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Abstract 

Given a family of recognizable languages mLL ...,,1  and recognizable 

languages ,21 KK ⊆  the relative inclusion star height problem means to 

compute the minimal star height of some rational expression r over 

mLL ...,,1  satisfying ( ) .21 KrLK ⊆⊆  

We show that this problem is of elementary complexity and give a 
detailed analysis of its complexity depending on the representation of 1K  

and 2K  and whether mLL ...,,1  are singletons. We also consider the 

case .21 KK =  

1. Introduction 

The star height problem was raised by L. C. Eggan in 1963 [5]: Is there an 
algorithm which computes the star height of recognizable languages? Like L.C. 
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Eggan, we consider star height concerning rational expressions with union, 
concatenation, and iteration in contrast to extended star height which also allows 
intersection and complement. For several years, the star height problem was 
considered as the most difficult problem in the theory of recognizable languages, and 
it took 25 years until K. Hashiguchi showed the existence of such an algorithm 
which is one of the most important results in the theory of recognizable languages 
[11]. His solution to the star height problem relies on distance automata and yields 
an algorithm of non-elementary complexity, and it remained open to deduce any 
upper complexity bound from K. Hashiguchi’s approach (cf. [17, Annexe B]). 

Recently, the author presented another approach to the star height problem 
which relies on a generalization of distance automata, the distance desert automata. 
He showed that the star height of the language of a non-deterministic automaton is 
computable in double exponential space which is the first upper complexity bound to 
the star height problem [14, 16]. 

K. Hashiguchi also considered the relative star height problem: Given a finite 
family of recognizable languages mLL ...,,1  and some recognizable language K, 

compute the minimal star height over all rational expressions r over kLL ...,,1  

satisfying ( ) KrL =  [11]. In 1991, he considered inclusion variants of these 

problems, as the inclusion star height problem: Given two recognizable languages 
,21 KK ⊆  compute the minimal star height over all rational expressions r satisfying 

( ) 21 KrLK ⊆⊆  [12]. Finally, K. Hashiguchi considered the relative inclusion star 

height problem which is a joint generalization of the relative and the inclusion star 
height problem. In [12], K. Hashiguchi showed the decidability of all these variants 
of the star height problem. The proofs in [12] are complicated. Moreover, [12] is a 
continuation of the difficult series of papers [9-11]. As for the star height problem, it 
remained open to deduce upper complexity bounds from [12]. 

In this paper, we utilize distance desert automata and develop techniques from 
[14, 16] to give concise decidability proofs and upper complexity bounds to the 
relative inclusion star height problem and its particular cases. As one main result, we 
show that the relative inclusion star height problem, i.e., the most general variant, is 
of elementary complexity: it is decidable in triple exponential space. 

We study in detail how the representation of 1K  and 2K  (resp. K) affects the 

complexity. In particular, we consider the case that 2K  resp. K is given as the 
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complement language of some non-deterministic automaton. We also examine the 
particular case that the languages mLL ...,,1  are singletons. In this way, we achieve 

a large variety of results. We even obtain some new conclusions for the complexity 

of the star height problem: We can decide in ( )nhO2  space whether the complement 
of the language of some n-state non-deterministic automaton is of star height h. 

2. Preliminaries 

2.1. Notations, Rational Expressions, and Automata 

We denote by ( )MP  the power set of some set M. We let { }....,2,1,0:=N  

Let Σ be some finite alphabet. We denote the empty word by ε. We denote by 

w the length of some word .∗Σ∈w  

We denote the set of rational expressions over Σ by ( )ΣREX  and define it as 

the least set of expressions which includes ∅εΣ ,,  and is closed such that for r, 

( ),Σ∈REXs  the expressions rs, sr ∪  and ∗r  belong to ( ).ΣREX  We denote the 

language of some rational expression r by ( ).rL  

The star height of rational expressions is defined inductively: we set 
( ) ,0:=∅sh  ( ) ,0:=εsh  and ( ) 0:=ash  for every .Σ∈a  For r, ( ),Σ∈REXs  we 

set ( ) =rssh  ( ) ( ) ( ){ },,max: srsr shshsh =∪  and ( ) ( ) .1: +=∗ rr shsh  

For some language ,∗Σ⊆L  we define the star height of L by 

( ) ( ) ( ){ }.min: rLLrL =|= shsh  

We recall some standard terminology in automata theory. We assume that 
the   reader is familiar with Kleene’s theorem and basic operations as the 
complementation and determinization of automata. See, e.g., [3, 6, 19, 20, 22] for a 
survey. 

A (non-deterministic) automaton is a quadruple [ ]FIEQ ,,,=A  where 

1. Q is a finite set of states, 

2. QQE ×Σ×⊆  is a set of transitions, and 

3. ,QI ⊆  QF ⊆  are sets called initial resp. accepting states. 
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Let .1≥k  A path π in A  of length k is a sequence ( ) ( )221110 ,,,, qaqqaq  

( )kkk qaq ,,1−  of transitions in E. We say that π starts at 0q  and ends at .kq  We 

call the word kaa1  the label of π. We denote .: k=π  As usual, we assume for 

every Qq ∈  a path which starts and ends at q and is labeled with ε. 

We call π successful if Iq ∈0  and .Fqk ∈  For every ,0 kji ≤≤≤  we 

denote ( ) ( ) ( )jjjiii qaqqaqji ,,,,:, 111 −−+=π  and call ( )ji,π  a factor of π. 

For every p, Qq ∈  and every ,∗Σ∈w  we denote by pq wˆ  the set of all paths 
with the label w which start at p and end at q. 

We denote the language of A  by ( )AL  and define it as the set of all words 

in  ∗Σ  which are labels of successful paths. We call some ∗Σ⊆L  recognizable, if 

L  is the language of some automaton. We denote by ( )∗ΣREC  the class of all 

recognizable languages over .∗Σ  

Let [ ]FIEQ ,,,=A  be an automaton. We call A  normalized if there are 

states Qqq FI ∈,  such that { } { } { },,, FIFI qqFqqI ⊆⊆=  and { }( ) ×⊆ FqQE \  

( ).\ IQ×Σ  It is well known that each automaton can be transformed in an 

equivalent normalized automaton by adding at most two states. 

2.2. Distance Desert Automata 

Distance desert automata were introduced by the author in [14, 16]. They 
include K. Hashiguchi’s distance automata [8] and S. Bala’s and the author’s desert 
automata [1, 2, 13, 15] as particular cases. In the recent years, several authors 
developed more general automata models, e.g., R-, S- and B-automata. See [23, 24, 
25, 26, 27] for recent developments. 

