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Abstract

Given a family of recognizable languages Ly, ..., L, and recognizable
languages K; < Ko, the relative inclusion star height problem means to
compute the minimal star height of some rational expression r over
L, ..., Ly, satisfying K; < L(r) < K.

We show that this problem is of elementary complexity and give a
detailed analysis of its complexity depending on the representation of K;
and Ko and whether Ly, ..., Ly are singletons. We also consider the

case K; = Ko.
1. Introduction

The star height problem was raised by L. C. Eggan in 1963 [5]: Is there an
algorithm which computes the star height of recognizable languages? Like L.C.
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Eggan, we consider star height concerning rational expressions with union,
concatenation, and iteration in contrast to extended star height which also allows
intersection and complement. For several years, the star height problem was
considered as the most difficult problem in the theory of recognizable languages, and
it took 25 years until K. Hashiguchi showed the existence of such an algorithm
which is one of the most important results in the theory of recognizable languages
[11]. His solution to the star height problem relies on distance automata and yields
an algorithm of non-elementary complexity, and it remained open to deduce any
upper complexity bound from K. Hashiguchi’s approach (cf. [17, Annexe B]).

Recently, the author presented another approach to the star height problem
which relies on a generalization of distance automata, the distance desert automata.
He showed that the star height of the language of a non-deterministic automaton is
computable in double exponential space which is the first upper complexity bound to
the star height problem [14, 16].

K. Hashiguchi also considered the relative star height problem: Given a finite
family of recognizable languages I, ..., L,, and some recognizable language K,

compute the minimal star height over all rational expressions r over L, ..., L;
satisfying L(r) = K [11]. In 1991, he considered inclusion variants of these
problems, as the inclusion star height problem: Given two recognizable languages
K; < K,, compute the minimal star height over all rational expressions r satisfying
Ky < L(r) € K, [12]. Finally, K. Hashiguchi considered the relative inclusion star

height problem which is a joint generalization of the relative and the inclusion star
height problem. In [12], K. Hashiguchi showed the decidability of all these variants
of the star height problem. The proofs in [12] are complicated. Moreover, [12] is a
continuation of the difficult series of papers [9-11]. As for the star height problem, it
remained open to deduce upper complexity bounds from [12].

In this paper, we utilize distance desert automata and develop techniques from
[14, 16] to give concise decidability proofs and upper complexity bounds to the
relative inclusion star height problem and its particular cases. As one main result, we
show that the relative inclusion star height problem, i.e., the most general variant, is
of elementary complexity: it is decidable in triple exponential space.

We study in detail how the representation of K; and K, (resp. K) affects the

complexity. In particular, we consider the case that K, resp. K is given as the
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complement language of some non-deterministic automaton. We also examine the
particular case that the languages L, ..., L,, are singletons. In this way, we achieve

a large variety of results. We even obtain some new conclusions for the complexity

of the star height problem: We can decide in 2hOn) space whether the complement
of the language of some r-state non-deterministic automaton is of star height 4.

2. Preliminaries

2.1. Notations, Rational Expressions, and Automata
We denote by P(M') the power set of some set M. We let N = {0, 1, 2, ...}.
Let ¥ be some finite alphabet. We denote the empty word by €. We denote by

| w|the length of some word w e £*.

We denote the set of rational expressions over £ by REX(X) and define it as
the least set of expressions which includes %, g, @ and is closed such that for r,
s € REX(Z), the expressions rs, » Us and »* belong to REX(Z). We denote the

language of some rational expression r by L(r).

The star height of rational expressions is defined inductively: we set
sh(d) =0, sh(¢) =0, and sh(a):=0 for every a € Z. Forr, s e REX(Z), we

set sh(rs) = sh(r U s) := max{sh(r), sh(s)}, and sh(*) = sh(r) + 1.
For some language L — =", we define the star height of L by
sh(L) = min{sh(r)| L = L(r)}.

We recall some standard terminology in automata theory. We assume that
the reader is familiar with Kleene’s theorem and basic operations as the
complementation and determinization of automata. See, e.g., [3, 6, 19, 20, 22] for a
survey.

A (non-deterministic) automaton is a quadruple A = [Q, E, I, F] where

1. Qs a finite set of states,

2. E c OxXxQ isasetof transitions, and

3. 1 < Q, Fc Q aresets called initial resp. accepting states.
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Let £k >1. Apathin A of length & is a sequence (qq, a1, 1) (q1, a2, q2) -+
(95-1, ar, g5 ) of transitions in E. We say that = starts at gy and ends at g;. We
call the word gy --- a; the label of =. We denote | | = k. As usual, we assume for
every g € Q apath which starts and ends at ¢ and is labeled with .

We call = successful if go €7 and g, € F. For every 0<i< j<k, we

denote n(i, /) = (¢;» ;s Gis1) =+ (91, @1, q;) and call =(i, j) a factor of m.

For every p, ¢ € Q and every w e =", we denote by ¢ 5 p the set of all paths
with the label w which start at p and end at ¢.

We denote the language of A by L(A) and define it as the set of all words
in = which are labels of successful paths. We call some L — =* recognizable, if
L is the language of some automaton. We denote by REC(X*) the class of all
recognizable languages over .

Let A =[Q, E, I, F] be an automaton. We call A normalized if there are

states g7, g € Q such that 7={q;},{qr} = F c{q;,qr}, and E < (Q\{gr})x
T x(Q\I). 1t is well known that each automaton can be transformed in an
equivalent normalized automaton by adding at most two states.

2.2. Distance Desert Automata

Distance desert automata were introduced by the author in [14, 16]. They
include K. Hashiguchi’s distance automata [8] and S. Bala’s and the author’s desert
automata [1, 2, 13, 15] as particular cases. In the recent years, several authors
developed more general automata models, e.g., R-, S- and B-automata. See [23, 24,
25, 26, 27] for recent developments.

Let >0 and V), = {Zg, Yo, £1, Y1, - Yp_1, £p}. We define a mapping
A : V7, — N. An intuitive approach to understand the mapping A is given in [14,
16]. Let e V. For every 0 < g < h, we consider every factor n’ of  satisfying
e {ZLg, Yq, o Ag}* = Vg*, count the number of occurrences of £, and choose
the maximum of these values.

More precisely, for 0< g <h and =’ eV, let |n’|g be the number of

occurrences of the letter Ly in ©'. Let
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1 Ag(n): max , . |7'|, and

n'isa factor of ©
It is easy to see that 0 < A(n) < ||

An h-nested distance desert automaton (for short distance desert automaton) is a
tuple A =[Q, E, I, F, 6] where [Q, E, I, F] isanautomatonand 0: E — V,.

Let A =[Q, E, I, F, 0] be an h-nested distance desert automaton. The notions
of a path, a successful path, the language of A, ... are understood with respect to
[0, E, I, F]. For every transition e € E, we say that e is marked by 0(e). We

extend © to a homomorphism 6 : E* — V. We define the semantics of A as

follows. For w e %, let

A 4 (w) = min A(O()).
pel, qeF,neq N p

We have A 4(w) = iff we L(A). Hence, A, is a mapping Ay : 3" —
A U {oo}.

If there is a bound d € N such that A 4(w) < d for every w e L(A), then we
say that w e L(A), is limited by d or for short that A is limited. Otherwise, we call
A unlimited.

We need the following result.

Theorem 2.1 ([14, 16]). Limitedness of distance desert automata is PSPACE-

complete.
3. Overview

3.1 The Star Height Problem and Some Variants of it

The star height problem was raised by L. C. Eggan in 1963 [5]: Given some
recognizable language K, compute the star height of K. Or equivalently, given some
recognizable language K and some integer 4, decide whether sh(K) < 4. For several

years, in particular after R. McNaughton refuted some promising ideas in 1967 [18],
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the star height problem was considered as the most difficult problem in the theory of
recognizable languages, and it took 25 years until K. Hashiguchi showed its
decidability [11]. The complexity of Hashiguchi’s algorithm is extremely large, and
it remained open to deduce an upper complexity bound (cf. [17, Annexe B]).
However, the author showed the following result:

Theorem 3.1 ([14, 16]). Let h € N and K be the language accepted by an

o . . . 200
n-state non-deterministic automaton. It is decidable in 2 space whether sh(K)

< h

In the present paper, we consider some generalizations of the star height
problem.

