FACTORISATION OF GRAPHS

C. SUNIL KUMAR

Department of Mathematics Mahatma Gandhi College Trivandrum, Kerala, India e-mail: drcsunil@gmail.com

Abstract

A graph G is decomposable into the subgraphs $G_1, G_2, G_3, ..., G_n$ of G if no G_i (i = 1, 2, 3, ..., n) has isolated vertices and the edge set E(G) can be partitioned into the subsets $E(G_1)$, $E(G_2)$, ..., $E(G_n)$. If $G_i \cong H$ for every i, we say that G is H-decomposable and we write $H \mid G$. A graph F without isolated vertices is a least common multiple of the graphs G_1 and G_2 , if F is a graph of minimum size such that F is both ${\it G}_1$ -decomposable and ${\it G}_2$ -decomposable. The size (the number of edges) of a least common multiple of two graphs G_1 and G_2 is denoted by $lcm(G_1, G_2)$. Chartrand et al. [Periodica Math. Hungar. 27(2) (1993), 95-104] found $lcm(C_{2k}, K_{1,l})$ and $lcm(C_3, K_{1,l})$. They also introduced a conjecture about $lcm(C_n, K_{1,l})$, when n is an odd integer ≥ 5 . Wang [Utilitas Math. 53 (1998), 231-242] proved the conjecture is true when n=5. We proved that the conjecture is not true for some cases. For some cases we obtained a formula in [Far East J. Appl. Math. 6(2) (2002), 191-200]. In this paper, we show that the conjecture is true for the case when (n, l) = 1 and $\left\lceil \frac{2l+n}{n^2} \right\rceil$ is odd. When 1 < d < n and $\frac{n}{d} \cdot \frac{d+1}{2} \ge \frac{2l}{d} + 1$, where $d = \gcd(n, l)$, we establish a new formula.

2000 Mathematics Subject Classification: 05C70.

Keywords and phrases: decomposition, least common multiple.

Received November 18, 2005

© 2006 Pushpa Publishing House

Introduction

In this paper we only consider simple graphs. A graph G is said to be H-decomposable, denoted by H | G, if E(G) can be partitioned into subgraphs such that each subgraph is isomorphic to H. Such a factorization is called isomorphic factorization. The concept of isomorphic factorization was studied by Harary et al. [3]. Wilson [6] proved that for every graph F without isolated vertices, there can be found a complete graph K_n such that K_n is F-decomposable. Using this theorem Chartrand et al. [1] proved that any two graphs have a least common multiple. The size of a least common multiple of G_1 and G_2 is denoted by $lcm(G_1, G_2)$. We follow standard notation in graph theory, the cardinality of the vertex set of a graph G, the order of G is denoted by g(G).

Theorem 1 [1].
$$lcm(C_3, K_{1,l}) = \frac{3kl}{d}$$
, where $d = \gcd(3, l)$; $k = \left\lceil \frac{d(2l+3)}{9} \right\rceil$.

For general odd integer n, they made the following conjecture [1]:

$$\operatorname{lcm}(C_n, K_{1,l}) = \frac{nkl}{d}$$
, where $d = \gcd(n, l)$; $k = \left\lceil \frac{d(2l+n)}{n^2} \right\rceil$.

The following theorem shows that the above conjecture does not hold good in general.

Theorem 2 [4]. Let l be a multiple of n. Then

$$lcm(C_n, K_{1,l}) = \frac{n+1}{2} \cdot l; when k < \frac{n+1}{2}$$
$$= kl when k \ge \frac{n+1}{2}; where k = 2 \cdot \frac{l}{n} + 1.$$

Theorem 3. Let l and n be relatively prime positive integers with

 $n \ge 5$. Suppose that n and $k = \left\lceil \frac{2l+n}{n^2} \right\rceil$, are odd. Then $lcm(C_n, K_{1,l})$ = nkl.