Let 0≥h  and { }.,...,,,,,: 11100 hhhV ∠∠∠= −  We define a mapping 

.: N→Δ ∗
hV  An intuitive approach to understand the mapping Δ is given in [14, 

16]. Let .∗∈π hV  For every ,0 hg ≤≤  we consider every factor π′  of π satisfying 

{ } ,...,,, 00
∗∗ =∠∠∈π′ gg V  count the number of occurrences of ,g∠  and choose 

the maximum of these values. 

More precisely, for hg ≤≤0  and ,∗∈π′ hV  let gπ′  be the number of 

occurrences of the letter g∠  in .π′  Let 
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1. ( )
ππ′

∈π′
π′πΔ ∗

offactorais

: gVg
h

max  and 

2. ( ) ( ).: 0 πΔ=πΔ ≤≤ ghgmax  

It is easy to see that ( ) .0 π≤πΔ≤  

An h-nested distance desert automaton (for short distance desert automaton) is a 
tuple [ ]θ= ,,,, FIEQA  where [ ]FIEQ ,,,  is an automaton and .: hVE →θ  

Let [ ]θ= ,,,, FIEQA  be an h-nested distance desert automaton. The notions 

of a path, a successful path, the language of ,A  . . . are understood with respect to 

[ ].,,, FIEQ  For every transition ,Ee ∈  we say that e is marked by ( ).eθ  We 

extend θ  to a homomorphism .: ∗∗ →θ hVE  We define the semantics of A  as 

follows. For ,∗Σ∈w  let 

( ) ( )( ).:
,,

πθΔ=Δ
∈π∈∈ pqFqIp w

w
ˆ

minA  

We have ( ) ∞=Δ wA  iff ( ).ALw ∉  Hence, AΔ  is a mapping →ΣΔ ∗:A  

{ }.∞∪A  

If there is a bound N∈d  such that ( ) dw ≤ΔA  for every ( ),ALw ∈  then we 

say that ( ),ALw ∈  is limited by d or for short that A  is limited. Otherwise, we call 

A  unlimited. 

We need the following result. 

Theorem 2.1 ([14, 16]). Limitedness of distance desert automata is PSPACE-
complete. 

3. Overview 

3.1 The Star Height Problem and Some Variants of it 

The star height problem was raised by L. C. Eggan in 1963 [5]: Given some 
recognizable language K, compute the star height of K. Or equivalently, given some 
recognizable language K and some integer h, decide whether ( ) .hK ≤sh  For several 

years, in particular after R. McNaughton refuted some promising ideas in 1967 [18], 
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the star height problem was considered as the most difficult problem in the theory of 
recognizable languages, and it took 25 years until K. Hashiguchi showed its 
decidability [11]. The complexity of Hashiguchi’s algorithm is extremely large, and 
it remained open to deduce an upper complexity bound (cf. [17, Annexe B]). 
However, the author showed the following result: 

Theorem 3.1 ([14, 16]). Let N∈h  and K be the language accepted by an 

n-state non-deterministic automaton. It is decidable in 
( )nO22  space whether ( )Ksh  

.h≤  

In the present paper, we consider some generalizations of the star height 
problem. 

An instance of the inclusion star height problem is a pair ( )21, KK  of 

recognizable languages 1K  and 2K  satisfying .21 KK ⊆  The inclusion star height 

of ( )21, KK  is defined by 

( ) ( ) ( ){ }.min:, 2121 KrLKrKK ⊆⊆|= shsh  

Clearly, ( ) ( ) ( ){ }.,min, 2121 KKKK shshsh ≤  

For every recognizable language K, we have ( ) ( ),, KKK shsh =  and hence, 

Eggan’s star height problem is a particular case of the inclusion star height problem. 

An instance of the relative star height problem is a triple ( )σ,, mK  where 

1. K is a recognizable language, 

2. ,1≥m  

3. ( )∗Σ→Γσ REC:  where { }....,,1 mbb=Γ  

We call σ singular, if ( ) 1=σ b  for every .Γ∈b  

The mapping σ extends to a homomorphism ( ( ) ) ( ( ) ).,,,,: ⋅Σ→⋅Γσ ∗∗ ∪∪ PP  

For every ( ),Γ∈REXr  we denote ( )( )rLσ  by ( ).rσ  

The relative star height of ( )σ,, mK  is defined by 

( ) ( ) ( ) ( ){ },,min:,, KrrrmK =σΓ∈|=σ REXshsh  

where the minimum of the empty set is defined as ∞. 
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Assume ,Σ=m { },...,,1 maa=Σ  and ( ) { }ii ab =σ  for { }....,,1 mi ∈  Clearly, 

we have ( ) ( )σ= ,, mKK shsh  for every ( ).∗Σ∈RECK  Hence, Eggan’s star height 

problem is a particular case of the relative star height problem. 

The finite power problem (FPP) means to decide whether some given 
recognizable language L has the finite power property, i.e., whether there exists 

some integer k such that .0
ik

i LL =
∗ = ∪  It was raised by J. A. Brzozowski in 1966, 

and it took more than 10 years until I. Simon and K. Hashiguchi independently 
showed its decidability [21, 7]. 

Let ∗Σ⊆L  be a recognizable language and set 1:=m  and ( ) .:1 Lb =σ  We 

have ( ) kk Lb =σ 1  for every N∈k  and ( ) .1
∗∗ =σ Lb  Hence, ( ) .1,, ≤σ∗ mLsh  The 

following assertions are equivalent: 

1. ( ) .0,, =σ∗ mLsh  

2. There is a finite language ∗⊆ 1bG  such that ( ) .∗=σ LG  

3. There exists some N∈g  such that ({ }) ....,,,, 1
2
11

∗=εσ Lbbb g  

4. The language L has the finite power property. 

Hence, ( ) 0,, =σ∗ mLsh  iff L has the finite power property. Consequently, the 

finite power problem is a particular case of the relative star height problem. 

An instance of the relative inclusion star height problem is a quadruple 
( )σm,,K,K 21  where 

1. ,1K  2K  are recognizable languages satisfying ,21 KK ⊆  

2. m and σ are defined as for the relative star height problem. 