An instance of the inclusion star height problem is a pair (Ki, K,) of
recognizable languages K; and K, satisfying K; < K,. The inclusion star height
of (Ky, K,) is defined by

sh(Kq, K5 ) = min{sh(r)|K; < L(r) < K5}
Clearly, sh(Kq, K5) < min{sh(Ky), sh(K5)}.

For every recognizable language K, we have sh(K) = sh(K, K), and hence,

Eggan’s star height problem is a particular case of the inclusion star height problem.

An instance of the relative star height problem is a triple (K, m, o) where

1. K is a recognizable language,

2. m=>1
3. 6:T - REC(Z") where T = {by, ..., b, }.
We call o singular, if | o(b)| =1 forevery b e T..
The mapping o extends to a homomorphism o : (P(I'*), U, -) = (P(Z*), U, -).
For every r e REX(T"), we denote o(L(r)) by o(r).
The relative star height of (X, m, o) is defined by
sh(K, m, ¢) = min{sh(r)|r € REX(T), o(r) = K},

where the minimum of the empty set is defined as .
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Assume m =|Z|, £ ={ay, ..., a,}, and o(b;) = {a;} for i € {1, ..., m}. Clearly,

we have sh(K)=sh(K, m, ) for every K € REC(Z"). Hence, Eggan’s star height

problem is a particular case of the relative star height problem.

The finite power problem (FPP) means to decide whether some given
recognizable language L has the finite power property, i.e., whether there exists

some integer & such that L* = Uf-‘zoLi. It was raised by J. A. Brzozowski in 1966,

and it took more than 10 years until 1. Simon and K. Hashiguchi independently
showed its decidability [21, 7].

Let L < =" be a recognizable language and set m =1 and o(h):= L. We

have o(bf) = I} forevery k e N and o(b;) = L*. Hence, sh(L*, m, c) <1. The

following assertions are equivalent:
1. sh(L*, m, 6) = 0.
2. There is a finite language G < b such that o(G) = L".

3. There exists some g € N such that o({e, by, bZ, ..., bE}) =L".
4. The language L has the finite power property.

Hence, sh(L®, m, o) = 0 iff L has the finite power property. Consequently, the
finite power problem is a particular case of the relative star height problem.

An instance of the relative inclusion star height problem is a quadruple
(Ky, Ky, m, ) where

1. Ky, K, are recognizable languages satisfying K; < K>,

2. m and o are defined as for the relative star height problem.

The relative inclusion star height of (K7, K5, m, o) is defined by
sh(Ky, Ko, m, o) := min{sh(r)|r e REX('), K1 < o(r) < K>}

Given some instance (Ki, K,, m, ) of the relative inclusion star height
problem, we call some r e REX(I') a solution of (Ky, Ky, m, o) if sh(r)=
sh(Ky, Ky, m, o) and K; < o(r) < K>.
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For some instance (K, m, o) of the relative star height problem, the quadruple
(K, K, m, o) is an instance of the relative inclusion star height problem, and we
have sh(K, m, o) = sh(K, K, m, ). Hence, the relative star height problem is a
particular case of the relative inclusion star height problem.

As above, the inclusion star height problem is particular case of the relative
inclusion star height problem.

The following figure shows the relations between the five above problems. The
arrows go from particular to more general problems.

"st ar height proble 111| |h'nin‘ power problem |
inclusion relative
star height problem star height problem

relative inclusion

star height problem

In 1991, K. Hashiguchi showed that the relative inclusion star height problem is
decidable:

Theorem 3.2 ([12]). Given some instance (Kq, Ky, m, c) of the relative
inclusion star height problem, sh(Ky, K5, m, o) is.effectively computable.
3.2 Main Results

In the paper, we examine the complexity of the above variants of the star height
problem. As one main result, we show that the most general variant, the relative
inclusion star height problem, is of elementary complexity.

We consider the complexity of the variants of the star height problem under

various aspects. We distinguish the cases that either K, or its complement ~*\ K,

or both K, and its complement =*\ K, are given by non-deterministic automata
with at most n, states. Note that we have the latter case if K, is given by a

deterministic automaton with n, states.

Moreover, we distinguish the cases that X is singular or arbitrary.
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3.2.1. The Relative Inclusion Star Height Problem

Let (Ky, K5, m, o) be an instance of the relative inclusion star height problem.
By n; we denote the number of states of some non-deterministic automaton which

recognizes K;.

We assume that for ie{l, .., m} the language o(b;) is given by some
normalized nondeterministic automaton 5;. We denote by n, the sum of the

number of states of B; for i € {1, ..., m}.

We achieve the following bounds on the space complexity of the relative
inclusion star height problem:

Table 1. Complexities for the relative inclusion star height problem

o bound existence Sh(Kl, Ko, m, G) <h Sh(K]_, Ko, m, G) =7
sing. n O(mngn O(n2) O(n2)
9 2 (mngnz) 22 w22
K>
arb. n O(n2) O(ny) O(n2)
on2 oC\n2 o2 2
2 mng2 mhg 2h mng2
5 \K, arb. on2 mng 20(n2) mng 2hO(n) nlnGZZO(nz)
both | sing. O(n hO 2
9 ny (mngny) g 2"02) g 2003)

We will prove the entries of Table 1 in Section 5.8.1. In the lines of the table we
consider four cases: In the first two cases, K, is given by a non-deterministic

automaton with n, states and o is singular resp. not necessarily singular. In the third
case, X"\ K, is given by a non-deterministic automaton with n, states and c is not

necessarily singular. In the fourth case, both K, and X*\K, are given by non-

deterministic automata with at most n, states and o is singular.

There are no lines “X*\K, sing.” and “both arb.” in the table, since in these
cases, we achieve just the same complexity results as in the more general case

“X*\K, arb.”.
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In the column “bound” we give a bound on the relative star height of
(Kq, Ky, m, o) provided that (K;, K,, m, o) has a solution. In the column

“existence”, we give an upper bound on the space complexity for the problem to
decide the existence of a solution. The values in this column are essentially the
values in the column “bound” multiplied by mng. Indeed, both the problem to

decide the existence of a solution and the upper bound on sh(Ky, K,, m, c) are

closely related to an automaton .4; which recognizes the language L ={we

I'*|o(w) < K5}. In particular, the bound on sh(Ky, K, m, o) is the star height of
L which is at most as large as the number of states of A,. In Section 5.4, we will

see that the number of states of .A; crucially depends on whether o is singular.

In the column “sh(Ky, K5, m, ) < k" we give a space complexity for deciding
whether or not sh(Ky, K5, m, ) < k. In the first line, this complexity does not

depend on 4. We will discuss this fact in Section 5.8.1.

If we want to decide whether sh(K;, K5, m, o) < h for some & which exceeds
the value given in column “bound”, then the problem to decide whether
sh(Ky, Ko, m, o) < h is equivalent to the problem whether (K, K5, m, ) has a
solution. Hence, if 4 is larger than the value in the column “bound”, then we can
decide sh(Ky, K5, m, o) < k in the complexity shown in the column “existence”.

Finally, the column “sh(Ky, Ko, m, ) = ?” gives the complexity of computing
sh(Kq, K5, m, 5). An algorithm which computes sh(Ky, K5, m, ) decides at
first whether (K, K,, m, o) has a solution. If so, then the algorithm decides for
h=0,1, 2, .. whether sh(Ky, K5, m, c) < h. In this computation, # cannot exceed

the value in the column “bound”. Hence, the complexity in the column
“sh(Ky, Ko, m, 6)=?" is essentially the complexity from the column

“sh(Ky, Kp, m, o) < h” where we use the value from the column “bound” as
bound for 4.
3.2.2. The relative star height problem

We consider the relative star height problem, i.e., we assume K; = K, and let
K =K; = K,. We distinguish the cases that K is given by a non-deterministic

automaton with » states (lines 1 and 2 in Table 2), and the case that both K and
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T*\K are given by non-deterministic automata with at most # states (lines 3 and 4

in Table 2). We also distinguish the cases that ¢ is singular (lines 1 and 3 in Table 2)
or not necessarily singular (lines 2 and 4 in Table 2). We achieve the following
bounds on the space complexity:

Table 2. Complexities for the relative star height problem

c bound | existence | sh(Ky, Ky, m, o)< h | sh(Ky, Ko, m, ) =?
Ky | sing. n O(ncnz) ne 220(n) e 220(n)
arb. 52" "o 220(n) e, 2h20(n) %2220(»1)
both | sing. n O(ncnz) nGZhO(n) nazo(,,Z)
arb. on ngz(ﬂ(n) nczh(?(n) nczzo(n)

The entries are understood as for the relative inclusion star height problem and will
be proved in Section 5.8.2.

