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Abstract 

We describe a simple technique for computing the first few moments of 
estimators of the 1α  and 2α  parameters of the AR(2) model. This 

enables us to find a good approximation to the joint distribution of the two 
estimators, which represents a major improvement over the Central Limit 
Theorem, and can be successfully used even when sample size is 
relatively small. Furthermore, we can also construct a transformation of 
the two estimators which eliminates their skewness and thus makes the 
corresponding approximate distribution simpler and more accurate. 

1. Introduction 

The AR(2) (also known as Yule [1]) model consists of a stationary sequence of 
autocorrelated random variables, such that 

( ) ( ) ,2211 iiii XXX ε+μ−α+μ−α=μ− −−  (1) 

where the iε ’s are independent, normally distributed random variables with the 

mean of zero and the standard deviation equal to σ. This implies that iX ’s are 

normally distributed, with the mean of μ and the variance of 
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The correlation matrix of n consecutive iX ’s is 
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where ,1,1
2

1
10 α−

α=ρ=ρ  and 2211 −− ρα+ρα=ρ kkk  for .1>k  

0C  has a relatively simple band-matrix inverse equal to 
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whose determinant is 
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The corresponding multivariate probability density function of the standardized 

random variables 
V

XY i
i

µ−
≡  is thus 
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To estimate the 1α  and 2α  parameters, we must first compute the (first and 

second) sample serial correlation coefficients, namely, 
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 (7) 

and 
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Based on these, the usual way of estimating 1α  and 2α  is to take 
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Note that we can design better estimators (ideally, their range should be 21 α<−  

1<  and ),11 212 α−<α<−α  but our choice is adequate for the purpose of this 

article. The technique described below can be applied with equal ease to more 
complicated (including maximum-likelihood) estimators, which were investigated, in 
the context of the AR(1) model, by an earlier study [2]. 

The distribution of the two estimators is, in the ∞→n  limit, bivariate Normal, 
whose moments (elements of the variance-covariance matrix in particular) can be 

easily computed, when expanded in powers of .1
n  The purpose of this article is to 

first explain the details of such a computation, and then extend it to higher moments 

of the sampling distribution, with the ultimate objective of constructing 
n

1  and         

n
1 -accurate corrections to the Normal approximation. Finally, we demonstrate 

empirically the substantial improvement achieved by these corrections. 

2. Moment Generating Function 

The 1α̂  and 2α̂  estimators are functions of eight basic sample statistics, namely 
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.18 nn YYU += −  (11) 

It is easy to construct the corresponding joint moment generating function: 
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The last line of (12) follows from 

( ) ( ) ,2 0000 yyyyyytyyy AAA TTTT +−−=−  (15) 

where .1
0 ty −≡ A  



JAN VRBIK 

 

62 

For any specific (i.e., numerical) value of n, the moment generating function can 
be easily (Taylor-) expanded in powers of ,...,,, 821 ttt  provided we make the 

following simplifications to reduce the complexity of the answer: 

• Terms involving large powers of 1α  and 2α  (those which would disappear 

in the ∞→n  limit) are discarded. 

• Since we are interested in 







kn
O 1 -accurate results (where k is usually quite 

small - in our case, it does not exceed 3), we can also discard terms whose 
combined it -power is greater than 2k. 

• The 1−A  matrix is efficiently constructed by 

( ) ( ) ( ) 000000000 CAACAACCAACC −−+−+  

( )[ ] .0
2

00 CAAC k−++  (16) 

• Finally, n itself does not have to be very large (all our results were obtained 
with .)56≤n  

3. Computing Moments 

First we replace, in each of the two expressions (7) and (8), every sample mean 
Q  by 

( ) ,QQQ µ+µ−ε  (17) 

where Qµ  is the corresponding expected value. The expression for 1ρ̂  thus reads 

2
421

64542

2
1

2
12

11

11111







ε−+






 −ε

−
−

⋅
−
−

ε−
α−

α
+








α−
α

−
−

ε

n
U

n
U

n
UU

n
UU

n
U

 (18) 

and 2ρ̂  becomes 
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We can then expand any function of these two expressions (and its first k 

powers) with respect to ε (up to and including the k2ε  term), setting 1=ε  in the 
end. With the help of the moment generating function of the previous section, we 
then compute the expected value of each such expansion, using 1+k  consecutive 
(numerical) values of n. Note that n, 1−n  and 2−n  in the denominators of (18) 
and (19) remain unevaluated. To derive the corresponding general formula (valid for 
any n), we realize that each such result is a polynomial function of n, whose degree 
is not bigger than k. Having 1+k  consecutive values of this polynomial enables us 
to establish the value of its coefficients. 

Once we know the expected value of the first k powers of a random variable, we 
can easily convert these into the first few cumulants of the corresponding 
distribution. 