Proof.

$$lcm(l, n) = nl$$

$$lcm(C_n, K_{1 l}) = s \cdot nl,$$

where s is a positive integer.

Let F be a graph of size snl such that $C_n \mid F$ and $K_{1,l} \mid F$. Then F should be decomposable into sn stars $K_{1,l}$ and into sl cycles C_n . Every edge of a cycle should be incident with the centre of one of the stars. Therefore $sl \leq \binom{sn}{2}$,

$$sn - 1 \ge \frac{2l}{n}$$

$$s \ge \frac{2l + n}{n^2}$$

$$s \ge k.$$

Therefore, $lcm(C_n, K_{1,l}) \ge nkl$.

We show that there exists a graph G of size nkl such that $C_n \mid G$ and $K_{1,l} \mid G$.

Firstly we consider the case when k = 1. Though the proof for the general case is similar, the proof in this case helps us to make the idea behind the general proof clear.

Since
$$\left\lceil \frac{2l+n}{n^2} \right\rceil = k = 1$$
 and $l \equiv 0 \pmod{n}$, $\frac{2l+n}{n^2} < 1$. Hence $l < \frac{n \cdot (n-1)}{2}$.

Construction of a Cycle C_n

We want to construct a graph of size nkl which is $K_{1,l}$ -decomposable and C_n -decomposable. We give below two methods of forming cycles of length n. We use either of these or both depending on n and l, in our construction.

Let H be a set of nk = n vertices $v_1, v_2, ..., v_n$. We can form $\frac{n-1}{2}$ edge-disjoint spanning cycles of the complete graph on these n vertices (which are also referred to as spanning cycles of H for simplicity).

Method 1. Form one of the spanning cycles of H say C: $v_1, v_2, v_3, ..., v_n, v_1$. Select an edge say $v_{i-1}v_i$. We add $\frac{n-1}{2}$ new vertices $x_1, x_2, ..., x_{\frac{n-1}{2}}$ and form a new path $v_i, x_1, v_{i+1}, x_2, v_{i+2}, x_{\frac{n-3}{2}}, v_{i+\frac{n-3}{2}}, x_{\frac{n-1}{2}}, v_{i-1}$. This path and the edge $v_{i-1}v_i$ form a cycle C_n . Similarly form cycles C_n for each edge of C.

Let the new graph be K. K can be decomposed into n cycles of length n.

For every v_i in H, $d_K(v_i) = 2 \cdot \frac{n-1}{2} + 2 = n+1$. Of these (n+1) edges, (n-1) edges join v_i to vertices that are not in H. Two edges are incident with the vertices of H. They are edges of the spanning cycle C. In K, $d(v_i) = n+1$, even. All vertices of K, not in H are of degree 2. Clearly K is connected. Hence K is Eulerian. Let L be an Eulerian circuit of K. Assuming an orientation for L, for every v_i in H, there is one edge of L that enters v_i on L, and one edge of L that exits v_i on L. Define H_i to be the subgraph induced by the edges in H that exit v_i on L.

Number of such edges = 1 + n - 1 = n.

Hence
$$H_i \cong K_{1,n}$$
; $i = 1, 2, 3, ..., n$.

Hence K can be decomposed into n stars $K_{1,n}$ whose central vertices are the vertices $v_1, v_2, ..., v_n$ of H.

Conclusion. Using Method 1, for every spanning cycle of H, we can construct a graph which can be decomposed into n stars $K_{1,n}$ and n cycles of length n.

Illustration. n = 5.

Method 2. Consider a Hamilton path formed by the vertices of H, say $v_1, v_2, v_3, ..., v_n$. Form a path P_3 say $P^1: v_1v_2v_3$. Add $\frac{n-1}{2}$ new vertices $x_1, x_2, ..., x_{\frac{n-1}{2}}$ and form the path $v_2, x_1, v_4, x_2, v_6, x_3, v_8, ..., x_{\frac{n-3}{2}}, v_{2+n-3}, x_{\frac{n-1}{2}}, v_1$. This path and the edge v_1v_2 form a cycle C_n . Again add $\frac{n-1}{2}$ new vertices $y_1, y_2, ..., y_{\frac{n-1}{2}}$ and form the path $v_3, y_1, v_5, y_2, v_7, ..., y_{\frac{n-3}{2}}, v_{3+n-3}, y_{\frac{n-1}{2}}, v_2$. This path and the edge v_2v_3 form another cycle C_n .