3.2.3. The inclusion star height problem

We deal with the inclusion star height problem. Let (Kj, K5) be an instance of
the inclusion star height problem. We achieve the following complexity bounds:

In the lines, we distinguish the cases that either K,, or Z*\K,, or both K,

and =¥\ K, are given by non-deterministic automata with », states.

Table 3. Complexities for the inclusion star height problem

bound sh(Ky, Ky) < h sh(Ky, Kp) =?
Ky min{ny, ny} n1220("2) nlzzo(nz)
S*\K, min{ny, 22} ny 2"002) py 2k, 2'210(n2)
both min{ny, ny} nlzho(nz) n12min{"1‘ n2}O(n)

Clearly, the column o is irrelevant. Since (K, K,) has always a solution, the

column “existence” is irrelevant. The entries in the column “bound” arise due to the
fact that sh(Ky, K») is less than sh(K7) and less than sh(K5).
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3.2.4. The star height problem

Finally, we deal with the star height problem. Let K be a recognizable language.

DANIEL KIRSTEN

We achieve the following complexity bounds:

Table 4. Space complexity bounds for the star height problem

bound sh(K)<h sh(K) =?
K n 220(”) 220(”)
SA\K 2" 2h00) 5200
both n 2h(9(n) 2(9(n)

In the lines, we distinguish the cases that either K, or =*\ K, or both K and

T*\K are given by non-deterministic automata with at most » states. The entries

are proved in Section 5.8.4.

For the computation of the star height of K (column “sh(K) = ?”), we achieve

the same double exponential space complexity bound regardless of whether K or its
complement is given by some non-deterministic automaton with » states. However,
the bound arises in two different ways. If K is given by some non-deterministic

hz(’)(n) .
2 space. Since sh(K) < »n, the

(n)

automaton, then the test “sh(K) < h” requires

A A A A A O
algorithm answers immediately “yes” if & > n. Hence, we can approximate 2h?

n20(n) . O(n) . . .
by 2 and absorb the factor » into 2 which gives a complexity bound of

220(11)

If X*\K is given by a non-deterministic automaton with » states, then the test
“sh(K) < A" requires just 2h0O(n) space. Now, we do not necessarily have
sh(K) < n, we just have sh(K) < 2". Thus, the algorithm can answer immediately
“yes” if # < 2". Hence, the computation of sh(K) requires 220(”)0(”), ie., 220(n)
space.

3.2.5. Variants of the limitedness problem

To achieve the above results on the relative inclusion star height problem and its
particular cases, we show some generalized variants of the limitedness problem of
distance desert automata.
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Let A be a distance desert automaton and let L' ¢ X*. We say that A is limited
on L' iff thereissome d € N such that A 4(w) < d forevery we L(A)N L'

Theorem 3.3. Let A be a distance desert automaton and let A' be an
automaton. To decide whether A is limited on L(A'") is PSPACE-complete in the

number of states of A and A'.

We show that the mappings definable by distance desert automata are somehow
closed under inverse homomorphisms.

Let m>1 and T ={by, .., b,}. Moreover, let t:T — REC(Z") be a

mapping. We extend o to a homomorphism 1 : P(T'*) — P(Z*).

We assume that for every i e {l, ..., m}, the language <(¥;) is given by a
normalized, nondeterministic automaton 53;. We assume that ¢ ¢ t(b;). We denote

by n. the sum of the numbers of states of the automata B; for i € {1, ..., m}.

Let h>1 and A =[Q, E, I, F, 0] be an h-nested distance desert automaton

overT.
We define a mapping A’ : X% — N U {oo} by setting
A'(w) = min{A 4 (u)|u e T*, w e t(u)}
forevery w e =*.

Proposition 3.4. We can effectively construct an (h + 1) -nested distance desert

automaton A' over X with at most | Q| - (n, — 2m + 1) states which computes A'.

We show by Example 4.2 that the condition & ¢ t(;) for i e {l, ..., m} is
necessary for Proposition 3.4.

4. Variants of the Limitedness Problem

4.1. Limitedness on a Recognizable Language
In this section, we prove Theorem 3.3.

Let A=[Q,E I, F,0] be a distance desert automaton and let
A'=[Q', E', I', F'] be an automaton. We denote L' = L(A).
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We define a distance desert automaton A" by a product construction. Let
Q" =0xQ, I"=IxIand F" =F xF'. Forevery ae X, p, g€ Q, and p’,
q' € Q', we put the transition ¢ := ((p, p'), a, (¢, ¢)) in E" iff (p, a,q) e E and
(p', a, q') € E'. If this is the case, then we set 8"(¢) = 8((p, a, q)).

Lemma 4.1. For every w € >, we have

{AW) i we LANL

Aur(w) = if we LLANL.

In particular, A" is limited iff A is limited on L'.

Proof. Let w e =*. Assume w ¢ L(A) L'. By the construction of A", there
is no accepting path for w in A", and hence, A 4+(w) = . We assume w e L(A)
(N L' in the rest of the proof.

Given two accepting paths w(resp. n') for win A (resp. .A'), we can construct
an accepting path =" for win A" such that 6"(n") = 8(rn). Consequently, A 4-(w)
< A 4(w), and in particular, A 4-(w) € N.

Since A 4+(w) e N, there is an accepting path =" for w in A" such that
8(0"(n")) = A 4»(w). By selecting the first components of the states in =", we
obtain an accepting path = for w in A such that 6"(n") = 6(n). Hence, A 4+(w) >
AA (W) 0

Proof of Theorem 3.3. Decidability in PSPACE follows immediately from

Lemma 4.1 and Theorem 2.1. The problem is PSPACE-hard, since it is a
generalization of the limitedness problem for distance desert automata. 0

4.2. Limitedness and Substitutions

Let m, T, 1, By, ..., B,, beasin Section 3.2.5.

Proof of Proposition 3.4. At first, we deal with some preliminaries. We define
a homomorphism lift ¢:V, — V,,; by setting for every ie{0, .., h+1},
U£;)=Z;4q and for every i € {0, ..., h}, ((Y;)=Y;,;1. Itis easy to verify that
for every meV,, we have A(n) = A(¢(m)). Consequently, the nested distance
desert automata A and A = [Q, E, I, F, { o 6] are equivalent.
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Let & € ¥, be some word such that £, does not occur in ©. We denote by

T € Vj,4 the word obtained by erasing all letters Y in 7. We can easily verify that
A(m) = A(m). Note that the factors of = and the factors of = are essentially the same

up to the occurrences of Y.

To construct .A’, we replace the transitions in .4 by copies of B;. Let g € O
and i € {1, ..., m} such that there exists at least one transition of the form {g} x {b;}
x Q in E. Let P be the states p € O which admit a transition (g, b;, p) € E. We
create | P| copies of the accepting state of B;. We insert the new automaton B;
into A and merge ¢ and the initial state of B} and we merge each state in P and one

accepting state of 5. 0
The key idea of the transition marks in A" is the following: For every
(p, b;, q) € E and every word w € t(b;) there is some path me p ~> ¢ in A’
-1
such that 6(x) = YL ™ e(0((p, ;. 9)).
D
@ @

b s B

9

;
B,

Wy

We proceed this insertion for every ¢ e Q, i{l, ..., m} provided that there
exists at least one transition of the form {g}x {b;} x O in E. One can easily verify

that the constructed automaton computes A'.