The relative inclusion star height of ( )σ,,, 21 mKK  is defined by 

( ) ( ) ( ) ( ){ }.,min:,,, 2121 KrKrrmKK ⊆σ⊆Γ∈|=σ REXshsh  

Given some instance ( )σ,,, 21 mKK  of the relative inclusion star height 

problem, we call some ( )Γ∈REXr  a solution of ( )σ,,, 21 mKK  if ( ) =rsh  

( )σ,,, 21 mKKsh  and ( ) .21 KrK ⊆σ⊆  
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For some instance ( )σ,, mK  of the relative star height problem, the quadruple 

( )σ,,, mKK  is an instance of the relative inclusion star height problem, and we 

have ( ) ( ).,,,,, σ=σ mKKmK shsh  Hence, the relative star height problem is a 

particular case of the relative inclusion star height problem. 

As above, the inclusion star height problem is particular case of the relative 
inclusion star height problem. 

The following figure shows the relations between the five above problems. The 
arrows go from particular to more general problems. 

 

In 1991, K. Hashiguchi showed that the relative inclusion star height problem is 
decidable: 

Theorem 3.2 ([12]). Given some instance ( )σ,,, 21 mKK  of the relative 

inclusion star height problem, ( )σ,,, 21 mKKsh  is.effectively computable. 

3.2 Main Results 

In the paper, we examine the complexity of the above variants of the star height 
problem. As one main result, we show that the most general variant, the relative 
inclusion star height problem, is of elementary complexity. 

We consider the complexity of the variants of the star height problem under 

various aspects. We distinguish the cases that either 2K  or its complement 2\ K∗Σ  

or both 2K  and its complement 2\ K∗Σ  are given by non-deterministic automata 

with at most 2n  states. Note that we have the latter case if 2K  is given by a 

deterministic automaton with 2n  states. 

Moreover, we distinguish the cases that Σ  is singular or arbitrary. 
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3.2.1. The Relative Inclusion Star Height Problem 

Let ( )σ,,, 21 mKK  be an instance of the relative inclusion star height problem. 

By 1n  we denote the number of states of some non-deterministic automaton which 

recognizes .1K  

We assume that for { }mi ...,,1∈  the language ( )ibσ  is given by some 

normalized nondeterministic automaton .iB  We denote by σn  the sum of the 

number of states of iB  for { }....,,1 mi ∈  

We achieve the following bounds on the space complexity of the relative 
inclusion star height problem: 

Table 1. Complexities for the relative inclusion star height problem 

 σ bound existence ( ) hmKK ≤σ,,, 21sh ( ) ?,,, 21 =σmKKsh  

sing. 2n  ( )21 nnn σO ( )22
1 2

n
nn

O
σ  

( )22
1 2

n
nn

O
σ  

2K  
arb. 222

n
 

( )22
1 2

n
nn

O
σ

( )22
1 2

nhnn
O

σ  
( )222

1 2
n

nn
O

σ  

2\ K∗Σ arb. 22n  ( )221
nnn O

σ
( )221
nhnn O

σ  ( )22
1 2

n
nn

O
σ  

both sing. 2n  ( )21 nnn σO ( )221
nhnn O

σ  ( )2
221

nnn O
σ  

We will prove the entries of Table 1 in Section 5.8.1. In the lines of the table we 
consider four cases: In the first two cases, 2K  is given by a non-deterministic 

automaton with 2n  states and σ is singular resp. not necessarily singular. In the third 

case, 2\ K∗Σ  is given by a non-deterministic automaton with 2n  states and σ is not 

necessarily singular. In the fourth case, both 2K  and 2\ K∗Σ  are given by non-

deterministic automata with at most 2n  states and σ is singular. 

There are no lines ”sing.\“ 2K∗Σ  and “both arb.” in the table, since in these 

cases, we achieve just the same complexity results as in the more general case 

”.arb.\“ 2K∗Σ  
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In the column “bound” we give a bound on the relative star height of 
( )σ,,, 21 mKK  provided that ( )σ,,, 21 mKK  has a solution. In the column 

“existence”, we give an upper bound on the space complexity for the problem to 
decide the existence of a solution. The values in this column are essentially the 
values in the column “bound” multiplied by .1 σnn  Indeed, both the problem to 

decide the existence of a solution and the upper bound on ( )σ,,, 21 mKKsh  are 

closely related to an automaton LA  which recognizes the language { ∈= wL  

( ) }.2Kw ⊆σ|Γ∗  In particular, the bound on ( )σ,,, 21 mKKsh  is the star height of 

L which is at most as large as the number of states of .LA  In Section 5.4, we will 

see that the number of states of LA  crucially depends on whether σ is singular. 

In the column ( ) ”,,,“ 21 hmKK ≤σsh  we give a space complexity for deciding 

whether or not ( ) .,,, 21 hmKK ≤σsh  In the first line, this complexity does not 

depend on h. We will discuss this fact in Section 5.8.1. 

If we want to decide whether ( ) hmKK ≤σ,,, 21sh  for some h which exceeds 

the value given in column “bound”, then the problem to decide whether 
( ) hmKK ≤σ,,, 21sh  is equivalent to the problem whether ( )σ,,, 21 mKK  has a 

solution. Hence, if h is larger than the value in the column “bound”, then we can 
decide ( ) hmKK ≤σ,,, 21sh  in the complexity shown in the column “existence”. 

Finally, the column ( ) ?”,,,“ 21 =σmKKsh  gives the complexity of computing 

( ).,,, 21 σmKKsh  An algorithm which computes ( )σ,,, 21 mKKsh  decides at 

first whether ( )σ,,, 21 mKK  has a solution. If so, then the algorithm decides for 

...,2,1,0=h  whether ( ) .,,, 21 hmKK ≤σsh  In this computation, h cannot exceed 

the value in the column “bound”. Hence, the complexity in the column 
( ) ?”,,,“ 21 =σmKKsh  is essentially the complexity from the column 

( ) ”,,,“ 21 hmKK ≤σsh  where we use the value from the column “bound” as 

bound for h. 

3.2.2. The relative star height problem 

We consider the relative star height problem, i.e., we assume 21 KK =  and let 

.: 21 KKK ==  We distinguish the cases that K is given by a non-deterministic 

automaton with n states (lines 1 and 2 in Table 2), and the case that both K and 
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K\∗Σ  are given by non-deterministic automata with at most n states (lines 3 and 4 

in Table 2). We also distinguish the cases that σ is singular (lines 1 and 3 in Table 2) 
or not necessarily singular (lines 2 and 4 in Table 2). We achieve the following 
bounds on the space complexity: 

Table 2. Complexities for the relative star height problem 

 σ bound existence ( ) hmKK ≤σ,,, 21sh ( ) ?,,, 21 =σmKKsh  

sing. n ( )2nnσO  ( )n
n

O22σ  
( )n

n
O22σ  2K  

arb. n22  
( )n

n
O22σ  

( )nhn
O22σ  

( )n
n

O222σ  

sing. n ( )2nnσO  ( )nhn O2σ  ( )2
2 nn O

σ  
both 

arb. n2  ( )nn O2σ  ( )nhn O2σ  ( )n
n

O22σ  

The entries are understood as for the relative inclusion star height problem and will 
be proved in Section 5.8.2. 