Let this graph of two cycles be denoted by F. Clearly F can be decomposed into two cycles C_n ,

$$d(v_2) = 4$$
 and $d(v_i) = 2$; $i = 1, 3, 4, ..., n$.

The two edges incident with v_i ; i=1,3,4,...,n forms a star $K_{1,2}$. Of the four edges incident with v_2 , one edge is included in the star centered at v_1 and the other in the star centered at v_3 . The remaining two edges incident with v_2 forms a star $K_{1,2}$. Thus F can be decomposed into n stars $K_{1,2}$ centered at $v_1, v_2, ..., v_n$.

Conclusion. Using Method 2, given any P_3 contained in H, we can construct a graph which can be decomposed into 2 cycles of length n and n stars $K_{1,2}$ centered at the vertices of H. Further, the only edges from H in this graph are the edges of P_3 that we started with.

Illustration. n = 9.

Similarly form another path P_3 say P^2 which is edge-disjoint from the path P^1 . Form two cycles C_n as above, corresponding to the two edges of

 \mathbb{P}^2 . These two new cycles can also be decomposed into n stars $K_{1,\,2}$.

In general, we form x edge-disjoint paths P_3 from a spanning path of n vertices of H, where $x \leq \frac{n-1}{2}$.

Let this graph be S. Clearly S can be decomposed into 2x cycles C_n . S can also be decomposed into n stars $K_{1,2x}$ centered at $v_1, v_2, ..., v_n$.

To Find
$$lcm(C_n, K_{1, l})$$

By division algorithm, let l = xn + y; x, y are non-negative integers; 0 < y < n.

Since
$$l < \frac{n \cdot (n-1)}{2}, x < \frac{n-1}{2}$$
.

Case 1. When *y* is even.

Form x edge-disjoint spanning cycles say $C_1, C_2, ..., C_x$ of H. This is possible as $x < \frac{n-1}{2}$. Then by using Method 1, corresponding to each of the spanning cycle C_i , we can form a graph G_i , which can be decomposed into n cycles of length n and also into n stars $K_{1,n}$ each centered at a vertex of H. We note that these graphs are edge-disjoint. Let K be the union of these graphs $G_i, 1 \le i \le n$. We note that K is the edge-disjoint union of nx cycles of length n and n stars $K_{1,nx}$ each centered at a vertex of H.

Since $x < \frac{n-1}{2}$, there is a spanning cycle C_{x+1} of H, edge-disjoint from the cycles C_1 , C_2 , ..., C_x . This cycle contains a path of length y since y < n. This path can be considered to be a union of $\frac{y}{2}$ paths of length 2. Corresponding to each of these $\frac{y}{2}$ paths, we can construct a

graph which can be decomposed into n stars $K_{1,2}$ centered at the vertices of H and two cycles of length n. Let these graphs be $H_1,\,H_2,\,...,\,H_{\frac{y}{2}}.$

Let F be the union of these graphs. Then F is the edge-disjoint union of $\frac{yn}{2}$ stars $K_{1,2}$ centered at vertices of H ($\frac{y}{2}$ copies of $K_{1,2}$ at each vertex of H) and y cycles of length n.

Then we let G to be the graph which is the union of F and K. Then, by our construction G is the edge-disjoint union (nx + y) = l cycles of length n. Further, at each vertex of H, there are $\frac{y}{2}$ copies of $K_{1,2}$ and x copies of $K_{1,n}$, edge-disjoint. These together form a $K_{1,l}$ at each vertex of H. Thus G is decomposable into n copies of $K_{1,l}$.

