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Abstract 

With recent advance technologies, the floorplanning becomes an essential 
design step in VLSI layout design. In previous work, we proposed the 
bus-oriented floorplanning technique, which was based on Genetic 
Algorithm (GA). However, GA required a lot of calculation time, because 
it is the population-based algorithm. On the other hand, the reducing 
calculation time is one of the most important points for VLSI EDA tools. 
In this paper, we propose a new GA-based floorplanning technique using 
the dedicated hardware accelerator which synchronizes with software 
processing. It enables to reduce the calculation time while keeping the 
quality of solution. Experiments using benchmark data prove the validity 
of the proposed floorplanning technique using the hardware accelerator. 

1. Introduction 

With increasing circuit integration and downsizing, Large-scale Integrated 
circuits (LSIs) are currently designed on a nano-scale. In LSIs, interconnect delay, 
rather than gate delay, has become a constraint for the system’s performance [1]. 
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Although the exact interconnect delay cannot be clarified unless the wiring is 
completed, the interconnect delay can be accurately estimated by designing a 
floorplan (floorplanning) that determines the outline placement of functional blocks. 
Therefore, floorplanning’s importance has increased in the design of LSIs, system 
LSIs, in particular, to which many functions are mounted [2]. The conventional 
floorplanning technique determines the blocks’ optimal positions in order to 
minimize the area and wire length. In a system LSI, however, multiple bus wirings 
with different bit widths generally connect several blocks. Therefore, bus wiring 
greatly affects the blocks’ placement. Moreover, in bus wiring, short wires with few 
bends are desirable from the viewpoint of timing and electrical parasitic capacitance. 
In general, floorplanning uses two types of blocks: a hard block, in which the height 
and width are specified; and a soft block, the area of which is given and the shape of 
which is variable. Moreover, blocks with placement constraints such as interface 
( )FI  circuits also exist. 

In previous work [13], we proposed the floorplanning technique, which 
synthetically considered not only the area and wire length, but also bus wiring, soft 
blocks, and placement constraints. As its method of representing solutions, the 
proposed technique adopted the sequence-pair (S-pair) [3], which can represent even 
a non-slicing structure [4]; and it used the Genetic Algorithm (GA) [5, 6] to search 
for solutions. GA is based on technologically modeling biological evolutionary 
process, and it has a powerful searching ability for combinatorial optimization 
problems. However, GA has an inherent time problem, because it is a population-
based algorithm. On the other hand, reducing calculation time, that is, “quick turn 
around time” is one of the most important points for VLSI EDA tools. 

In this paper, we propose a new dedicated hardware accelerator to overcome the 
inherent time problem of GA. The dedicated hardware accelerator processes the 
portion of data with a large processing load (computational amount); and software 
processes the portion of data with a small processing load. In other words, the 
proposed technique achieves interlocking processing by using both hardware and 
software. 

Regarding related studies, floorplanning techniques using GA and S-pair have 
been reported by Shigehiro et al. [7], Nakaya et al. [8, 9] and others. Shigehiro et al. 
[7] proposed the crossover method of inheriting a parent individual’s characteristics, 
and investigated the quality of solutions obtained using their methods. Nakaya et al. 
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[8, 9] proposed the evaluative technique using an elite degree and an adaptive 
crossover technique, and achieved excellent performance. These reports dealt with 
only hard blocks, and sought to minimize only the area and the wires’ length. Imai et 
al. [10] and Graham and Nelson [11] have studied dedicated hardware to shorten the 
GA’s processing time. Imai et al. created the architecture of the parallel GA for 
solving simple problems and, by converting the step number, they expected high-
speed processing to be realized in the dedicated hardware. This dedicated hardware’s 
processing speed could be several dozen times higher than that of software. Graham 
and Nelson [11] implemented the simple GA on a Field Programmable Gate Array 
(FPGA) to solve small-scale problems; and consequently, the dedicated hardware’s 
processing speed was several times that of the software. However, no studies have 
been reported on an interlocking processing system using both hardware and 
software to solve practical problems such as VLSI floorplanning. 

The organization of this paper is as follows: Section 2 briefly explains the 
floorplanning problem as preliminaries. Section 3 describes the base algorithm for 
floorplanning and Section 4 explains the GA accelerator. Section 5 reports the 
experiments using benchmark data. Section 6 summarizes and concludes this study. 