3.2.3. The inclusion star height problem 

We deal with the inclusion star height problem. Let ( )21, KK  be an instance of 

the inclusion star height problem. We achieve the following complexity bounds: 

In the lines, we distinguish the cases that either ,2K  or ,\ 2K∗Σ  or both 2K  

and 2\ K∗Σ  are given by non-deterministic automata with 2n  states. 

Table 3. Complexities for the inclusion star height problem 

 bound ( ) hKK ≤21,sh  ( ) ?, 21 =KKsh  

2K  { }21,min nn  ( )22
12

n
n

O
 

( )22
12

n
n

O
 

2\ K∗Σ  { }22,min 1
nn  ( )221

nhn O  { } ( )221 2,min
12 nn n

n O  

both { }21,min nn  ( )221
nhn O  { } ( )221,min

12 nnnn O  

Clearly, the column σ is irrelevant. Since ( )21, KK  has always a solution, the 

column “existence” is irrelevant. The entries in the column “bound” arise due to the 
fact that ( )21, KKsh  is less than ( )1Ksh  and less than ( ).2Ksh  
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3.2.4. The star height problem 

Finally, we deal with the star height problem. Let K be a recognizable language. 
We achieve the following complexity bounds: 

Table 4. Space complexity bounds for the star height problem 

 bound ( ) hK ≤sh  ( ) ?=Ksh  
K n ( )nO22  

( )nO22  
K\∗Σ  n2  ( )nhO2  ( )nO22  

both n ( )nhO2  ( )nO2  

In the lines, we distinguish the cases that either K, or ,\ K∗Σ  or both K and 

K\∗Σ  are given by non-deterministic automata with at most n states. The entries 

are proved in Section 5.8.4. 

For the computation of the star height of K ( )( ),?”“column =Ksh  we achieve 

the same double exponential space complexity bound regardless of whether K or its 
complement is given by some non-deterministic automaton with n states. However, 
the bound arises in two different ways. If K is given by some non-deterministic 

automaton, then the test ( ) ”“ hK ≤sh  requires 
( )nh O22  space. Since ( ) ,nK ≤sh  the 

algorithm answers immediately “yes” if .nh ≥  Hence, we can approximate 
( )nh O22  

by 
( )nn O22  and absorb the factor n into ( )nO2  which gives a complexity bound of 

( )
.22 nO
 

If K\∗Σ  is given by a non-deterministic automaton with n states, then the test 

( ) ”“ hK ≤sh  requires just ( )nhO2  space. Now, we do not necessarily have 

( ) ,nK ≤sh  we just have ( ) .2nK ≤sh  Thus, the algorithm can answer immediately 

“yes” if .2nh ≤  Hence, the computation of ( )Ksh  requires 
( ) ( ) ,22 nn OO

 i.e., 
( )nO22  

space. 

3.2.5. Variants of the limitedness problem 

To achieve the above results on the relative inclusion star height problem and its 
particular cases, we show some generalized variants of the limitedness problem of 
distance desert automata. 
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Let A  be a distance desert automaton and let .∗Σ⊆′L  We say that A  is limited 

on L′  iff there is some N∈d  such that ( ) dw ≤ΔA  for every ( ) .LLw ′∈ ∩A  

Theorem 3.3. Let A  be a distance desert automaton and let A′  be an 
automaton. To decide whether A  is limited on ( )A′L  is PSPACE-complete in the 

number of states of A  and .A′  

We show that the mappings definable by distance desert automata are somehow 
closed under inverse homomorphisms. 

Let 1≥m  and { }....,,1 mbb=Γ  Moreover, let ( )∗Σ→Γτ REC:  be a 

mapping. We extend σ to a homomorphism ( ) ( ).: ∗∗ Σ→Γτ PP  

We assume that for every { },...,,1 mi ∈  the language ( )ibτ  is given by a 

normalized, nondeterministic automaton .iB  We assume that ( ).ibτ∉ε  We denote 

by τn  the sum of the numbers of states of the automata iB  for { }....,,1 mi ∈  

Let 1≥h  and [ ]θ= ,,,, FIEQA  be an h-nested distance desert automaton 

over Γ. 

We define a mapping { }∞→ΣΔ′ ∗ ∪N:  by setting 

( ) { ( ) ( )}uwuuw τ∈Γ∈|Δ=Δ′ ∗ ,min: A  

for every .∗Σ∈w  

Proposition 3.4. We can effectively construct an ( )1+h -nested distance desert 

automaton A′  over Σ with at most ( )12 +−⋅ τ mnQ  states which computes .Δ′  

We show by Example 4.2 that the condition ( )ibτ∉ε  for { }mi ...,,1∈  is 

necessary for Proposition 3.4. 

4. Variants of the Limitedness Problem 

4.1. Limitedness on a Recognizable Language 

In this section, we prove Theorem 3.3. 

Let [ ]θ= ,,,, FIEQA  be a distance desert automaton and let 

[ ]FIEQ ′′′′=′ ,,,A  be an automaton. We denote ( ).: ALL =′  
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We define a distance desert automaton A ′′  by a product construction. Let 
,: QQQ ′×=′′  ,: III ′×=′′  and .: FFF ′×=′′  For every ,Σ∈a  p, ,Qq ∈  and ,p′  

,Qq ′∈′  we put the transition ( ) ( )( )qqappt ′′= ,,,,:  in E ′′  iff ( ) Eqap ∈,,  and 

( ) .,, Eqap ′∈′′  If this is the case, then we set ( ) ( )( ).,, qapt θ=θ ′′  

 Lemma 4.1. For every ,∗Σ∈w  we have 

( )
( ) ( )

( )⎩
⎨
⎧

′∉∞

′∈Δ
=Δ ′′ .LLwif

LLwifw
w

∩
∩

A
AA

A  

In particular, A ′′  is limited iff A  is limited on .L′  

Proof. Let .∗Σ∈w  Assume ( ) .LLw ′∉ ∩A  By the construction of ,A ′′  there 

is no accepting path for w in ,A ′′  and hence, ( ) .∞=Δ ′′ wA  We assume ( )ALw ∈  

L′∩  in the rest of the proof. 