Therefore G is a graph of size knl which is C_n -decomposable and also $K_{1,l}$ -decomposable. (An illustration is provided at the end of the proof.)

Case 2. When y is odd.

Let l = xn + y as in Case 1, with 0 < y < n.

Let
$$l = (x - 1)n + (n + y)$$
.

As y < n, n + y < 2n. Also n + y is even, since n and y are odd.

As in Case 1, using the (x-1) edge-disjoint spanning cycles of H, we can form a graph K which is the edge-disjoint union of (x-1)n cycles of length n and n stars $K_{1,(x-1)n}$ each centered at a vertex of H.

Since,
$$x < \frac{n-1}{2}$$
, $x - 1 \le \frac{n-1}{2} - 2$.

Hence there are at least 2 edge-disjoint spanning cycles of H, also edge-disjoint from K.

Since y+n < 2n, these two cycles will contain $\frac{y+n}{2}$ edge-disjoint copies of P_3 . Then by using Method 2, as in Case 1, we can construct a graph F, edge-disjoint from K, which can be decomposed into (n+y) cycles of length n and $\frac{y+n}{2} \cdot n$ copies of $K_{1,2}$ ($\frac{y+n}{2}$ copies of $K_{1,2}$ at each vertex of H).

As before, let G be the union of K and F. Then G is the edge-disjoint union of (x-1)n + (n+y) = xn + y = l copies of C_n and n stars $K_{1,l}$, each centered at a vertex of H. This graph G of size knl is a least common multiple of C_n and $K_{1,l}$.

Here we have assumed l > n, since we take x - 1 > 0.

If l < n, then we form the graph of size (l-1)n which is decomposable into C_n and $K_{1,\,l-1}$ by Case 1 and add an edge-disjoint spanning cycle. Thus G can be decomposed into (l-1+1)=l cycles of length n and $K_{1,\,l-1} \cup K_{1,\,1}=K_{1,\,l}$ at each vertex of H.

Illustration 1. $lcm(C_7, K_{1,20})$.

$$n = 7$$
, $l = 20$, $k = 1$, $nk = 7$, $kl = 20$, $nkl = 140$.

Let $l = 20 = 2 \times 7 + 6$, 6 is even.

Let H be a set of nk = 7 vertices say 1, 2, 3, 4, 5, 6, 7.

We can form 3 edge-disjoint spanning cycles from the vertices of *H*:

- (1) 1, 2, 6, 3, 5, 4, 7, 1.
- (2) 1, 3, 2, 7, 5, 6, 4, 1.
- (3) 1, 5, 2, 4, 3, 7, 6, 1.

Form two spanning cycles and form a graph which can be decomposed into $2n = 2 \times 7 = 14$ cycles C_7 as in Method 1.

This can also be decomposed into 7 stars $K_{1,7+7} = K_{1,14}$.

Consider the vertices in order of the next spanning cycle: 1, 5, 2, 4, 3, 7, 6, 1.

Form three edge-disjoint subpaths of length 2 each: 1, 5, 2; 2, 4, 3; 3, 7, 6 and form $2 \times 3 = 6$ cycles C_7 as described in Method 2.

These 6 cycles of length 7 can be decomposed into 7 stars $K_{1,\,6}$ centered at 1, 2, 3, 4, 5, 6, 7. Thus G can be decomposed into 20 cycles C_7 and G can also be decomposed into 7 stars $K_{1,\,20}$,

$$q(G) = 140.$$

Thus $lcm(C_7, K_{1,20}) = 140 = nkl$.

Illustration 2. $lcm(C_7, K_{1,19})$.

$$n = 7$$
, $l = 19$, $k = 1$, $nk = 7$, $kl = 19$, $nkl = 133$

$$l = 19 = 2 \times 7 + 5.$$

Therefore, let $l = 1 \times 7 + 12$.