2. Preliminaries 

2.1. Floorplanning problem 

The floorplanning problem in this study has n pieces of rectangular blocks, 
,...,,, 21 nBBB  and they consist of hard blocks and soft blocks. The hard block has 

the height and width which are fixed, and the soft block has the area which is given 
and the shape which is variable. The smallest rectangle which encloses all the blocks 
is called a chip. Moreover, each block has multiple terminals in its perimeter and 
inside; and is wired using the wiring layer on the block, based on the net list given 
by an input data. Here, the net represents a set of terminals connected by one signal. 
The wire length of the net is evaluated by the half perimeter of the smallest rectangle 
surrounding all the terminals. 

2.2. Sequence-pair 

S-pair is the method of representing the blocks’ placement using sequence-pair 
( )−Γ+Γ ,  consisting of the blocks’ names. In S-pair, a block exists in sequence-pair 

( ),, −Γ+Γ  and the relative locations of two blocks are specified based on the order 
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of ( )., −Γ+Γ  The actual placement can be obtained by placing a block according to 

the relative location obtained from the S-pair. Figure 1 shows a floorplan and the 
relative placement of blocks. When the blocks’ relative placement is determined, the 
horizontal constraint graph and the vertical constraint graph are created based on the 
relative placement of all the blocks, as shown in Figure 2. In these graphs, each 
block’s width and height are given as the weight of the edge, respectively, and the 
longest route from the starting point to the end point is obtained. The totals of the 
weights of the edges of blocks’ widths and heights on the longest route are equal to 
the width and height of the chip, and the chip’s area is obtained by the product of its 
width and height. Thereby, the blocks’ placement and each terminal’s location are 
determined. 

 

Figure 1. Example of sequence-pair for floorplanning. 

 

Figure 2. Example of the horizontal and vertical constraint graphs. 
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3. Floorplanning Algorithm 

3.1. Coding 

It needs to model for adopting GA to the optimization problem. This study 
expresses a soft block’s shape by the aspect ratio (which is between 1.0 and 5.0). 
Therefore, an individual consists of S-pair ( ),, −Γ+Γ  representing the block’s 

direction, and the block’s aspect ratio (ap), as shown in Figure 3. That is, when the 
number of blocks is n, the gene length is 4n (S-pair, 2n; the direction ,θ  n; and the 
ap4, n). Here, four directions of a block exist (a block is rotated in 90 degree units), 
and a hard block’s ap is set to 0. Thus, this coding enables to address the 
floorplanning in which hard and soft blocks are mixed. 

3.2. Selection and evaluation 

The selection operation is developed based on the idea of natural selection. That 
is, individuals with higher evaluation (higher fitness) have more descendants in the 
next generation than those with lower evaluation. The proposed algorithm introduces 
new evaluation function that considers both the bus wiring and the block with 
constraints, in addition to the area and total wire length, which already have been 
used to evaluate the conventional floorplanning. 

 
Figure 3. Example of coding. 

3.2.1. Constraints regarding bus wiring 

Regarding bus wiring, it is important to shorten wire length and to reduce the 
number of bends, in consideration of the bit width of the bus wiring. These 
conditions regarding bus wiring are hereinafter referred to as the bus constraints. 
These bus constraints introduce new evaluative function which is based on the bus 
planning method [14]. The evaluative function divides the bus wiring into one trunk 
and several branches; and that evaluates the number of bends in bus wiring, as 
shown in Figure 4. A concrete evaluative procedure is shown below: 

Step 1. The horizontal and vertical lengths of the smallest rectangle enclosing 
the blocks’ terminals connected in bus wiring are represented by X and Y, 
respectively. 
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Step 2. The trunk corresponding to the bit width is drawn on all terminal’s 
barycentric coordinates. The trunk is horizontal when ,YX ≥  and vertical when 

.YX <  In the case shown in Figure 4, the trunk is drawn horizontally because 

.YX ≥  

Step 3. Each branch is drawn from each terminal to the trunk, and each branch’s 
length ;,1( bmbmibi ≤≤  bm represents the total number of blocks connected to  

the particular bus) is obtained. The evaluative function nb  for the number of bends 

utilizes the total number of branches other than 0. 

Step 4. As Figure 4(2) shows, ( )11 −≤≤ bmili  represents the distance 

between blocks. However, when two blocks overlap, like 3B  and 4B  in this figure, 

il  represents the overlapped area’s length. 

Step 5. The evaluative function ( )jbl  for the bus wiring j is as follows: 

 ( ) .
1

1

1
∑ ∑
=

−

=

+=
bm

i

bm

i
ii lbjbl  (1) 

Step 6. After performing Steps 1 through 5 for all the bus wirings, the sum is 
obtained using the following equation. We determine the obtained sum as the bus 
wiring’s evaluated value (bs). 

