5, x_{3}, i+7, \ldots, n-3, x_{\frac{n-3}{2}}, n-1$, $x_{\frac{n-1}{2}}, i$. (Addition is performed modulo n.)

This path and the edge $i, i+1$ form a cycle C_{n}.
For the edge $i+1, i+2$, we add $\frac{n-1}{2}$ new vertices $y_{1}, y_{2}, y_{3}, \ldots$, $y_{\frac{n-1}{2}}$ and form the path $i+2, y_{1}, i+4, y_{2}, i+6, y_{3}, i+8, \ldots, n-2$, $y_{\frac{n-3}{2}}, n, y_{\frac{n-1}{2}}, i+1$.

This path and the edge $i+1, i+2$ forms a cycle C_{n},

$$
\operatorname{deg}(i+1)=4 .
$$

Degree of all other vertices $=2$. The two edges incident with the vertices: $1,2,3, \ldots, i, i+2, \ldots, n$ form a star $K_{1,2}$.

Of the four edges incident with $i+1$, two edges are accounted for the stars centered at i and $i+2$. The remaining two edges incident with $i+1$ form a star $K_{1,2}$.

Thus this graph can be decomposed into 2 cycles C_{n} and also into n stars $K_{1,2}$.

Similarly construct two cycles C_{n} for each of the k sets of n vertices in (A). This is a graph with k components. This graph can be decomposed into $2 k$ cycles C_{n}. This graph can also be decomposed into $n k$ stars $K_{1,2}$ whose central vertices are the vertices of H.
(Corresponding to each of the k sets of n vertices of (A), we can form $\frac{n-1}{2}$ edge-disjoint subpaths each of length 2. [For example say 12, 23; 34, 45; $\ldots ;(n-2)(n-1),(n-1) n$; for the first set n vertices of (A).] Corresponding to each such subpaths of length 2 , we can form two cycles C_{n}, as described above. Consequently for each set of n vertices, there can be formed n stars $K_{1,2}$ for each subpath whose central vertices are the vertices of each set of H.)

In general, selecting x edge-disjoint subpaths $\left(x \leq \frac{n-1}{2}\right)$ of length 2, from each of the k sets of n vertices of (A), we can form $2 x$ cycles C_{n}. This graph can be decomposed into $n k$ stars $K_{1,2 x}$, each centered at $1,2,3$, $\ldots, n k$; the vertices of H. This graph can also be decomposed into $2 x k$ cycles C_{n}.

This also proves that for any even integer $l \leq n, \operatorname{lcm}\left(C_{n}, K_{1, l}\right) \leq k n l$.

Construction

Suppose k is an odd integer. Therefore $n k$ is odd.
Let H be a null graph on $n k$ vertices: $1,2,3, \ldots, n k$.
Formation of $k l$ cycles C_{n} :

$$
\begin{aligned}
& k>\frac{2 l+n}{n^{2}} \\
& n k>2 \cdot \frac{l}{n}+1 \\
& n k-1>2 \cdot \frac{l}{n} \\
& n k(n k-1)>2 l k
\end{aligned}
$$

$$
k l<\frac{n k(n k-1)}{2} .
$$

Therefore, $l<\frac{n(n k-1)}{2}$.

Let $l=x \cdot n+y$, where x and y are non-negative integers and $0<y<n$, by division algorithm.

Case 1. y is even $=2 r$ (say),

$$
x<\frac{n k-1}{2} .
$$

Corresponding to each spanning cycle of the $n k$ vertices we can form a graph which is decomposable into $n k$ cycles C_{n} and $n k$ stars $K_{1, n}$ centered at vertices of H as in Case 1 of $k=1$. Let K be the union of such graphs formed from x edge-disjoint Hamilton cycles. This can be decomposed into $x n k$ cycles C_{n} and $n k$ stars $K_{1, n x}$ centered at the vertices of H.

Now $r \leq \frac{n-1}{2}$. Choose a Hamilton cycle of H edge-disjoint from x cycles already chosen. Now the cycle can be decomposed into k sets of n adjacent vertices in an obvious way. [Suppose the cycle is $v_{1}, v_{2}, \ldots, v_{n k}$, we can take $v_{1}, v_{2}, \ldots, v_{n} ; v_{n+1}, \ldots, v_{2 n} ; v_{2 n+1}, \ldots, v_{2 n} ; \ldots$.] Now, if we choose one copy of P_{3} from each set of vertices and proceed as in Method 2 , and take the union of graphs, we will get a graph decomposable into $2 k$ cycles C_{n} and a $K_{1,2}$ at each vertex of H. Choosing r copies of P_{3} from each set and taking the union of the graphs, we get a graph say F, which is decomposable into $2 r k$ cycles of K_{n} and $K_{1,2 r}$ at each vertex of H. So, if we let G to be the union of K and F, then G can be decomposed into $x n k+2 r k=k(x n+y)=k l$ cycles C_{n} and $n k$ stars $K_{1, n x+2 r}=K_{1, l}$.