Let H be a set of nk = 7 vertices say 1, 2, 3, 4, 5, 6, 7.

We can form 3 edge-disjoint spanning cycles from the vertices of *H*:

- (1) 1, 2, 6, 3, 5, 4, 7, 1.
- (2) 1, 3, 2, 7, 5, 6, 4, 1.

Form a spanning cycle and form a graph which can be decomposed into n = 7 cycles C_7 as in Method 1. This can also be decomposed into 7 stars $K_{1,7}$.

Consider the vertices in order of the next two spanning cycles and form three edge-disjoint subpaths of length 2 each corresponding to the vertices of each spanning cycle that can be formed.

As in illustration, corresponding to each set, form 6 cycles C_7 . This can be decomposed into 7 stars $K_{1,6+6} = K_{1,12}$.

Thus G can be decomposed into 19 cycles C_7 and 7 stars $K_{1,19}$.

Thus
$$lcm(C_7, K_{1,19}) = 133 = 7 \times 19 = nkl$$
.

Now we shall explain the construction of cycles C_n from nk vertices by the following methods when $k \geq 2$.

Method 1. From n vertices, (n odd) we can form $\frac{n-1}{2}$ edge-disjoint Hamilton cycles. For each Hamilton cycle, we can form a graph which can be decomposed into n cycles C_n , as well as into n stars $K_{1,n}$ as in Method 1, of the case k=1.

Method 2. *n* and *k* are odd positive integers.

Consider a null graph H on nk vertices: 1, 2, 3, ..., nk.

Arrange these nk vertices as k sets of n vertices say

- $(1) \{1, 2, 3, ..., n\};$
- (2) $\{n+1, n+2, ..., 2n\};$
- (3) $\{2n+1, 2n+2, ..., 3n\};$

.....

(k)
$$\{(k-1)n+1, ..., nk\}.$$
 (A)

Consider one such set of n vertices say 1, 2, 3, ..., n.

Form a path i, i + 1, i + 2, where $i \in \{1, 2, 3, ..., n - 2\}$.

For the edge i, i+1, we add $\frac{n-1}{2}$ new vertices $x_1, x_2, x_3, ..., x_{\frac{n-1}{2}}$ and form the path $i+1, x_1, i+3, x_2, i+5, x_3, i+7, ..., n-3, x_{\frac{n-3}{2}}, n-1, x_{\frac{n-1}{2}}, i$. (Addition is performed modulo n.)

This path and the edge i, i+1 form a cycle C_n .

For the edge i+1, i+2, we add $\frac{n-1}{2}$ new vertices $y_1, y_2, y_3, ..., y_{\frac{n-1}{2}}$ and form the path i+2, y_1 , i+4, y_2 , i+6, y_3 , i+8, ..., n-2, $y_{\frac{n-3}{2}}$, n, $y_{\frac{n-1}{2}}$, i+1.

This path and the edge i + 1, i + 2 forms a cycle C_n ,

$$\deg(i+1)=4.$$

Degree of all other vertices = 2. The two edges incident with the vertices: 1, 2, 3, ..., i, i + 2, ..., n form a star $K_{1,2}$.

Of the four edges incident with i+1, two edges are accounted for the stars centered at i and i+2. The remaining two edges incident with i+1 form a star $K_{1,2}$.

Thus this graph can be decomposed into 2 cycles C_n and also into n stars $K_{1,2}$.

Similarly construct two cycles C_n for each of the k sets of n vertices in (A). This is a graph with k components. This graph can be decomposed into 2k cycles C_n . This graph can also be decomposed into nk stars $K_{1,2}$ whose central vertices are the vertices of H.

(Corresponding to each of the k sets of n vertices of (A), we can form $\frac{n-1}{2}$ edge-disjoint subpaths each of length 2. [For example say 12, 23; 34, 45; ...; (n-2)(n-1), (n-1)n; for the first set n vertices of (A).] Corresponding to each such subpaths of length 2, we can form two cycles C_n , as described above. Consequently for each set of n vertices, there can be formed n stars $K_{1,2}$ for each subpath whose central vertices are the vertices of each set of H.)