 ( ).
1
∑
=

=
k

j

jblbs  (2) 

Here, k represents the total number of bus wirings. 

3.2.2. Constraints for corner placement 

Generally, FI  circuits, such as DAAD  and USB circuits, must be placed      

on the corner of a chip. The constraints for this corner placement are hereinafter 
referred to as placement constraints. New evaluative function pl is introduced for 
these placement constraints, and it evaluates the distance between the chip’s 
perimeter and the block with placement constraint. Specifically, as shown in Figure 
5, when m pieces of blocks with placement constraints exist, the evaluative function 
pl is defined by equation (3): 

 ( ) ( )∑
=

+=
m

i

iyixpl
1

.  (3) 
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Here, ( )ix  and ( )iy  represent the distance between block i (with the placement 

constraints) and the chip’s perimeter in the x and y directions, respectively. 

Moreover, the following linear sum of evaluative values is used for fitness ( )if  

when the individual i is actually selected. 

 ( ) .plbnbsLAif ×δ+×γ+×β+×α+=  (4) 

Here, A represents the area; L represents the wire’s length; and α, β, γ and δ 
represent the real numbers’ parameters. 

 
Figure 4. Example of bus constraints. 

3.3. Crossover 

In order to realize floorplanning mixing hard and soft blocks, the proposed 
technique adopts two crossovers. One is a common topology-preserving crossover 
(CTPX) [8, 9] used for S-pair, and the other is a blend crossover (BLX-α) [12] used 
for the aspect ratio. When CTPX is used, the locations and directions of blocks that 
have a common order in the locations of the parent S-pair are directly inherited. The 
other blocks inherit the order and directions of the sequence of the crossover target’s 
parent. BLX-α generates a child individual according to a uniform random number 
within the area obtained by extending d×α  from the parent individual’s real number 
vector. Figure 6 shows an example of BLX-α. 

 
Figure 5. Example of placement constraint. 
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Figure 6. Example of BLX-α. 

3.4. Mutation 

Because mutation may recover lost alleles in an individual group (population),   
it is important for retaining the population’s diversity. Therefore, the proposed 
technique introduces six mutations in order to realize effective mutation. Four    
kinds mutations (rotation, aspect ratio, +Γ  and )−Γ  are introduced to apply to four 

elements which compose an individual; and two kinds mutations ( and−Γ+Γ  

)swappair  are introduced to greatly change the floorplan. In rotation mutation, a 

gene to represent the rotation is arbitrarily selected, and it is replaced by an allele.    
In aspect ratio mutation, the replacement similar to that used in rotation mutation     
is performed for the aspect ratio. In +Γ  mutation, two genes are exchanged for 

sequence ,+Γ  as shown in Figure 7. 

In −Γ  mutation, two genes are exchanged for sequence .−Γ  In −Γ+Γ mutation, 

two genes are exchanged for both sequences +Γ  and .−Γ  In pair swap mutation, 

two blocks are exchanged. Introducing the six kinds of mutations enables the lost 
gene’s recovery in each locus. Here, the mutation operation is arbitrarily selected 
from these six kinds of mutations. 

3.5. Hybrid search 

Although the GA is superior in its ability to search globally to generate          
new search points, focusing on crossover operation, it is inferior in searching 
systematically at vicinity of the optimal solution. A local search is complementarily 
related to the GA. Therefore, a hybrid search, which combines a global search with a 
local search, can improve the searching ability. The proposed technique introduces a 
hybrid technique that combines the GA with three local search methods. These three 
concrete local search methods include a local search method for the relative locations 
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of blocks used in the paper [8, 9], one for rotation, and one for the aspect ratio. Then 
a local search is individually performed for each of the three elements (relative 
location, rotation and aspect ratio) that determine a floorplan. Regarding the local 
search for the aspect ratio, the aspect ratio of a soft block on the longest route in the 
graphs of horizontal and vertical constraints is changed to shrink the area. The local 
search for the aspect ratio is performed as follows: 

Step 1. Graphs of horizontal and vertical constraints, HG  and ,VG  respectively, 

are generated for elite individual x; and a set of blocks on the longest route in each 
graph is represented by HB  and ,VB  respectively. 

Step 2. Soft block ( ) ( )VHVH BBBBB ∩∪ −∈1  is selected at random. The 

aspect ratio of 1B  is represented by .1Bap  When ,1 HBB ∈  equation (5) is used: 

 .11 η+= BB apap  (5) 

When ,1 VBB ∈  equation (6) is used. Using these equations generates new 

individual .x′  

 .11 η−= BB apap  (6) 

Here, η represents a real number parameter. 