For every state of .4, we insert at most one copy of each B;. Since initial and
accepting states are unified, we insert at most n, — 2m new states for each state of
A. Thus, A" has | Q| states from A and at most | Q|(n, —2m) states due to

insertion of 5;’s.
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The reader should be aware that the above restriction & ¢ t(b;) is not just to
simplify the proof as the following example shows.

Example 4.2. Assume X = {a}, I ={b;} and t(b;) = {¢, a}. Let A be some
nested distance desert automaton such that A A(bllo) =10 but A 4(w)=o for

we I\ {01,

Let A’ be as above. For every we {e, a, .., a'°}, we have A'(w) = 10.
However, for mappings of nested distance desert automata, we have either
0<A'(w)<|w]| or Al(w) = 0.

One can probably generalize the concept of nested distance desert automata by
marking transitions with words or even subsets of ¥} to achieve a concept of
automata which allow us to compute mappings like A" from Example 4.2. However,
such a generalization is not subject of the present paper.

By arguing as for Proposition 3.4, we obtain:

Proposition 4.3. We can effectively construct an automaton A' over T with at

most | Q|- (n, — 2m +1) states which recognizes t(L(A)).

Proof. The proof is similar but simpler than the proof of Proposition 3.4. 0
5. The Main Proofs

5.1. String Expressions

We recall the notion of a string expression from R. S. Cohen [4]. We define the
notions of a string expression, a single string expression and the degree in a
simultaneous induction.

Every word w € X* is a single string expression of star height sh(w) = 0 and
degree dg(w):=|w|. Let n >1 and n, ..., ,, be single string expressions. We call
r=nU--Ur, astring expression of star height sh(r) := max{sh(r;)|1 < i < n}
and degree dg(r) = max{dg(r;)|1 < i < n}. The empty set & is a string expression
of star height sh(<) = 0 and degree dg(&) = 0.
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Let n>2, ay,..,4a, €, and sq, .., 5,1 be string expressions. We call the
expression s := ajsyaysy -+ s,_qa, asingle string expression of star height sh(s) =

1+ max{sh(s;)|1 < i < n} and degree dg(s) = max({n} U {dg(s;)|1<i < n}).

String expressions define languages because they are particular rational
expressions.

The following lemma is due to R. S. Cohen [4].

Lemma 5.1 ([4, 14, 16]). Let L = =" be a recognizable language. There is a
string expression s such that we have L = L(s) and sh(s) = sh(L).

We need another well-known lemma.

Lemma 5.2 ([14, 16]). Let L c X% be recognizable. We have sh(L)=
sh(L\{g}).

5.2. We Fix an Instance

For the rest of Section 5, we fix an instance (K, K5, m, o) of the relative
inclusion star height problem. We assume that K; is given by some non-
deterministic finite automaton A, = [0y, Ey, I3, F;] and denote ny :=| Oy |. Below,

we will show that we can freely assume ¢ ¢ K.

In the rest of Section 5, we distinguish various cases concerning the
representation of K,. Sometimes, we assume that K, is given by some non-

deterministic automaton A, = [0y, E», I, F,] and denote n, =|Q, |. We also
deal with the case that X*\K, is given by some non-deterministic automaton

Ay =0y, Ey, I, F,] and again denote ny =| 0, |.

For every i € {1, ..., m}, we assume that o(b;) is given by some normalized,
non-deterministic automaton B;. We denote the sum of the number of states of all
B; foriefl, .., m} by ng.

The language L = {w e I'*|o(w) c K,} will be of particular interest. For every

language L' c I'* satisfying o(L') ¢ K, we have L' c L. In Section 5.4, we will
construct automata which recognize L and its complement.
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5.3. On the Empty Word

In this section, we deal with some notions to reduce the technical overhead
caused by the empty word. The following lemma allows us to restrict our proof to
the particular case € ¢ K;.

Lemma 5.3. We have sh(Ky, K5, m, o) = sh(K;\{e}, K», m, o).

Proof. If € ¢ Ky, then the claim is obvious. Hence, we assume ¢ € K. Thus,

€€K2.

> If ris a solution of (Kq, K5, m, ), then r is also a solution of

(K1 \{e}, K5, m, o). Hence, sh(Ky, K5, m, o) = sh(Ky \{e}, K5, m, o).

- <.« If ris a solution of (K;\{e}, K5, m, ), then rUe is a solution of

(Kq, Ky, m, o). Hence, sh(Kq, Ky, m, 6) < sh(K;\{e}, K5, m, ©). 0

If ee Ky, then we rather examine the instance (Kj\{e}, Ko, m, o).

Consequently, we assume ¢ € K for the rest of Section 5.

We define homomorphism o, : P(T'*) — P(T'*) and o™ : P(Z*) - P(Z*) by

setting for every i € {1, ..., m}

{b:} if & 2o(b)
ca(b,-)::{ nee and ot (b;) = o(b;)\{e}.

b, e} if eeo(l)

We have 6=c"o0, and o, =o, oo, since o(h;)=c"(c.(h;)) and
og(b;)=0(og(b;)) for i={1,..,m}. Moreover, we have coc,=c" oG, o0, =
G 00y =0.

Lemma 5.4. The following assertions are equivalent:

1. The instance (K1, Ko, m, &) has a solution.

2. There exists a solution r of (K1, Ky, m, ) such that o(L(r)) = o™ (L(r)).

Proof. (2) = (1) is clear.
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(1) = (2) Let ¢ be solution of (K7, K5, m, ). The key idea is to replace in ¢
every letter b, satisfying ¢ e (b;) by &; Ue. Hence, we apply o, to ¢ to construct
some r € REX(T') such that sh(r) = sh(¢) and L(r) = o.(L(¢)). We have

o(L(r)) = o(o,(L(1))) = o(L(t)) = 67 (0, (L(1))) = " (L(r)).
From o(L(r)) = o(L(¢)) follows that r is a solution of (K;, K5, m, o). 0
From the implication (1) = (2) in the proof of Lemma 5.4, we get sh(Kj, K,
m, 6) > sh(Ky, K, m, "). Indeed, if ¢ is a solution of (Ky, K5, m, c), then ris a
solution of (Ky, K5, m, c*). However, there are instances satisfying sh(Ky, K5,

m, ) > sh(Ky, Ko, m, c"), as the following example shows.

Example 5.5. Let = = {ay, ay, a3} and L € REC({ay, a,}") be a language of
large star height satisfying ¢ ¢ L. Itis easy to show that sh(L) = sh(Z U {a3}).
Let m := 4 and o(b;) = {a;} for i € {1, 2, 3}, and further, o(by) = L U {a3, &}.

Moreover, let K1 = Ko = L U {a3}.

We have sh(K;, Ko, m, c*) = 0, since b, is a solution.

Now, let » be a solution of (K, K, 4, o). By contradiction, assume that b,
occurs in L(r). Letu, v e T™ such that ubyv € L(r). If u # ¢, then some word of

the form =*agx" occurs in o(L(r)). If v # & then some word of the form X *agz*
occurs in o(L(r)). If u=¢ and v =¢ then by € L(r), and hence, & € o(L(r)).

Anyway, o(L(r)) # L U {a3}. Consequently, b, does not occur in r.

Since o is a bijection on {by, by, b3}", we can transform r into a rational
expression for L by preserving the star height. Hence, sh(Ky, K5, 4, o) = sh(r) >
sh(L).

Conversely, we can transform every rational expression for L into some
r € REX(T') by preserving the star height such that o(L(r)) = L U {a3}, and hence,

Sh(Kl, Kz, 4, G) < Sh(L)
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To sum up, sh(Ky, K», 4, 6) = sh(L). 0
5.4. Upper Bounds on the Relative Inclusion Star Height

In this section, we construct automata which recognize L = {weT"|o(w)
< K5} and the complement of L. We also construct an automaton for o(Z) and

decide the existence of a solution.
Proposition 5.6. We can effectively construct a non-deterministic automaton

Ap which recognizes C*\L. In particular, A 7 has the same states, accepting and

final states as some automaton A, which recognizes ¥\ K.

Proof. We let A, = [0, Ey, I, F,]. We define a new set of transitions E7.
For every p, g € Oy, b eT, thetriple (p, b, q) belongs to E7 there exists some

word w e o(b) such that A, admits a path from p to ¢ which is labeled with w.