In general, selecting x edge-disjoint subpaths $\left(x \leq \frac{n-1}{2}\right)$ of length 2, from each of the k sets of n vertices of (A), we can form 2x cycles C_n . This graph can be decomposed into nk stars $K_{1,2x}$, each centered at 1, 2, 3, ..., nk; the vertices of H. This graph can also be decomposed into 2xk cycles C_n .

This also proves that for any even integer $l \le n$, $lcm(C_n, K_{1,l}) \le knl$.

Construction

Suppose k is an odd integer. Therefore nk is odd.

Let H be a null graph on nk vertices: 1, 2, 3, ..., nk.

Formation of kl cycles C_n :

$$k > \frac{2l+n}{n^2}$$

$$nk > 2 \cdot \frac{l}{n} + 1$$

$$nk - 1 > 2 \cdot \frac{l}{n}$$

$$nk(nk - 1) > 2lk$$

$$kl < \frac{nk(nk-1)}{2}.$$

Therefore, $l < \frac{n(nk-1)}{2}$.

Let $l = x \cdot n + y$, where x and y are non-negative integers and 0 < y < n, by division algorithm.

Case 1. y is even = 2r (say),

$$x<\frac{nk-1}{2}.$$

Corresponding to each spanning cycle of the nk vertices we can form a graph which is decomposable into nk cycles C_n and nk stars $K_{1,n}$ centered at vertices of H as in Case 1 of k=1. Let K be the union of such graphs formed from x edge-disjoint Hamilton cycles. This can be decomposed into xnk cycles C_n and nk stars $K_{1,nx}$ centered at the vertices of H.

Now $r \leq \frac{n-1}{2}$. Choose a Hamilton cycle of H edge-disjoint from x cycles already chosen. Now the cycle can be decomposed into k sets of n adjacent vertices in an obvious way. [Suppose the cycle is $v_1, v_2, ..., v_{nk}$, we can take $v_1, v_2, ..., v_n$; $v_{n+1}, ..., v_{2n}$; $v_{2n+1}, ..., v_{2n}$;] Now, if we choose one copy of P_3 from each set of vertices and proceed as in Method 2, and take the union of graphs, we will get a graph decomposable into 2k cycles C_n and a $K_{1,2}$ at each vertex of H. Choosing r copies of P_3 from each set and taking the union of the graphs, we get a graph say F, which is decomposable into 2rk cycles of K_n and $K_{1,2r}$ at each vertex of H. So, if we let G to be the union of K and F, then G can be decomposed into xnk + 2rk = k(xn + y) = kl cycles C_n and nk stars $K_{1,nx+2r} = K_{1,l}$.

Case 2. *y* is odd.

Here as k > 1, l > n and hence $x \ge 1$.

Let $l = (x-1)n + (y+n) = tn + y^1$, where y^1 is even and $n < y^1 < 2n$.

Since
$$x \le \frac{nk-1}{2} - 1$$
, $t \le \frac{nk-1}{2} - 2$.

As in Case 1, let K be the union of such graphs formed from x-1 edge-disjoint Hamilton cycles. This can be decomposed into (x-1)nk cycles C_n and nk stars $K_{1,(x-1)n}$ centered at the vertices of H.

Now, choose two Hamilton cycles edge-disjoint from x-1 cycles already chosen. Form a graph G which is decomposable into (y+n)k cycles C_n and nk stars $K_{1,y+n}$ centered at the vertices of H.

Let G be the union of K and F. Then G can be decomposed into (x-1)nk+(y+n)k=kl cycles C_n and nk stars $K_{1,(x-1)n+y+n}=K_{1,l}$.

Hence G is a least common multiple of C_n and $K_{1,l}$.