Step 3. When the evaluation value of newly generated individual x′  is greater 

than that of elite individual x, individual x′  replaces elite individual x. 

Step 4. Operations described between Steps 1 and 3 are repeatedly. 

If x′  does not improve during the predetermined number of rotations, then 
5.0×η=η  will be employed. Thus, shrinking the changeable part of the aspect 

ratio (i.e., shrinking the change in the block’s shape) improves the performance of a 
local search. 

On the other hand, the local search for rotation is performed similarly to one for 
the relative location. Specifically, Block ( ) ( )VHVH BBBBB ∩∪ −∈2  is selected 

at random. The direction of 2B  is arbitrarily changed to generate new individual .x′  

When the evaluation value of newly generated individual x′  is greater than that of 

elite individual x, individual x′  replaces elite individual x. 
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Figure 7. Example of +Γ  mutation. 

4. Hardware Accelerator 

4.1. Methodology 

In order to achieve high-speed processing using a hardware (HW) accelerator, it 
is desirable that a portion of data with a large computational amount is processed 
using dedicated hardware. Preliminary experiments were performed to investigate  
the processing time in detail. Figures 8 and 9 show the detailed processing time 
obtained using two benchmark data. In both cases, the time required for evaluation 
exceeded 70% of the total time. Therefore, this study performs the evaluation using 
an HW accelerator. During evaluation, in order to calculate the wire length and 
placement constraints other than each individual’s genetic information, the net list 
and the constraint conditions are required. Here, although each individual’s genetic 
information used in the operation differs according to the generation because of the 
application of crossover and mutation, the same net list and constraint conditions are 
used in the operation. 

The HW accelerator consists of an FI  circuit, a memory controller, memory 

(SRAM), a calculation module, and an output control circuit. Here, the calculation 
module consists of n pieces of area operation circuits, n pieces of total wire length 
operation circuits, a bus constraints operation circuit, and a placement constraints 
operation circuit. The processing procedure can be explained as follows: (1) the data 
of the net list, the placement constraints, and the initial population sent from the 
software are stored in the HW accelerator’s memory as pre-processing; (2) in each 
circuit in the operational block, the information required for the operation is read 
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from the memory, and the evaluation is performed; and (3) the obtained results are 
sent to the software through the output control circuit. 

 
Figure 8. Example of detailed processing time of benchmark (ami33). 

 
Figure 9. Example of detailed processing time of benchmark (ami49). 

The communicative overhead grows as the data communication between the 
software and the HW accelerator increases. This communicative overhead increases 
the processing time. In order to reduce the communication traffic’s volume, the net 
list and the constraint conditions, the values of which do not change through 
generations, are stored in the HW accelerator’s memory as pre-processing. Thereby, 
the data communication between the software and the HW accelerator in each 
generation is performed only for an individual’s genetic information; consequently, 
decreasing the communicative overhead. Figure 10 shows the processing flow using 
the HW accelerator. 

4.2. Circuit implementation 

The HW accelerator evaluates the area, total wire length, bus constraints and 
placement constraints. As Figures 8 and 9 show, the load of each processing step of 
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the evaluation operation varies widely. Although the processing loads of the area 
and the total wire length are large, those of the bus constraints and placement 
constraints are small. Each item is calculated using the circuit dedicated to that item. 
For example, the area with a large processing load is calculated using the circuit 
dedicated to that area. Therefore, the utilizing of hardware’s characteristics increases 
the number of circuits dedicated to the item with a large processing load; several 
circuits for both the area and the total wire length are incorporated into the hardware. 
Thus, introducing the parallel operation prevents a stall in the evaluation, so high-
speed processing can be realized. Figure 11 shows a circuit block diagram. 

 
Figure 10. Processing flow using the HW accelerator. 
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Figure 11. Circuit block diagram. 

5. Experiments and Discussion 

5.1. Experimental conditions 

In order to verify the validity of the technique proposed in this paper, several 
comparative experiments were performed using the Microelectronics Center of  
North Carolina’s (MCNC’s) benchmark data, which have been used widely. Table 1 
shows the benchmark data used in the experiments. Table 2 shows the additional 
data regarding soft block, bus wiring, and placement constraints. In Table 1, “Limit” 
expresses the area’s lower limit. In Table 2, “#const.” expresses the number            
of blocks to which the placement constraints were applied. Table 3 shows the 
parameters’ values. For each parameter, the most effective value was set based on 
the processing time and the accuracy of the solutions obtained by the preliminary 
experiments. Moreover, software processing was described in C language and the 
HW accelerator was described in Verilog-HDL. Regarding the execution platform, 
Pentium IV was used for software processing and Virtual Turbo PCI with Virtex-IV 
was used for the HW accelerator. 