This condition is decidable in polynomial time since it means to decide whether the
language of [0y, E;, p, ¢q] and o(b) are disjoint. Let A; =[0,, E7, I3, F3].

Let we T"\L. Wedenote w=c; - ¢, . For ie{l ..|wl}, there is some
u; € o(c;) such that ug - u,| € Ko Hence, Ap accepts wuy - up,, . For
iefl,..|w|}, there are ¢;1, ¢; € O, such that A, admits a path from
q;1 10 ¢; which is labeled with u;, and gq € /5, ¢, € F,. The transitions

(9;_1, ¢;» g;) € Ep form an accepting path for win A7.

Conversely, let w=c; - q,,| € L(AL). Let (qo, c1, q1) = (@] w]-1 Q] 9 w])
be an accepting path for w in A 7. By the definition of £7, A, admits for every
i=1{L ..,|w|} apath from g;,_; to g; which is labeled with some u; € o(c;).

Thus, A, accepts the word uy -+ u|,,| € o(w), i.e., we L. 0

If K, =L(A,) for some non-deterministic automaton A, =[0,, E5, I5, F>],

then we can complement A, and apply Proposition 5.6. However, the number of

states of A7 is at most 22|
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For the rest of Section 5, we denote by Ay =[07, Ef, I, F;] the non-

deterministic automaton which is either constructed by Proposition 5.6, or by a
complementation of A, and an application of Proposition 5.6 depending how K,

is given.
Proposition 5.7. From (Kl, Ky, m, c), we can effectively construct a non-
deterministic automaton A which recognizes L. In this construction, we can bound

the number of states of A as follows:

c K, T\K,
singular ny 2m2
arbitrary | 92" 2n2

The columns of the table correspond to the representation of Ko In the column

“K,", we assume that K, is given by a non-deterministic automaton with ny

states. In the column “S"\K,”, we assume that the complement of K, is given by
a non-deterministic automaton with ny states. The rows of the table correspond to

the case that G is singular or not necessarily singular.

Proof. If =" \K, is given by a non-deterministic automaton with =, states,

then we can utilize the construction of A7 from Proposition 5.6 and apply a

complementation. Hence, the entries in the column “X*\ K,” are shown.

Assume that K, is given by a non-deterministic automaton A, = [Q,, E,,
I,, F,] and o is not necessarily singular. We can complement A,, construct the
automaton A7 from Proposition 5.6, and complement A 7. One can also construct
A directly, but this construction utilizes sets of sets of states from A, i.e., it gives

the same bound on the number of states of A 7.

Now, assume that K, is given by a non-deterministic automaton A, = [0y, E,,
I, F»] and o is singular. We can construct .A; directly by defining a new set of
edges E; to A,. Foreveryp, g € O,, b eT, thetriple (p, b, q) belongsto E;
iff there exists some word w e o(b) such that A, admits a path from p to g which
is labeled with w. It is easy to verify that A; =[0,, E;, I, F,] recognizes L. [
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From now on, we denote by A; =[Q;, E;, I, F; ] the automaton constructed

in Proposition 5.7.

We have o(c,.(L)) = o(L) < K,, and hence, c.(L) < L, i.e., o.(L) = L.
Consequently, (L) = 6" (c,(L)) = o(L).

Lemma 5.8 ([12]). The instance (Kq, Ko, m, 6) has a solution iff Ki < o(L)

iff K1 < 6" (L). In this case, we have sh(Ky, K5, m, c) < sh(L).

Proof. The latter claim follows from (L) = ¥ (L).

If (Ky, Ko, m, o) has a solution r, then we have K; < o(L(r)) < K,, and

hence, K; < o(L(r)) < o(L) < K,. Consequently, K; < o(L).

Conversely, if K; < o(L), then the inclusion K; < o(L) < K, implies the

existence of a solution of (Ky, K5, m, ) and moreover, sh(Ky, K,, m,c)<sh(L). (]

Since sh(L)<|Q; |, the table in Proposition 5.7 gives an upper bound on

Sh(Kl, K2, m, G).

Proposition 5.9. From (Kl, Ky, m, c), we can effectively construct a non-
deterministic automaton which recognizes o(L) and has at most | Oy |-(ng —2m+1)

states.

Thus, we can effectively decide in space polynomial in O(ny -|Qy |- (ng —

2m + 1)) whether (K1, Ko, m, ) has a solution.

Proof. By Lemma 5.8, it suffices to decide whether K; — 6*(L). By
Proposition 4.3, we construct a non-deterministic automaton which recognizes

o (L). We can decide in O(m -| Q; |- (ng —2m +1)) space whether K; is a

subset of ¥ (L). 0

Due to the factor | O; |, the complexity in Proposition 5.9 crucially depends on

the representation of K, and on whether o is singular.
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5.5. The T, ,(P, R)-hierarchy
Let Aj; =[07, Ef, I7, Ff] be the automaton recognizing I'*\L by
Proposition 5.6.
Let 87 :P(Q7)xI™ —P(Q5) be defined by 87 (P, w):={re Qs |P~5r=D)}
for every PcQ;, wel™. For every P, Rc Oy let T(P,R)={we
I'* |87 (P, w) < R}. Consequently, 7(I7, Of \Ez)=T" L(A7) = L\{e}.

Let 4 >1 and P, R < Q7. We define T, o(P, R):={weT"|57(P, w)c
R,|w| < d}. We have

ToP. R = ) HolRy ATo(R B) - To(Pey, B.).
1<c<d,

R,.. P(‘,QQZ
P=Ry,FP.cR

It is easy to see that 7 (P, R) = Ud>le’0(P, R).

Now, let 2 e N, and assume by induction that for every P, R c Oy,

T, (P, R) is already defined. We define T, ;,1(P, R) =

U Ao BT 4R RN TR B) -+ Tio(Py, B).
1<c<d,

Ry PO,
P=Ry,F.cR

Let d 21, heN, and P, R c Q7 be arbitrary. We have ¢ ¢ T; ,(P, R).
Lemmab5.10.Let d 21, he N, and P, R Or. We have

(T4, 1(P, P)' T o(P, P)(T, (P, P))" < (Ty 4(P, P))".

Proof. The assertion follows, because 7 o(P, P)< T, (P, P) and

(T, »(P, P))" is closed under concatenation. 0

From the definition, it follows immediately for every R c R’ c QO7,
Ty 5 (P, R) < Ty (P, R).
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It is easy to show by an induction on # that for every d' > d, T, ,(P, R)
T, (P, R). Moreover, for every h' > h, we have T, ,(P, R) < Ty (P, R). To
sum up, for every d'>d and h'>h, T, ,(P, R)c Ty (P, R). For fixed P,
R c O, thesets T, ,(P, R) form a two-dimensional hierarchy. Whenever we use
the notion 7, ,(P, R) -hierarchy, we regard P, R < O7 and h € N as fixed, i.e, it
is a one-dimensional hierarchy with respect to the parameter d > 1.

By induction, we can easily construct a string expression r with L(r)=
T; (P, R) such that sh(r) < h and dg(r) < d, and hence, sh(7, ,(P, R)) < h.
However, we cannot assume that there is a string expression r with L(r)=

Ty 5(P, R) such that sh(r) = » and dg(r) = d. In the inductive construction of r,
several sets 73 o(F_1, £) may be empty, and then, the star-height (resp. degree) of
r is possibly smaller than / (resp. d). Just consider the case T, ,(P, R) = {a} but

h>1d>1
Lemma 5.11. Let d 21, he N, and P, R < Qp. We have T, ;(P, R)c

T(P, R).
Proof. We fix some arbitrary ¢ > 1 for the entire proof.

For n =0, the claim follows directly from the definitions of 7, (P, R) and
T(P, R).
Let ~ € N and assume by induction that the claim is true for 4. Consequently,

forevery P' < Oy and u e (T, ,(P', P'))", the inclusion 3(P', u) < P'. holds.