For the 1α̂  estimator, this procedure yields the following mean: 
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(the second term of this expression is the so called fourth normalized cumulant 
).40κ  
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Similarly, 2α̂  has the following mean: 
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The covariance between 1α̂  and 2α̂  equals 
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and the remaining (joint) normalized cumulants are 
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and 
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Using the same approach, we can find the first few moments of ( ),ˆ 2αF  where 

F is an arbitrary function. This shows that the leading 
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corresponding skewness is proportional to ( ) ( ) ( ).12 2
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222 α′′α−−α′α FF  To 

eliminate it, we take the simplest solution of the corresponding differential equation, 

namely ArcTanh.≡F  The resulting sample statistic ( )22 ˆArcTanhˆ α≡Θ  has the 

following mean: 
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and the fourth normalized cumulant 
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Similarly, we can find the first few moments of ( )21 ˆ,ˆ ααG  and eliminate the 

leading term of its skewness. This leads to a more complicated partial differential 

equation for G, whose simplest bivariate solution is .ˆ1
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The mean, variance and 4th normalized cumulant of 1Θ̂  are 
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respectively. 

To deal with the bivariate case, we first need the covariance between 1Θ̂  and 

,ˆ
2Θ  namely 
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(note that there is no n
1  term, which implies that the two estimators are, in the 

∞→n  limit, independent of each other). 

In addition to zero skewness ( ),0and0i.e., 0330 == KK  we also get 
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Finally, two of the remaining fourth-order normalized cumulants, namely, 31K  

and 13K  are also equal to zero, and 
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4. Approximate Sampling Distributions 

Based on these results, we can now improve the basic Normal approximation, 
by adding the corresponding corrections. 

The first thing we need to do is to standardize both 1α̂  and 2α̂  by introducing 
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as the (approximate) probability density function of each 1Z  and .2Z  

In our approximation, we must use the complete, two-term expression (20) for 
the mean and (21) for the variance, and we must also modify (43) to 
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where 3κ  and 4κ  are the corresponding third and fourth cumulants, and 
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(each is a simple, ith degree polynomial). 

We can show that the error of this approximation is of the ( )23−nO  type [3]. 

To demonstrate the improvement achieved over the Normal approximation, we 
have generated one hundred thousand random sequences of 60 observations from           
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the AR(2) model with ,3.11 =α  8.02 −=α  0( =µ  and ;1=σ  this choice is 

inconsequential), computed the corresponding values of ,ˆ 1α  and displayed these in a 

histogram (thus getting a fairly accurate idea about the exact distribution). This is 

plotted together with the Normal and n
1 -accurate approximations of (43) and (44), 

respectively, both transformed back into the 1α̂  scale (see Figure 1). 

 

Figure 1 

We can see that the Normal approximation (the symmetric curve) is still 
extremely inaccurate, whereas the new approximation, given by 
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where 

1112.0
275.1ˆ1 −α=z  (47) 

appears more than adequate. Note that 3κ  and 4κ  of (44) are to be identified with 

30κ  and 40κ  of the previous section. 
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The corresponding results for 2α̂  are displayed in Figure 2 (now, of course 

033 κ≡κ  and ).044 κ≡κ  

 

Figure 2 

When we replace 1α̂  and 2α̂  by 






α−
α

2
1
ˆ1

ˆ
 ArcTanh  and ( ),ˆ ArcTanh 2α  the 

two distributions become nearly symmetrical, yet the improvement achieved by the 
new approximation over the Normal distribution is still quite pronounced (Figures 3 
and 4, respectively). 

 

Figure 3 
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Figure 4 

To find an improved approximation to the bivariate distribution of 1Z  and ,2Z  

it is most convenient to start with the corresponding joint moment generating 
function, which is, to the same degree of approximation, given by 
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 (48) 

where r is the correlation coefficient between 1Z  and .2Z  

The previous expression can be easily converted to the corresponding joint 
probability density function by 
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
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
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
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and 
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For the ,ˆ 1α  2α̂  pair, this results in an expression too long to be quoted here, but 

for 






α−
α=Θ

2
1

1 ˆ1
ˆ

ArcTanhˆ  and ( ),ˆArcTanhˆ
22 α=Θ  using the same 60=n  and 

8.0,3.1 21 −=α=α  as before, we get the following result: 
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2 0366.00429.00170.00021.00143.0 zzzzzzzz ++++−  

],0002.00025.00140.0 6
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21

4
2

2
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where 2897.02111 −== VVMr  and 

,074472.0
90281.0ˆ

1
1

−θ
=z  (52) 

.27156.0
08009.1ˆ

2
2

−θ
=z  (53) 

To compare it with the corresponding empirical distribution, we display a set of 
four contours (boundaries of an acceptance region to test ,3.1: 10 =αH  8.02 −=α  

against all alternatives, for four different values of significance level) in Figure 5. 
Note that the empirical results (dashed lines) are not very accurate. 

 
Figure 5 
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This again represents a marked improvement over the Normal approximation (4 
concentric near-circles). 

5. Conclusion 

We have shown that it is relatively simple to find a good approximation to 
sampling distributions of estimators related to the AR(2) model. The technique 
described in this article is fully general, and can be applied to any other model, as 
long as the sample statistics under consideration meet the assumptions of the Central 
Limit Theorem. 
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