Table 1. Benchmark data 
Data # blocks # nets Limit

ami33 33 123 1.156
ami49 49 408 35.445
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Table 2. Additional data for benchmark data 
Data # soft blocks # bus routing # const. 

ami33 17 ( )bit16,bit8,2bit44 ×  2 

ami49 30 ( )bit16,2bit8,2bit45 ×× 2 

Table 3. Parameters 
Name Value Name Value 
Population size 50 α 0.001 
Generation 10,000 β 0.01 
Tournament size 2 γ 2 
Crossover ratio 0.6 δ 0.05 
Mutation ratio 0.05 η 0.1 

5.2. Evaluation of the basic algorithm’s performance 

In order to evaluate the performance of the algorithm used for floorplanning, 
comparative experiments were performed using software. Tables 4 and 5 show   
those experimental results. The value in both tables is the average value of 10    
trials. Moreover, techniques (a) and (b) in both tables were used to evaluate only   
the area and the area and bus constraints, respectively. The comparison between 
techniques (a) and (b) reveals that the evaluation function used for the bus 
constraints shortened the bus wiring and reduced the number of bends. Similarly, the 
comparison between technique (b) and the proposed technique reveals that the  
proposed technique systematically improved four evaluations; area, bus constraints, 
placement constraints and total wire length. 

5.3. Evaluation of the HW accelerator’s performance 

In order to evaluate the HW accelerator’s performance, the accelerator was 
implemented on a FPGA. Figures 12 and 13 show comparisons of the processing 
time between the software and the HW accelerator. 

Table 4. Experimental result of ami33 (software processing) 
Technique (a) (b) Proposed 
Area 1.23 1.36 1.52 
Bus length 1398.8 43.5 72.2 
# bends 9.6 0.2 0.3 
Place const. 698.3 486.1 0 
Total wire length 113.8 84.2 65.7 
Time (s) 48.8 50.3 63.3 
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Table 5. Experimental result of ami49 (software processing) 
Technique (a) (b) Proposed 
Area 38.0 41.2 42.3 
Bus length 9825.2 325.4 238.5 
# bends 11.8 0.4 0.7 
Place const. 3524.2 3233.6 56.8 
Total wire length 1916.6 1933.5 1422.4 
Time (s) 154.3 165.6 205.3 

 

Figure 12. Comparison of processing time on ami33. 

 

Figure 13. Comparison of processing time on ami49. 

Although the HW accelerator’s communication time was longer than the 
software’s, the HW accelerator’s total processing time decreased by about 50% and 
70% compared to the software’s, when ami33 and ami49 were used, respectively. 
Although the HW accelerator used an operating frequency of 33 MHZ because of 
the FPGA’s constraints, using a faster FPGA could speed up the processing. Table 6 
shows the results of the floorplanning obtained using the HW accelerator.  
Comparing these results to those obtained using the software demonstrates that the 
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HW accelerator achieves floorplanning with an accuracy equivalent to that obtained 
using software in all the evaluations of the area, total wire length, bus constraints   
and placement constraints. Figure 14 shows the layout results obtained using the 
proposed technique. As this figure demonstrates, the proposed technique achieves 
not only bus wiring with no bends and a short wire, but also the perimeter placement 
of blocks with the placement constraints. 

6. Conclusion 

This study proposed the floorplanning technique based on the GA. In order       
to shorten the processing time, a new HW accelerator was developed. The HW 
accelerator realized the interlocking processing using software and dedicated 
hardware, and it also achieved high-speed processing while retaining the high 
quality of solutions. Furthermore, the HW accelerator was implemented on the 
FPGA, and experiments using benchmark data verified its validity. 

Table 6. Experimental result by HW accelerator 
Data ami33 ami49 
Area 1.46 44.7 
Bus length 58.7 138.2 
# bends 0.3 0.7 
Place const. 0 132.7 
Total wire length 68.9 1367.4 

 

Figure 14. Layout result by HW accelerator (ami49). 
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Our future work is to develop the parallel operation of the accelerator and 
software processing. The interlocking system proposed in this paper does not 
perform software processing while the accelerator performs calculations. We will 
develop a new parallel interlocking system, which performs software processing 
while calculation is performed in the accelerator. Moreover, we will develop a 
design platform for systematic floorplanning, including power supply wiring. 
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