Remark. When k is even.

nk is even. Let H be a null graph on nk vertices.

There can be formed $\left(\frac{nk}{2}-1\right)$ edge-disjoint Hamilton cycles by the nk vertices of H.

Number of edges in these
$$\left(\frac{nk}{2} - 1\right)$$
 cycles $= \left(\frac{nk}{2} - 1\right) \cdot nk$.

Therefore when $kl \leq \left(\frac{nk}{2}-1\right) \cdot nk$, the same construction as in Case 2 holds. Hence, when $(l,\,n)=1$, the only case where we are not able to prove that $\mathrm{lcm}(C_n,\,K_{1,\,l})=nkl$ is when k is even and $\left(\frac{nk-2}{2}\right)n < l < \left(\frac{nk-1}{2}\right)n$.

Theorem 4. Let n be an odd integer ≥ 5 and $d = \gcd(n, l)$. We assume 1 < d < n, and $\frac{n}{d} \frac{d+1}{2} \ge \frac{2l}{d} + 1$. Then $lcm(C_n, K_{1,l}) = \frac{nl}{d} \frac{d+1}{2}$.

Proof. $lcm(n, l) = \frac{nl}{d}$.

Therefore, $lcm(C_n, K_{1,l}) = s \cdot \frac{nl}{d}$, where s is a positive integer. Let F be a graph of size $s \cdot \frac{nl}{d}$ such that $C_n \mid F$ and $K_{1,l} \mid F$. Then F can be decomposed into $\frac{ns}{d}$ stars $K_{1,l}$ and $\frac{ls}{d}$ cycles C_n . Maximum length of the cycle that can be formed by the vertices of F such that each edge of this cycle is incident with a centre of a star is $2 \cdot \frac{ns}{d}$

Hence,

$$2 \cdot \frac{ns}{d} \ge n$$

$$s \ge \frac{d}{2}.$$

$$s \ge \frac{d}{2}$$

As d is odd, $s \ge \frac{d+1}{2}$.

We show that there exists a graph G of size $\frac{nl}{d}\frac{d+1}{2}$ such that $C_n \mid G$ and $K_{1,l} \mid G$.

For convenience, let $\frac{n}{d} \cdot \frac{d+1}{2} = p$.

Let *H* be a set of *p* vertices: v_1 , v_2 , v_3 , ..., v_p .

Since $\frac{n}{d} \frac{d+1}{2} \ge \frac{2l}{d} + 1$, we can form $\frac{l}{d}$ spanning cycles by the vertices of H.

We form cycles C_n as follows.

Notation. By a spanning cycle of H, we mean a spanning cycle of the complete graph with H as set of vertices.

Form a spanning cycle C_p of H. Partition this cycle C_p into $\frac{d+1}{2}$ edge-disjoint paths each of length $\frac{n}{d}$ say:

1, 2, 3, ...
$$\frac{n}{d}$$
 + 1; $\frac{n}{d}$ + 1, ..., $2\frac{n}{d}$ + 1;

Consider one such path say P. Excluding this path P, the number of edges remaining in the cycle $C_p = \frac{n}{d} \cdot \frac{d+1}{2} - \frac{n}{d} = \frac{n}{d} \cdot \frac{d-1}{2}$.

For each of these $\frac{n}{d} \cdot \frac{d-1}{2}$ edges, we add a new vertex and join it with the end vertices of the corresponding edges. These newly formed $2 \cdot \frac{n}{d} \cdot \frac{d-1}{2}$ edges and the path P form a cycle of length $2 \cdot \frac{n}{d} \cdot \frac{d-1}{2} + \frac{n}{d} = n$.

Similarly form cycles C_n for each of the subpaths of C_p .

(We illustrate for the case $lcm(C_9, K_{1,6})$,

$$n = 9$$
, $l = 6$, $d = 3$, $\frac{n}{d} = 3$, $\frac{n}{d} \cdot \frac{d+1}{2} = 6$.