Let P, R O and we T, ,,1(P, R) be arbitrary. We show §(P, w) c R.
According to the definition of 7, ,.1(P, R), there are some 1<c<d and
P =P, .., P c R with the following property: there are ay, .., a. €' and

Wi, .y Wo_q € I such that w = agwyaywy -+ w,_qa, and

1.forevery 1<i<c, wehave a; € T o(F_1, £), and

2.forevery 1<i<c, wehave w; € (T (P, P))".
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By the definition of 73 5, we have for every 1<i <¢, 8(P_y, a;) € P,. As
seen above, we have for every 1<i <¢, &P, w;) < F. Consequently, 8(B, w)

c P, ie, 8P, w)c R O

We have forevery h e N and P, R < Oy :

7(P, R) = 700, B) < | J704(P. B) < T(P, B).
d>1 d>1

5.6. The Collapse of the 7, ,(P, R)-hierarchy

We say that the T, ,(P, R)-hierarchy collapses for some # e N if there is
some d >1 such that T, ,(P, R) = T(P, R). Below, we will observe that the
T; (P, R) -hierarchy collapses for some / > sh(7 (P, R)).

For the relative inclusion star height problem, we are rather interested in

o (T; (I, Op \Fy)) thanin T, ,(P, R). In particular, it is interesting whether

for some given / e N, there exists some d such that Ky = o (T, ,(I7, Op \Fy)).

For this, the following lemma will be very useful.

Lemma 5.12. Let r be a string expression, d > dg(r), and h > sh(r). Let P,
R < Qg such that L(r) < T(P, R). We have L(r) < T; ;,(P, R).

Proof. We assume L(r) = &. By L(r) < T(P, R), we have ¢ ¢ L(r).

Assume sh(r) = 0. There are some k>1 and wj, .., w, e " such that
r=wU--Uw, and for every 1<i <k, we have |w;|<d, and moreover,
3(P, w;) c R. By the definition of T, o(P, R), we have w; € T; o(P, R), i.e.,
L(r) < Ty,0(P, R) = Ty (P, R).

Now, let sh(r) > 1, and assume that the claim is true for every string expression
" with sh(#") < sh(r).
Clearly, it suffices to consider the case that r is a single string expression. Let

c>22and aq, .., a, €T and n, ..., r,_1 be string expressions of a star height less

*

than sh(r) such that » = ayn’ayry - r._qa,. Let d > dg(r) and & > sh(r). Let P,
R < Q7 suchthat L(r) ¢ T(P, R).
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Let Py:=P, and for 1<i<ec, let P =38(P_q, a;L(r;)). Finally, let
P. =8P._q, a.). To show L(r)c T, ,(P, R), we apply the definition of
T; (P, R) with P, ..., P.. We defined By = P, and we can easily show P. =

(R, L(r)) < R. Clearly, ¢ <d. To complete the proof, we show the following

two assertions:

1.forevery 1<i<d’', wehave a; € 1 o(F_1, ), and
2.forevery 1<i<d', wehave L(r;) € Ty ,1(P, P,).

(1) Clearly, 8(P_y, a;) < 8(P_y, a;L(r;)") = P Hence, a; € T o(P_1, B})

follows from the definition of 7 o(7,_1, P).

(2) We have sh(r;) <h and dg(r;) < d. In order to apply the inductive
hypothesis, we still have to show (P, L(r;)) < P. We have a,L(r;) L(r;)
a;L(r;)". Thus, we obtain

8B, L(1;)) = 8(3(P g, 4;L(1;)), L(17))
= 8(F1, aiL(r;)" L(1;)) € 8(Py, a;L(r;)") = P O

Let P, R<c Qy and h>sh(T(P, R)). By Lemma 5.1, there is a string
expression r such that L(r) = 7 (P, R) and & > sh(r). Let d = dg(r). We have

Lemmab5.12 Lemma5.11
T(P,R)=L(r) < Ty4(P,R) < T(PR)

i.e., the T, ,(P, R)-hierarchy collapses for /.

Conversely, let 2 € N, P, R < Q7 and assume that the 7, ,(P, R)-hierarchy
collapses for /. Let d >1 such that 7, ,(P, R) = T(P, R). As already seen, we
can construct a string expression r such that L(r) = T ,(P, R), sh(r) < h, and

dg(r) < d. Thus, i > sh(T (P, R)).

To sum up, the T, , (P, R)-hierarchy collapses for 4 iff > sh(T (P, R)).
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Proposition 5.13. Let h e N. There exists some d >1 such that Kj <
o (Ty y(I7, O \Fy)) iff sh(Ky, K, m, o) < h.

Proof. --- = --- Let r be a string expression such that L(r)=T, ,(I7, 07 \F7),
sh(r) < h, and dg(r)<d. From L(r)c7(I;,0;\Fy) =L\{g}, it follows
o(L(r)) c o(L) c K>.

Moreover, we have K; < o' (L(r)) < o(L(r)). Consequently, % > sh(r) >
Sh(Kl, K2, m, G).
.- < --- Let s be a solution of (K, K5, m, o). By Lemma 5.4, we can assume
o(L(s)) = ot (L(s)). Thus,
Ky < o (L(s)) < K>.

Our aim is to apply Lemma 5.12 to show that L(s) is subsumed by the set

T, y(Iz, Op \Fy) forsome d > 1. However, the empty word causes some trouble.

Since ¢ ¢ K, we obtain

K1 < o' (L(s)\{e}) < K>.

By Lemmas 5.1 and 5.2, we can transform s into a string expression » by preserving
the star height such that L(r) = L(s)\{e}. Thus,

Ky < o7 (L(r)) c K.
From L(r) < L(s) c L and & ¢ L(r), itfollows L(r) c L\{e} = T(I;, Op \ F7).
Let d = dg(r). Since A > sh(r), we can apply Lemma 5.12 and get L(r) <
Td,h(1f,1 Or \Fz), ie.,
Ky o (L(r)) = o™ (Ty 4w, Op \FL))- O

5.7. A Reduction to Limitedness

In this section, we construct for given # € N and P, R Oy a (h +1)-nested

distance desert automaton A, (P, R) over the alphabet T". This automaton associates
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to each word w e I'* the least integer o such that w e T;,1 (P, R). It computes o
if such an integer d does not exist, i.e., if w ¢ 7(P, R).

The automaton A, (17, O \Fr) will be of particular interest. By applying the
construction from Section 4.2, we transform A, (/z, Of \Fy) to a distance desert
automaton which associates to each word w e X" the least integer d such that
we o (T (UL, Op \FL)).

In combination with Proposition 5.13 and the decidability of limitedness
(Theorem 3.3), this construction allows us to decide whether sh(Ky, K5, m, c) < k.

Proposition 5.14. Let h € N and P, R  Q;. We can construct an (h +1)-
nested distance desert automaton A, (P, R) = [0, E, q;, qr, 0] with the following

properties:
L E < (Q\gr )T x(QMgy)),
h
2. |Q|sk”*1+%+1 where k =219 |

3. for every (p,a,q)e E, we have O(p, a, q)=Y, if p=gq;, and
0(p, @, @) € (Y01 s Y10 ZLow o Zi} If P # a1,

4. for every w e T, A g(w)+1=min{d <1|we T, ,(P, R)}.

Proof. We employ the mapping &7 from the beginning of Section 5.5. We
proceed by induction on 4. Let P, R — Oy be arbitrary.

Let # =0. At first, we construct an automaton which accepts every word w
with 8(P, w) < R. We use P(Qr ) as set of states. For every S, T < Oy, beT,
we set a transition (S, b, T') iff 37(S, b) < T. The initial state is P, every non-

empty subset of R is an accepting state. We apply to this automaton a standard
construction to get an automaton [Q, E, q;, qr] which satisfies (1) where

0 =P(Q7)U{q], qF}. Hence, | Q| =| P(Or)|+2=k+2, ie., (2) is satisfied.
For every transition (g, b, q) € E, we set 6((¢;, b, g)) = Y. For every transition
(p,b,q)e E with p=#gq;, we set 0((q;, b, q)) = Zg. This completes the
construction of Ay(P, R) = [0, E, q;, qF, 0], and (3) is satisfied.
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We show (4). For every w e T* with w ¢ 7 (P, R), the equation in (4) reduces
to o =0 by the construction of Ay(P, R) and Lemma 5.11. For w e 7(P, R),
the equation in (4) reduces to | w| =| w| by the construction of Aq(P, R) and the
definition of 7, o(P, R).