Given two accepting paths ( )π′π .resp  for w in ( ),.resp AA ′  we can construct 

an accepting path π ′′  for w in A ′′  such that ( ) ( ).πθ=π ′′θ ′′  Consequently, ( )wA ′′Δ  

( ),wAΔ≤  and in particular, ( ) .N∈Δ ′′ wA  

Since ( ) ,N∈Δ ′′ wA  there is an accepting path π ′′  for w in A ′′  such that 

( )( ) ( ).wA ′′Δ=π ′′θ ′′θ  By selecting the first components of the states in ,π ′′  we 

obtain an accepting path π for w in A  such that ( ) ( ).πθ=π ′′θ ′′  Hence, ( ) ≥Δ ′′ wA  

( ).wAΔ   

Proof of Theorem 3.3. Decidability in PSPACE follows immediately from 
Lemma 4.1 and Theorem 2.1. The problem is PSPACE-hard, since it is a 
generalization of the limitedness problem for distance desert automata.  

4.2. Limitedness and Substitutions 

Let mm BB ...,,,,, 1τΓ  be as in Section 3.2.5. 

Proof of Proposition 3.4. At first, we deal with some preliminaries. We define 

a homomorphism lift ∗
+

∗ → 1: hh VV  by setting for every { },1...,,0 +∈ hi  

( ) 1: +∠=∠ ii  and for every { },...,,0 hi ∈  ( ) .: 1+= ii  It is easy to verify that 

for every ,∗∈π hV  we have ( ) ( )( ).πΔ=πΔ  Consequently, the nested distance 

desert automata A  and [ ]θ= ,,,, FIEQA  are equivalent. 
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Let ∗
+∈π 1hV  be some word such that 0∠  does not occur in π. We denote by 

∗
+∈π 1hV  the word obtained by erasing all letters 0  in π. We can easily verify that 

( ) ( ).πΔ=πΔ  Note that the factors of π and the factors of π  are essentially the same 

up to the occurrences of .0  

To construct ,A′  we replace the transitions in A  by copies of .iB  Let Qq ∈  

and { }mi ...,,1∈  such that there exists at least one transition of the form { } { }ibq ×  

Q×  in E. Let P be the states Qp ∈  which admit a transition ( ) .,, Epbq i ∈  We 

create P  copies of the accepting state of .iB  We insert the new automaton iB′  

into A  and merge q and the initial state of iB′  and we merge each state in P and one 

accepting state of .iB′   

The key idea of the transition marks in A′  is the following: For every 

( ) Eqbp i ∈,,  and every word ( )ibw τ∈  there is some path qp wˆ∈π  in A′  

such that ( ) ( )( )( ).,,1
0 qbp i
w θ=πθ −  

 

We proceed this insertion for every ,Qq ∈  { }mi ...,,1  provided that there 

exists at least one transition of the form { } { } Qbq i ××  in E. One can easily verify 

that the constructed automaton computes .Δ′  

For every state of ,A  we insert at most one copy of each .iB  Since initial and 

accepting states are unified, we insert at most mn 2−τ  new states for each state of 

.A  Thus, A′  has Q  states from A  and at most ( )mnQ 2−τ  states due to 

insertion of .s’iB  
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The reader should be aware that the above restriction ( )ibτ∉ε  is not just to 

simplify the proof as the following example shows. 

Example 4.2. Assume { },a=Σ  { }ib=Γ  and ( ) { }., abi ε=τ  Let A  be some 

nested distance desert automaton such that ( ) 1010
1 =Δ bA  but ( ) ∞=Δ wA  for 

{ }.\ 10
1bw ∗Γ∈  

Let Δ′  be as above. For every { },...,,, 10aaw ε∈  we have ( ) .10=Δ′ w  

However, for mappings of nested distance desert automata, we have either 
( ) ww ≤Δ′≤0  or ( ) .∞=Δ′ w  

One can probably generalize the concept of nested distance desert automata by 

marking transitions with words or even subsets of +
hV  to achieve a concept of 

automata which allow us to compute mappings like Δ′  from Example 4.2. However, 
such a generalization is not subject of the present paper. 

By arguing as for Proposition 3.4, we obtain: 

Proposition 4.3. We can effectively construct an automaton A′  over Σ with at 

most ( )12 +−⋅ τ mnQ  states which recognizes ( )( ).ALτ  

Proof. The proof is similar but simpler than the proof of Proposition 3.4.  

5. The Main Proofs 

5.1. String Expressions 

We recall the notion of a string expression from R. S. Cohen [4]. We define the 
notions of a string expression, a single string expression and the degree in a 
simultaneous induction. 

Every word ∗Σ∈w  is a single string expression of star height ( ) 0=wsh  and 

degree ( ) .:dg ww =  Let 1≥n  and nrr ...,,1  be single string expressions. We call 

nrrr ∪∪1:=  a string expression of star height ( ) ( ){ }nirr i ≤≤|= 1max: shsh  

and degree ( ) ( ){ }.1dgmax:dg nirr i ≤≤|=   The empty set ∅  is a string expression 

of star height ( ) 0=∅sh  and degree ( ) .0:dg =∅  
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Let ,2≥n  ,...,,1 Σ∈naa  and 11 ...,, −nss  be string expressions. We call the 

expression nn assasas ∗
−

∗∗= 12211:  a single string expression of star height ( ) =ssh  

( ){ }nisi ≤≤|+ 1max1 sh  and degree ( ) { } ( ){ }( ).1dgmax:dg nisns i ≤≤|= ∪  

String expressions define languages because they are particular rational 
expressions. 

The following lemma is due to R. S. Cohen [4]. 

Lemma 5.1 ([4, 14, 16]). Let ∗Σ⊆L  be a recognizable language. There is a 

string expression s such that we have ( )sLL =  and ( ) ( ).Ls shsh =  

We need another well-known lemma. 