Case 2. y is odd.
Here as $k>1, l>n$ and hence $x \geq 1$.

Let $l=(x-1) n+(y+n)=t n+y^{1}$, where y^{1} is even and $n<y^{1}$ $<2 n$.

Since $x \leq \frac{n k-1}{2}-1, t \leq \frac{n k-1}{2}-2$.
As in Case 1, let K be the union of such graphs formed from $x-1$ edge-disjoint Hamilton cycles. This can be decomposed into $(x-1) n k$ cycles C_{n} and $n k$ stars $K_{1,(x-1) n}$ centered at the vertices of H.

Now, choose two Hamilton cycles edge-disjoint from $x-1$ cycles already chosen. Form a graph G which is decomposable into $(y+n) k$ cycles C_{n} and $n k$ stars $K_{1, y+n}$ centered at the vertices of H.

Let G be the union of K and F. Then G can be decomposed into $(x-1) n k+(y+n) k=k l$ cycles C_{n} and $n k$ stars $K_{1,(x-1) n+y+n}=K_{1, l}$.

Hence G is a least common multiple of C_{n} and $K_{1, l}$.

Remark. When k is even.
$n k$ is even. Let H be a null graph on $n k$ vertices.
There can be formed $\left(\frac{n k}{2}-1\right)$ edge-disjoint Hamilton cycles by the $n k$ vertices of H.

Number of edges in these $\left(\frac{n k}{2}-1\right)$ cycles $=\left(\frac{n k}{2}-1\right) \cdot n k$.

Therefore when $k l \leq\left(\frac{n k}{2}-1\right) \cdot n k$, the same construction as in Case 2 holds. Hence, when $(l, n)=1$, the only case where we are not able to prove that $\operatorname{lcm}\left(C_{n}, K_{1, l}\right)=n k l$ is when k is even and $\left(\frac{n k-2}{2}\right) n<l$ $<\left(\frac{n k-1}{2}\right) n$.

Theorem 4. Let n be an odd integer ≥ 5 and $d=\operatorname{gcd}(n, l)$. We assume $1<d<n$, and $\frac{n}{d} \frac{d+1}{2} \geq \frac{2 l}{d}+1$. Then $\operatorname{lcm}\left(C_{n}, K_{1, l}\right)=\frac{n l}{d} \frac{d+1}{2}$.

Proof. $\operatorname{lcm}(n, l)=\frac{n l}{d}$.

Therefore, $\operatorname{lcm}\left(C_{n}, K_{1, l}\right)=s \cdot \frac{n l}{d}$, where s is a positive integer. Let F be a graph of size $s \cdot \frac{n l}{d}$ such that $C_{n} \mid F$ and $K_{1, l} \mid F$. Then F can be decomposed into $\frac{n s}{d}$ stars $K_{1, l}$ and $\frac{l s}{d}$ cycles C_{n}. Maximum length of the cycle that can be formed by the vertices of F such that each edge of this cycle is incident with a centre of a star is $2 \cdot \frac{n s}{d}$.

Hence,

$$
\begin{aligned}
& 2 \cdot \frac{n s}{d} \geq n \\
& s \geq \frac{d}{2}
\end{aligned}
$$

As d is odd, $s \geq \frac{d+1}{2}$.
We show that there exists a graph G of size $\frac{n l}{d} \frac{d+1}{2}$ such that $C_{n} \mid G$ and $K_{1, l} \mid G$.

For convenience, let $\frac{n}{d} \cdot \frac{d+1}{2}=p$.
Let H be a set of p vertices: $v_{1}, v_{2}, v_{3}, \ldots, v_{p}$.
Since $\frac{n}{d} \frac{d+1}{2} \geq \frac{2 l}{d}+1$, we can form $\frac{l}{d}$ spanning cycles by the vertices of H.

We form cycles C_{n} as follows.

Notation. By a spanning cycle of H, we mean a spanning cycle of the complete graph with H as set of vertices.

Form a spanning cycle C_{p} of H. Partition this cycle C_{p} into $\frac{d+1}{2}$ edge-disjoint paths each of length $\frac{n}{d}$ say:

$$
1,2,3, \ldots \frac{n}{d}+1 ; \quad \frac{n}{d}+1, \ldots, 2 \frac{n}{d}+1 ; \ldots
$$

Consider one such path say P. Excluding this path P, the number of edges remaining in the cycle $C_{p}=\frac{n}{d} \cdot \frac{d+1}{2}-\frac{n}{d}=\frac{n}{d} \cdot \frac{d-1}{2}$.