Now, let # € N. We assume that the claim is true for /# and show the claim for
h +1. Atfirst, we construct an automaton A’ = [Q', E', q;, qr]. Let 0" = P(Qr)

U {917 QF}-

Let beT and S, T < Qf be arbitrary. If S =7 and 8(S, b) c T, then we
put the transition (S, b, T) into E'. If &(P, b) < T, then we put the transition
(g7, b, T) into E'. If 3(S, b) < R, then we put the transition (S, b, q5) into E'.
Finally, if 87 (P, b) < R, then we put the transition (g;, b, gz ) into E'. For every

word w which A" accepts, we have w € T (P, R).

We define 0' = E' — {Y},,1, £41}. For every transition (g;, b, g) € E', let
0'((¢7, b, q)) = Yp41. For every transition (p, b, g) € E' with p # q;, we set
0'((q7. b, 9)) = ZLp1.

We construct A,,1(P, R). For every S c Oy, we assume by induction an
automaton A, (S, S) which satisfies (1, ..., 4). We assume that the sets of states of
the automata A,(S, S) are mutually disjoint. We construct .A;.4(P, R)
=[O0, E, q;, qF, 0] as adisjoint union of A" and the automata .A4,(S, S) for every
S < Q7 and unifying both the initial and accepting state of A, (S, S) with the
state S in A’ Because we did not allow self loops in A’, the union of the

transitions is disjoint, and hence, 6 arises in a natural way as union of 6’ and the
corresponding mappings of the automata A;(S, S). If 6(¢) € {41, Lp4q} for

some ¢ E, then ¢ stems from A’. Conversely, if 6(z)e{Yq,.... Y, £g,.... £;,} for

some ¢ € E, then ¢ stems from some automaton A, (S, S).

Let = be some path in A, 1(P, R) and assume that for every transition 7 in ,
we have 0(z) € {Yq, ..., Y, Zg, s Z}. Then, the entire path = stems from some

automaton A, (S, S), i.e., m cannot visit states in P(Q7)\{S}. Conversely, if tis a
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path in A,,;(P, R), and two states S, T < Qp with S = T occur in =, then =«

contains some transition 7 with 06(¢) = £;,,1.

Clearly, Aj (P, R) satisfies (1) and (3). We show (2). The states of
Ap(P, R) are q;, qp, k states from P(Qr), and the states of the & inserted
automata .4, (S, S). We obtain

0] < 2+k+k(kh+1+u—l):
k-1
(*)

(*) is the bound on the number of states of one 4,(S, S) by the inductive
hypothesis (2) reduced by two states which are lost by identification.

_ h+2 - h+2 K — K _ ...

=2+k+k + 1 k=k + 1 +1+1
kh+l_k k-1 he? kh+l_1

= 2 k 1=kM24+ 5 _—-41
o Y=t M

Thus, we have shown (2).
To prove (4), we show the following two claims:
4a. Let d >1. For every we T, ;,1(P, R), there is a successful path = in

A 1(P, R) with the label wand A(B(n)) +1< d.

4h. Let n be a successful path in A;.1(P, R) with the label w. We have
W € Ta(o(n))+1, h+1(Py R).

Claim (4a) (resp. 4b) proves “--- <--- (resp. “--- > ---") in (4). Thus, (4) is a
conclusion from (4a) and (4b).

We show (4a). We decompose w according to the definition of 7;; ,,1(P, R).
There are some 1<c<d and F, .., P, c O with By = P and P. c R. For
every 1<i<c, thereis some a; € 7 o(F_1, P;), and for every 1<i < ¢ there is
some w; € (T, (P, P,))" such that w = agwyaowy -+ a.. By Lemma 5.10, we can

assume P, # P, forevery 2 <i<ec.
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If ¢ =1 then wis a letter. We set © = (q;, w, ¢z ). Then, 8(n) = £, and
A(B(m)) = 0 which proves (4a). We assume ¢ > 2 in the rest of the proof of (4a).

Let # =(q;, a1, B) and ¢t.:=(P._1, a,, qr). For every 2<i<c, let
t; =(P_y, a;, P). Clearly, #, ..., t. are transitions in A, (P, R), 0(t1) = £p.1,

andfor 2<i<e¢, O(t)=2Lpi1

Let 1 <7 <c. Wedecompose w;. Thereissome n; € N and w; 1, ..., w; ,, €

T; ,(B, P) suchthat w; = w; 1, .., w;

RCE

Let 1<i<c and 1< j<m. Then, w;; €Ty ,(B, F) By the inductive

hypothesis, there is a path =; ; in A, (7, £) with the label w;

i j and A(6(; ;)

J
+1<d. The first transition of this path is marked £,, any other transition is
marked by some member in {Zg, ..., £;,_1, Zg, -s Z5}. We rename the first and
the last state in m; ; to A and call the resulting path =; ;. Since A;.1(P, R)

contains Ay(F, B), m; ; is a path in A, (P, R). Let m; =m;4,.., 7

ij ini-
Clearly, =; is a path in A, ,4(P, R) from B to B with the label w;. The
transitions of m; are marked by members in {Zg,..., £}, Zg,... Z;}. In the

particular case w; =g, =; is simply the empty path from P to B.

Clearly, = :=#mtymy -+ 1, is a successful path in Aj.1(P, R) with the label
w. It remains to show A(8(r))+1<d. We apply the definition of A from Section 2.2.

Let ©' be an arbitrary factor of (). We have |n'|,,, +1<|6(n)|, , +1=c<d. Let

0< g<h, and assume ' € {Zg, ..., £ A 4g}*. Then, = is a factor of

g-b
O(n; ;) forsome 1<i<e¢, 1< j<n,. Since A(B(r; ;))+1<d, we have |n’|g +1

< d. Consequently, A(6(n)) +1 < d.

We show (4b). Let n be a successful path in A, ,1(P, R) with the label w. The
first transition of = is marked £;.4, any other transitions are marked by some
member of {Zg, .., £, Zgs -y Lp41)- Let ¢ 21 and factorize = into ==
Wmitamy -+ t, Such that #,, ..., ¢, are the transitions in = which are marked by £ 4.
We have A(B(n)) = ¢ -1, i.e, ¢ < A(B(n)) +1.
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We denote the labels of 4, ..., 7, and my, ..., 1.1 by @, ..., a, and wy, ..., w,_q,
resp., i.e., w = aywqow, --- a.. Every transition ¢, ..., ¢, starts and ends at some

state in P(Q5 ) except 1 which starts in ¢, and 7. whichendsin ¢.

Let 1<i < ¢ Let P be the state in which =; starts. Since the transitions of r;
are marked by membersin {<£q, ..., Z;,, Zg, ..., £}, ®; isapathinside A, (B, B).
Clearly, =; ends in the same state in which ¢; 4 starts, i.e., 7; ends in some state in

P(O7). Tosumup, «; endsin P,.

Let By := P and P. = R. By the construction of A;_¢(P, R), (in particular by
the definition of E'), we have for every 1<i<¢, 8(P_y, q;) < P, and thus,
a; € T 0(P-1, B):

To show w e Txg(r))+1, a+1(Ps R), we show for every 1<i<c, w;e

(Tao(z)yrn (B B))

Let 1 <i < ¢. We decompose =i; into cycles. There are some »n; € N, and non-
empty paths ;4, ..., m; , such that m; =m; 4, .. m;, and every path among
i1, o T, Startsand ends at F;, but none of the paths m; g, ..., m; ,, contains the

state P inside.