Lemma 5.2 ([14, 16]). Let ∗Σ⊆L  be recognizable. We have ( ) =Lsh  

{ }( ).\ εLsh  

5.2. We Fix an Instance 

For the rest of Section 5, we fix an instance ( )σ,,, 21 mKK  of the relative 

inclusion star height problem. We assume that 1K  is given by some non-

deterministic finite automaton [ ]11111 ,,, FIEQ=A  and denote .: 11 Qn =  Below, 

we will show that we can freely assume .1K∉ε  

In the rest of Section 5, we distinguish various cases concerning the 
representation of .2K  Sometimes, we assume that 2K  is given by some non-

deterministic automaton [ ]22222 ,,, FIEQ=A  and denote .: 22 Qn =  We also 

deal with the case that 2\ K∗Σ  is given by some non-deterministic automaton 

[ ]22222 ,,, FIEQ=A  and again denote .: 22 Qn =  

For every { },...,,1 mi ∈  we assume that ( )ibσ  is given by some normalized, 

non-deterministic automaton .iB  We denote the sum of the number of states of all 

iB  for { }mi ...,,1∈  by .σn  

The language { ( ) }2: KwwL ⊆σ|Γ∈= ∗  will be of particular interest. For every 

language ∗Γ⊆′L  satisfying ( ) ,2KL ⊆′σ  we have .LL ⊆′  In Section 5.4, we will 

construct automata which recognize L and its complement. 
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5.3. On the Empty Word 

In this section, we deal with some notions to reduce the technical overhead 
caused by the empty word. The following lemma allows us to restrict our proof to 
the particular case .1K∉ε  

Lemma 5.3. We have ( ) { }( ).,,,\,,, 2121 σε=σ mKKmKK shsh  

Proof. If ,1K∉ε  then the claim is obvious. Hence, we assume .1K∈ε  Thus, 

.2K∈ε  

≥  If r is a solution of ( ),,,, 21 σmKK  then r is also a solution of 

{ }( ).,,,\ 21 σε mKK  Hence, ( ) { }( ).,,,\,,, 2121 σε≥σ mKKmKK shsh  

≤  If r is a solution of { }( ),,,,\ 21 σε mKK  then ε∪r  is a solution of 

( ).,,, 21 σmKK  Hence, ( ) { }( ).,,,\,,, 2121 σε≤σ mKKmKK shsh   

If ,1K∈ε  then we rather examine the instance { }( ).,,,\ 21 σε mKK  

Consequently, we assume 1K∈ε  for the rest of Section 5. 

We define homomorphism ( ) ( )∗∗
ε Γ→Γσ PP:  and ( ) ( )∗∗+ Σ→Σσ PP:  by 

setting for every { }mi ...,,1∈  

( )
{ } ( )

{ } ( )⎪⎩

⎪
⎨
⎧

σ∈εε

σ∉ε
=σε

ii

ii
i

bb

bb
b

if,

if
:    and   ( ) ( ) { }.\: εσ=σ+ ii bb  

We have ε
+ σσ=σ  and εεε σσ=σ  since ( ) ( )( )ii bb ε

+ σσ=σ  and 

( ) ( )( )ii bb εεε σσ=σ  for  { }....,,1 mi =  Moreover, we have =σσσ=σσ εε
+

ε  

.σ=σσ ε
+  

Lemma 5.4. The following assertions are equivalent: 

1. The instance ( )σ,,, 21 mKK  has a solution. 

2. There exists a solution r of ( )σ,,, 21 mKK  such that ( )( ) ( )( ).rLrL +σ=σ  

Proof. (2) ⇒  (1) is clear. 
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(1) ⇒  (2) Let t be solution of ( ).,,, 21 σmKK  The key idea is to replace in t 

every letter ib  satisfying ( )ib∈ε  by .ε∪ib  Hence, we apply εσ  to t to construct 

some ( )Γ∈REXr  such that ( ) ( )tr shsh =  and ( ) ( )( ).tLrL εσ=  We have 

( )( ) ( )( )( ) ( )( ) ( )( )( ) ( )( ).rLtLtLtLrL +
ε

+
ε σ=σσ=σ=σσ=σ  

From ( )( ) ( )( )tLrL σ=σ  follows that r is a solution of ( ).,,, 21 σmKK   

From the implication (1) ⇒  (2) in the proof of Lemma 5.4, we get ( ,, 21 KKsh  

) ( ).,,,, 21
+σ≥σ mKKm sh  Indeed, if t is a solution of ( ),,,, 21 σmKK  then r is a 

solution of ( ).,,, 21
+σmKK  However, there are instances satisfying ( ,, 21 KKsh  

) ( ),,,,, 21
+σ>σ mKKm sh  as the following example shows. 

Example 5.5. Let { }321 ,, aaa=Σ  and ({ } )∗∈ 21, aaL REC  be a language of 

large star height satisfying .L∉ε  It is easy to show that ( ) { }( ).3aLL ∪shsh =  

Let 4:=m  and ( ) { }ii ab =σ :  for { },3,2,1∈i  and further, ( ) { }.,: 34 ε=σ aLb ∪  

Moreover, let { }.: 321 aLKK ∪==  

We have ( ) ,0,,, 21 =σ+mKKsh  since 4b  is a solution. 

Now, let r be a solution of ( ).,4,, 21 σKK  By contradiction, assume that 4b  

occurs in ( ).rL  Let u, ∗Γ∈v  such that ( ).4 rLvub ∈  If ,ε≠u  then some word of 

the form ∗+ ΣΣ 3a  occurs in ( )( ).rLσ  If ε≠v  then some word of the form +∗ ΣΣ 3a  

occurs in ( )( ).rLσ  If ε=u  and ε=v  then ( ),4 rLb ∈  and hence, ( )( ).rLσ∈ε  

Anyway, ( )( ) { }.3aLrL ∪≠σ  Consequently, 4b  does not occur in r. 

Since σ is a bijection on { } ,,, 321
∗bbb  we can transform r into a rational 

expression for L by preserving the star height. Hence, ( ) ( ) ≥=σ rKK shsh ,4,, 21  

( ).Lsh  

Conversely, we can transform every rational expression for L into some 
( )Γ∈REXr  by preserving the star height such that ( )( ) { },3aLrL ∪=σ  and hence, 

( ) ( ).,4,, 21 LKK shsh ≤σ  
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To sum up, ( ) ( ).,4,, 21 LKK shsh =σ   

5.4. Upper Bounds on the Relative Inclusion Star Height 

In this section, we construct automata which recognize { ( )wwL σ|Γ∈= ∗  

}2K⊆  and the complement of L. We also construct an automaton for ( )Lσ  and 

decide the existence of a solution. 

Proposition 5.6. We can effectively construct a non-deterministic automaton 

LA  which recognizes .\ L∗Γ  In particular, LA  has the same states, accepting and 

final states as some automaton 2A  which recognizes .\ 2K∗Σ  

Proof. We let [ ].,,, 22222 FIEQ=A  We define a new set of transitions .LE  

For every p, ,2Qq ∈  ,Γ∈b  the triple ( )qbp ,,  belongs to LE  there exists some 

word ( )bw σ∈  such that 2A  admits a path from p to q which is labeled with w. 