For each of these $\frac{n}{d} \cdot \frac{d-1}{2}$ edges, we add a new vertex and join it with the end vertices of the corresponding edges. These newly formed $2 \cdot \frac{n}{d} \cdot \frac{d-1}{2}$ edges and the path P form a cycle of length $2 \cdot \frac{n}{d} \cdot \frac{d-1}{2}+$ $\frac{n}{d}=n$.

Similarly form cycles C_{n} for each of the subpaths of C_{p}.
(We illustrate for the case $\operatorname{lcm}\left(C_{9}, K_{1,6}\right)$,

$$
n=9, \quad l=6, \quad d=3, \quad \frac{n}{d}=3, \quad \frac{n}{d} \cdot \frac{d+1}{2}=6
$$

Let H be a set of 6 vertices $1,2,3,4,5,6$. Form a spanning cycle C say $1,2,3,4,5,6,1$. Partition this cycle into $\frac{d+1}{2}=2$ edge-disjoint subpaths of length 3 say $1,2,3,4 ; 4,5,6,1$.

The construction outlined above applied to the path yields the graph shown above. Clearly, this graph can be decomposed into 2 cycles of length 9 and also into 6 stars $K_{1,3}$ centered at the vertices of H. A similar construction with respect to another edge-disjoint Hamilton cycle leads to a similar graph. Taking the union of these two graphs, we get a graph of size 36 , which can be decomposed into 4 cycles of length 9 and also into 6 stars $K_{1,6}$ centered at the vertices of H.)

Proof of the theorem resumed.

This graph can be decomposed into $\frac{d+1}{2}$ cycles C_{n}.
For every vertex v_{i} in $H, d\left(v_{i}\right)=2+2 \cdot \frac{d-1}{2}=d+1$.

Of these, $(d-1)$ edges join v_{i} to vertices that are not in $H .2$ edges join v_{i} to vertices of H (edges of the spanning cycle).

This graph can be decomposed into p stars $K_{1, d}$ centered at the vertices of H.

Similarly form $\frac{l}{d}$ spanning cycles by joining the vertices of H. For each of these cycles, construct $\frac{d+1}{2}$ cycles C_{n} as explained above. This completes the construction of G.

Number of edge-disjoint cycles C_{n} in $G=\frac{l}{d} \cdot \frac{d+1}{2}$.
Size of $G=\frac{n l}{d} \frac{d+1}{2}$.
G is C_{n}-decomposable.
For every v_{i} in $H, d\left(v_{i}\right)=\frac{l}{d} \cdot(d+1)$.
Of these, $\frac{l}{d} \cdot(d-1)$ edges join v_{i} to vertices that are not in H.
$\frac{l}{d} \cdot 2$ edges (edges of the spanning cycle) join v_{i} to vertices of H. They form an Eulerian circuit say C [assuming an orientation]. Thus for every v_{i} in H, there are $\frac{l}{d}$ edges of C that enter v_{i} on C and $\frac{l}{d}$ edges of C that exit v_{i} on C.

Let H_{i} be the subgraph induced by the edges that enter v_{i} on C and the edges that are not incident with the vertices of H.

Number of such edges $=\frac{l}{d}+\frac{l}{d} \cdot(d-1)=l$.

Hence, $H_{i} \cong K_{1, l}$.

The subgraphs $\quad H_{i} ; \quad i=1,2,3, \ldots, \frac{n}{d} \cdot \frac{d+1}{2} \quad$ constitute a $K_{1, l}$-decomposition of G.

Thus G is $K_{1, l}$-decomposable.

Thus $\operatorname{lcm}\left(C_{n}, K_{1, l}\right)=\frac{n l}{d} \frac{d+1}{2}$.

Acknowledgement

The author is grateful to Professor M. I. Jinnah, Department of Mathematics, University of Kerala, for his comments and suggestions in every stage of this paper.

References

[1] G. Chartrand, L. Holley, G. Kubicki and M. Schultz, Greatest common divisors and least common multiples of graphs, Periodica Math. Hungar. 27(2) (1993), 95-104.
[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd ed., Wordsworth \& Brookes/Cole Monetary, 1986.
[3] F. Harary, W. Robinson and N. C. Wormald, Isomorphic factorization I: Complete graphs, Trans. Amer. Math. Soc. 242 (1978), 243-260.
[4] C. Sunil Kumar, Least common multiple of a cycle of odd length ≥ 5 and a star, Far East J. Appl. Math. 6(2) (2002), 191-200.
[5] P. Wang, On the sizes of least common multiples of stars versus cycles, Utilitas Math. 53 (1998), 231-242.
[6] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Proceedings of the Fifth British Combinatorial Conference, 1975, pp. 647-659.

[^0]: 2000 Mathematics Subject Classification: 05C70.