Let 1< j <n; We denote the label of m; ; by w; ;. In order to show

o J
w; € (Tao(my+r 4 (B B))' we show w; ;€ Tu(p(m))1, 4 (5, £). We rename the

first (resp. last) state of n; ; to gr (resp. gy ) and obtain a path which we call

i,j

m; ;. Clearly, m; ; is an accepting path in A, (F;, F;) with the label w; ;.

iJj
Let 4 be the weight which A,(B, F,) computes on w; ;. We have
d <(8(m;, ;) = A(6(;, ;)) < A(6(n)). By induction, or more precisely, by (4) for
An(B, F), wehave w; ; € Tyyq (B, B), and thus, w; ; € Tao(n))ia, 1 (50 B)- U
Proposition 5.15. Let h € N. We can construct an (h + 2)-nested distance

desert automaton A over . such that for every w € "

Ay(w)+1=min{d >21|we o™ (Ty ,(I7, O \F7))}



ON THE COMPLEXITY OF THE RELATIVE INCLUSION STAR ... 205

In particular, A has at most

h _
(kh” +%+1J(n(T —-2n+1)

states where k = 2‘ or ‘.

Proof. The initial point of our construction is the automaton A, (77, O \ Fy)

from Proposition 5.14. We denote its mapping by Ay,
We consider the following mapping A" : =% — N U {oo}
A'(w) = min{A 4, (u)|u € " weo ().

If A'(w)e N then there exists some u eI such that we c™(u) and

A 4, (u) = A'(w). By Proposition 5.14(4), we have u e Ty , (,)+1,4(U7, Op \FT) <
Tawyr, Uz, Q@ V\FL). Thus, w e 6" (Tayen, n (U7, OF \FT)).
Conversely, let  >1 and assume w e 6" (T, ,(I7, Op \F7)). There is some

ueTy,(I;, Op \Fr) such that we o' (u). By Proposition 5.14 (4), we have

Ay, (u)+1<d, andhence, A'(w)+1<d.

To prove the proposition, we just need an (4 + 2)-nested distance desert

automaton A which computes A. We can construct such an automaton by
Proposition 3.4. The bound on the number of states follows from Propositions 3.4
and 5.14(2). 0

5.8 Decidability and Complexity

In this section, we show the decidability of the relative inclusion star height
problem and we prove the complexity bounds stated in Section 3.2.

Given h e N, an algorithm can decide whether sh(Ky, K, m, 6) < h as
follows.

At first, the algorithm decides by Proposition 5.9 whether sh(Kj, K5, m, o)

has a solution. More precisely, it constructs the automaton .4; which recognizes

L={weTl"|o(w)c K,}. From A, it constructs an automaton which recognizes
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o(L) and decides whether K; < o(L). If K; € o(L), then the algorithm answers
llno!!.
If K; < o(L), then the algorithm constructs A7. From Az, it constructs the

automaton A in Proposition 5.15. Then, it decides by Theorem 3.3 whether A is
limited on Kj. If so, the algorithm answers “yes”, otherwise the algorithm answers

no”.
Assume sh(Ky, K5, m, o) < h. By Proposition 5.13, there is some d € N such
that Ky = o* (T, ;, (I3, Q7 \F)). By Proposition 5.15, the output of .4 on words
in Ky islessthand, i.e., A is limited on Kj.
Conversely, assume that A is limited on K; and let 4 be the largest output of
A on K;. We have d e N since K; < o(L) = L(A). From Proposition 5.15, it
follows K; < o™ (T ,(I7, O \F7)), and by Proposition 5.13, sh(Ky, K,, m, o)
< h
The reader should be aware that .4 might be limited even if (K, K5, m, )
has no solution. Just consider the extremal case that L =& but K; # &. Then,

(K1, Ko, m, o) has no solution. However, A is limited on K; since .A does not
accept any word.

5.8.1. On the Relative Inclusion Star Height Problem

To prove the bounds on the space complexity of the relative inclusion star
height problem shown in Table 1 in Section 3.2.1, we summarize the results from
Section 5 in the following table:

In the lines of the table we consider the same cases as in Table 1.

Table 5
c |0 | | OF | 4,(Ig, O \Fr)
Ko sing. ny M2 oh2"2
arb. 22n2 212 thnz
2*\K, arb. 2m ny ohny
both sing. ny ny ohny
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In the column | Oy | resp. | Q7 |, we state the bounds on the number of states
of A; resp. Ay as shown in Propositions 5.6 and 5.7. In the case “both sing.”,
we just choose the minimum from the more general cases. If (K;, K5, m, o) has
a solution r, then sh(r) < sh(L). From any proof of Kleene’s theorem, we get
sh(L) <| 0y |. Hence, the entries in the column “bound” in Table 1 are the entries

in column | Q; | in Table 5.

According to Proposition 5.9, we can decide in O(ny -| Oy |- (ng — 2m +1))
space whether (Ky, K5, m, o) has a solution. We can estimate (ng — 2m +1) by

ng. Inthis way, we achieve the entries in the column “existence” in Table 1.

The column “4,(I7, Q7 \F7)” gives, up to a constant factor, an upper bound
to the number of states of the automaton A4,,(I7, Q7 \ Fy) according to Proposition
5.14(2). We have to multiply this bound by n; to get an upper bound for the
number of states of .4 in Proposition 5.15. Then, we multiply the bound by »; (the
number of states of .A;) to decide whether A is limited on K; (cf. Theorem 3.3).

In this way, we achieve the entries in the column “sh(Ky, K5, m,c)<h” in Table 1.

If 7 is larger than or equal to the entry in the column “bound”, then sh(Ky, K,
m, o) < h iff (Kq, K5, m, o) has a solution. Thus, we can assume that /4 is less

than the entry in the column “bound” in our analysis of the space complexity of the
test whether “sh(Ky, K5, m, ) < h”.
Consequently, we can absorb the factor 4 into 2002) i the line “ K, sing.” as

follows: 42" < ny2"2 = 2'402)*2 c 20(%2) | the other three lines, such an

absorption just worsens the bounds.

We already explained the entries in the column “sh(Ky, Ky, m, c) =7?" in
Section 3.2.1.

5.8.2. On the Relative Star Height Problem

We show the complexity bounds for the relative star height problem given in
Table 2.
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The entries in Table 6 are essentially taken from Table 5. The entries in line

“both arb.” Are taken from line “X*\K, arb.” in Table 5.

As for the relative inclusion star height problem, the complexity to decide the
existence of a solution is the product of | O; | and nng. In lines 2 and 4 in the

O(n
column “existence” in Table 2, the factor n is absorbed by 20(n) resp. 22 ( ).

Table 6
o |OL | | Or | Ay (Ip, Op\Fr)
K sing. N on oh2"
arb. 52" on h2"
both arb. n n ohn
sing. on n ohn

Since Kj = K,, the automaton A in Proposition 5.15 recognizes K \{e}.
Hence, the algorithm has just to decide whether A is limited rather than whether A
is limited on K. Consequently, we can omit the factor n; in the complexity in

the two right columns. Hence, the space complexity of the problem to decide
“sh(K, m, o) < h” is determined by the number of states of A in Proposition 5.15,

i.e., the product of the number of states of 4,(/7, Oy \Fr) and n,.

5.8.3. On the Inclusion Star Height Problem
Let (Ky, K») be an instance of the relative inclusion star height problem. To
consider (Kq, K,) as an instance of the relative inclusion star height problem, we

set m :=|Z|. We can freely assume I' = £ and set o(b) = {b} forevery b e T.

Table 7
| O | | O | 4 (Ig, Op \Fr)
K, no 22 2h2n2
S\K, 2" ny 2"
both ny ny 9hny
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Since L = K, in this approach, we can use the automaton .4, resp. its
complementation to construct A; and Ay.

In our approach to the relative inclusion star height problem, we replaced
transitions by automata which recognize o*(b) for some b eT. The factor
(ng —2m +1) in Proposition 5.15 arose due to this replacement. For the inclusion

star height problem, we do not need this replacement. Indeed, the factor
(ns —2m +1) reduces to 1 since ng = 2| X |. Consequently, the space complexity

to decide sh(Kj, K7 ) < A is the product of the number of states of A, (/7, Op \ Fr)

and ny.

5.8.4. On the Star Height Problem

For a summary, we can essentially use Table 7 by setting n = n,.

As for the relative star height problem, we have to decide whether A in
Proposition 5.15 is limited rather than whether A is limited on K;. Hence, the space

complexity to decide whether sh(K) < 4 is polynomial in the number of states of
Az, Op \Fp).
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