This condition is decidable in polynomial time since it means to decide whether the 
language of [ ]qpEQ ,,, 22  and ( )bσ  are disjoint. Let [ ].,,, 222 FIEQ LL =A  

Let .\ Lw ∗Γ∈  We denote .1 wccw =  For { },...,,1 wi ∈  there is some 

( )ii cu σ∈  such that 21 Kuu w ∉  Hence, 2A  accepts .1 wuu  For 

{ },...,,1 wi ∈  there are ,1−iq  2Qqi ∈  such that 2A  admits a path from 

1−iq  to  iq  which is labeled with ,iu  and ,20 Iq ∈  .2Fq w ∈  The transitions 

( ) Liii Eqcq ∈− ,,1  form an accepting path for w in .LA  

Conversely, let ( ).1 Lw Lccw A∈=  Let ( ) ( )www qcqqcq ,,,, 1110 −  

be an accepting path for w in .LA  By the definition of ,LE  2A  admits for every 

{ }wi ...,,1=  a path from 1−iq  to iq  which is labeled with some ( ).ii cu σ∈  

Thus, 2A  accepts the word ( ),1 wuu w σ∈  i.e., .Lw ∉   

If ( )22 ALK =  for some non-deterministic automaton [ ],,,, 22222 FIEQ=A  

then we can complement 2A  and apply Proposition 5.6. However, the number of 

states of LA  is at most .2 2Q  
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For the rest of Section 5, we denote by [ ]LLLLL FIEQ ,,,=A  the non-

deterministic automaton which is either constructed by Proposition 5.6, or by a 
complementation of 2A  and an application of Proposition 5.6 depending how 2K  

is given. 

Proposition 5.7. From ( ),,,, 21 σmKK  we can effectively construct a non-

deterministic automaton LA  which recognizes L. In this construction, we can bound 

the number of states of LA  as follows: 

σ 2K  2\ K∗Σ  

singular 2n  22n  

arbitrary 222
n

 22n  

The columns of the table correspond to the representation of :2K  In the column 

”,“ 2K  we assume that 2K  is given by a non-deterministic automaton with 2n  

states. In the column ”,\“ 2K∗Σ  we assume that the complement of 2K  is given by 

a non-deterministic automaton with 2n  states. The rows of the table correspond to 

the case that σ is singular or not necessarily singular. 

Proof. If 2\ K∗Σ  is given by a non-deterministic automaton with 2n  states, 

then we can utilize the construction of LA  from Proposition 5.6 and apply a 

complementation. Hence, the entries in the column ”\“ 2K∗Σ  are shown. 

Assume that 2K  is given by a non-deterministic automaton [ ,, 222 EQ=A  

]22, FI  and σ is not necessarily singular. We can complement ,2A  construct the 

automaton LA  from Proposition 5.6, and complement .LA  One can also construct 

LA  directly, but this construction utilizes sets of sets of states from ,2A  i.e., it gives 

the same bound on the number of states of .LA  

Now, assume that 2K  is given by a non-deterministic automaton [ ,, 222 EQ=A   

]22, FI  and σ is singular. We can construct LA  directly by defining a new set of 

edges LE  to .2A  For every p, ,2Qq ∈  ,Γ∈b  the triple ( )qbp ,,  belongs to LE  

iff there exists some word ( )bw σ∈  such that 2A  admits a path from p to q which 

is labeled with w. It is easy to verify that [ ]222 ,,, FIEQ LL =A  recognizes L.  
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From now on, we denote by [ ]LLLLL FIEQ ,,,=A  the automaton constructed 

in Proposition 5.7. 

We have ( )( ) ( ) ,2KLL ⊆σ=σσ ε  and hence, ( ) ,LL ⊆σε  i.e., ( ) .LL =σε  

Consequently, ( ) ( )( ) ( ).LLL σ=σσ=σ ε
++  

Lemma 5.8 ([12]). The instance ( )σ,,, 21 mKK  has a solution iff  ( )LK σ⊆1  

iff ( ).1 LK +σ⊆  In this case, we have ( ) ( ).,,, 21 LmKK shsh ≤σ  

Proof. The latter claim follows from ( ) ( ).LL +σ=σ  

If ( )σ,,, 21 mKK  has a solution r, then we have ( )( ) ,21 KrLK ⊆σ⊆  and 

hence, ( )( ) ( ) .21 KLrLK ⊆σ⊆σ⊆  Consequently, ( ).1 LK σ⊆  

Conversely, if ( ),1 LK σ⊆  then the inclusion ( ) 21 KLK ⊆σ⊆  implies the 

existence of a solution of ( )σ,,, 21 mKK  and moreover, ( ) ( ).,,, 21 LmKK shsh ≤σ   

Since ( ) ,LQL ≤sh  the table in Proposition 5.7 gives an upper bound on 

( ).,,, 21 σmKKsh  

Proposition 5.9. From ( ),,,, 21 σmKK  we can effectively construct a non-

deterministic automaton which recognizes ( )Lσ  and has at most ( )12 +−⋅ σ mnQL  

states. 

Thus, we can effectively decide in space polynomial in ( ( −⋅⋅ σnQn L1O  

))12 +m  whether ( )σ,,, 21 mKK  has a solution. 

Proof. By Lemma 5.8, it suffices to decide whether ( ).1 LK +σ⊆  By 

Proposition 4.3, we construct a non-deterministic automaton which recognizes 

( ).L+σ  We can decide in ( )( )121 +−⋅⋅ σ mnQn LO  space whether 1K  is a 

subset of ( ).L+σ   

Due to the factor ,LQ  the complexity in Proposition 5.9 crucially depends on 

the representation of 2K  and on whether σ is singular. 
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5.5. The ( )RPT hd ,, -hierarchy 

Let [ ]LLLLL FIEQ ,,,=A  be the automaton recognizing L\∗Γ  by 

Proposition 5.6. 