Let H be a set of 6 vertices 1, 2, 3, 4, 5, 6. Form a spanning cycle C say 1, 2, 3, 4, 5, 6, 1. Partition this cycle into $\frac{d+1}{2} = 2$ edge-disjoint subpaths of length 3 say 1, 2, 3, 4; 4, 5, 6, 1.

The construction outlined above applied to the path yields the graph shown above. Clearly, this graph can be decomposed into 2 cycles of length 9 and also into 6 stars $K_{1,3}$ centered at the vertices of H. A similar construction with respect to another edge-disjoint Hamilton cycle leads to a similar graph. Taking the union of these two graphs, we get a graph of size 36, which can be decomposed into 4 cycles of length 9 and also into 6 stars $K_{1,6}$ centered at the vertices of H.)

Proof of the theorem resumed.

This graph can be decomposed into $\frac{d+1}{2}$ cycles C_n .

For every vertex
$$v_i$$
 in H , $d(v_i) = 2 + 2 \cdot \frac{d-1}{2} = d+1$.

Of these, (d-1) edges join v_i to vertices that are not in H. 2 edges join v_i to vertices of H (edges of the spanning cycle).

This graph can be decomposed into p stars $K_{1,d}$ centered at the vertices of H.

Similarly form $\frac{l}{d}$ spanning cycles by joining the vertices of H. For each of these cycles, construct $\frac{d+1}{2}$ cycles C_n as explained above. This completes the construction of G.

Number of edge-disjoint cycles C_n in $G = \frac{l}{d} \cdot \frac{d+1}{2}$.

Size of
$$G = \frac{nl}{d} \frac{d+1}{2}$$
.

G is C_n -decomposable.

For every
$$v_i$$
 in H , $d(v_i) = \frac{l}{d} \cdot (d+1)$.

Of these, $\frac{l}{d} \cdot (d-1)$ edges join v_i to vertices that are not in H.

 $\frac{l}{d} \cdot 2$ edges (edges of the spanning cycle) join v_i to vertices of H. They form an Eulerian circuit say C [assuming an orientation]. Thus for every v_i in H, there are $\frac{l}{d}$ edges of C that enter v_i on C and $\frac{l}{d}$ edges of C that exit v_i on C.

Let H_i be the subgraph induced by the edges that enter v_i on C and the edges that are not incident with the vertices of H.

Number of such edges =
$$\frac{l}{d} + \frac{l}{d} \cdot (d-1) = l$$
.

Hence,
$$H_i \cong K_{1,l}$$
.

The subgraphs $H_i;$ i = 1, 2, 3, ..., $\frac{n}{d} \cdot \frac{d+1}{2}$ constitute a $K_{1,\,l}$ -decomposition of G.

Thus G is $K_{1,l}$ -decomposable.

Thus
$$lcm(C_n, K_{1,l}) = \frac{nl}{d} \frac{d+1}{2}$$
.

Acknowledgement

The author is grateful to Professor M. I. Jinnah, Department of Mathematics, University of Kerala, for his comments and suggestions in every stage of this paper.

References

- G. Chartrand, L. Holley, G. Kubicki and M. Schultz, Greatest common divisors and least common multiples of graphs, Periodica Math. Hungar. 27(2) (1993), 95-104.
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, 2nd ed., Wordsworth & Brookes/Cole Monetary, 1986.
- [3] F. Harary, W. Robinson and N. C. Wormald, Isomorphic factorization I: Complete graphs, Trans. Amer. Math. Soc. 242 (1978), 243-260.
- [4] C. Sunil Kumar, Least common multiple of a cycle of odd length ≥ 5 and a star, Far East J. Appl. Math. 6(2) (2002), 191-200.
- [5] P. Wang, On the sizes of least common multiples of stars versus cycles, Utilitas Math. 53 (1998), 231-242.
- [6] R. M. Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, Proceedings of the Fifth British Combinatorial Conference, 1975, pp. 647-659.