Let ( ) ( )LLL QQ PP →Γ×δ ∗:  be defined by ( ) { }∅≠|∈=δ rPQrwP w
LL ˆ:,  

for every ,LQP ⊆  .∗Γ∈w  For every P, LQR ⊆  let ( ) { ∈= wRP :,T  

( ) }., RwPL ⊆δ|Γ+  Consequently, ( ) ( ) { }.\\, ε=Γ= + LLEQI LLLL AT  

Let 1≥d  and P, .LQR ⊆  We define ( ) { ( ) ⊆δ|Γ∈= + wPwRPT Ld ,:,0,  

}., dwR ≤  We have 

( ) ( ) ( ) ( )∪
RcPPP
LQcPP

dc
ccd PPTPPTPPTRPT

⊆=
⊆

≤≤
−=

,0
...,,0

,1
10,1210,1100,10, .,,,,  

It is easy to see that ( ) ( )∪ 1 0, .,,
≥

=
d d RPTRPT  

Now, let ,N∈h  and assume by induction that for every P, ,LQR ⊆  

( )RPT hd ,,  is already defined. We define ( ) =+ :,1, RPT hd  

( )( ( )) ( ) ( )∪
RcPPP
LQcPP

dc
cchd PPTPPTPPTPPT

⊆=
⊆
≤≤

−
∗

,0
,...,,0

,1
10,1210,111,100,1 .,,,,  

Let ,1≥d  ,N∈h  and P, LQR ⊆  be arbitrary. We have ( ).,, RPT hd∉ε  

Lemma 5.10. Let ,1≥d  ,N∈h  and P, .LQR ⊆  We have 

( ( )) ( ) ( ( )) ( ( )) .,,,, ,,0,1,
∗∗∗ ⊆ PPTPPTPPTPPT hdhdhd  

Proof. The assertion follows, because ( ) ( )PPTPPT hd ,, ,0,1 ⊆  and 

( ( ))∗PPT hd ,,  is closed under concatenation.  

From the definition, it follows immediately for every ,LQRR ⊆′⊆  

( ) ( ).,, ,, RPTRPT hdhd ′⊆  
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It is easy to show by an induction on h that for every ,dd ≥′  ( ) ⊆RPT hd ,,  

( ).,, RPT hd ′  Moreover, for every ,hh ≥′  we have ( ) ( ).,, ,, RPTRPT hdhd ′⊆  To 

sum up, for every dd ≥′  and ,hh ≥′  ( ) ( ).,, ,, RPTRPT hdhd ′′⊆  For fixed P, 

,LQR ⊆  the sets ( )RPT hd ,,  form a two-dimensional hierarchy. Whenever we use 

the notion ( )RPT hd ,,  -hierarchy, we regard P, LQR ⊆  and N∈h  as fixed, i.e., it 

is a one-dimensional hierarchy with respect to the parameter .1≥d  

By induction, we can easily construct a string expression r with ( ) =rL  

( )RPT hd ,,  such that ( ) hr ≤sh  and ( ) ,g dr ≤d  and hence, ( ( )) .,, hRPT hd ≤sh  

However, we cannot assume that there is a string expression r with ( ) =rL  

( )RPT hd ,,  such that ( ) hr =sh  and ( ) .dg dr =  In the inductive construction of r, 

several sets ( )ii PPT ,10,1 −  may be empty, and then, the star-height (resp. degree) of 

r is possibly smaller than h (resp. d). Just consider the case ( ) { }aRPT hd =,,  but 

.1,1 >> dh  

Lemma 5.11. Let ,,1 N∈≥ hd  and P, .LQR ⊆  We have ( ) ⊆RPT hd ,,  

( )., RPT  

Proof. We fix some arbitrary 1≥d  for the entire proof. 

For ,0=h  the claim follows directly from the definitions of ( )RPTd ,0,  and 

( )., RPT  

Let N∈h  and assume by induction that the claim is true for h. Consequently, 

for every LQP ⊆′  and ( ( )) ,,,
∗′′∈ PPTu hd  the inclusion ( ) ., PuP ′⊆′δ  holds. 

Let P, LQR ⊆  and ( )RPTw hd ,1, +∈  be arbitrary. We show ( ) ., RwP ⊆δ  

According to the definition of ( ),,1, RPT hd +  there are some dc ≤≤1  and 

RPPP c ⊆= ...,,0  with the following property: there are Γ∈caa ...,,1  and 
∗

− Γ∈11 ...,, cww  such that cc awwawaw 12211 −=  and 

1. for every ,1 ci ≤≤  we have ( ),,10,1 iii PPTa −∈  and 

2. for every ,1 ci ≤≤  we have ( ( )) .,,
∗∈ iihdi PPTw  
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By the definition of ,0,1T  we have for every ,1 ci ≤≤ ( ) .,1 iii PaP ⊆δ −  As 

seen above, we have for every ,1 ci ≤≤  ( ) ., iii PwP ⊆δ  Consequently, ( )wP ,0δ  

,cP⊆  i.e., ( ) ., RwP ⊆δ   

We have for every N∈h  and P, :LQR ⊆  

( ) ( ) ( ) ( )∪ ∪
1 1

,0, .,,,,
≥ ≥

⊆⊆=
d d

hdd RPRPTRPTRP TT  

5.6. The Collapse of the ( )RPT hd ,, -hierarchy 

We say that the ( )RPT hd ,, -hierarchy collapses for some N∈h  if there is 

some 1≥d  such that ( ) ( ).,,, RPRPT hd T=  Below, we will observe that the 

( )RPT hd ,,  -hierarchy collapses for some ( )( )., RPh Tsh≥  

For the relative inclusion star height problem, we are rather interested in 

( ( ))LLLhd FQIT \,,
+σ  than in ( ).,, RPT hd  In particular, it is interesting whether 

for some given ,N∈h  there exists some d such that ( ( )).\,,1 LLLhd FQITK +σ⊆  

For this, the following lemma will be very useful. 

Lemma 5.12. Let r be a string expression, ( ),g rd d≥  and ( ).rh sh≥  Let P, 

LQR ⊆  such that ( ) ( )., RPrL T⊆  We have ( ) ( ).,, RPTrL hd⊆  

Proof. We assume ( ) .∅≠rL  By ( ) ( ),, RPrL T⊆  we have ( ).rL∉ε  

Assume ( ) .0=rsh  There are some 1≥k  and +Γ∈kww ...,,1  such that 

kwwr ∪∪1=  and for every ,1 ki ≤≤  we have ,dwi ≤  and moreover, 

( ) ., RwP i ⊆δ  By the definition of ( ),,0, RPTd  we have ( ),,0, RPTw di ∈  i.e., 

( ) ( ) ( ).,, ,0, RPTRPTrL hdd ⊆⊆  

Now, let ( ) ,1≥rsh  and assume that the claim is true for every string expression 

r′  with ( ) ( ).rr shsh <′  

Clearly, it suffices to consider the case that r is a single string expression. Let 
2≥c  and Γ∈caa ...,,1  and 11 ...,, −crr  be string expressions of a star height less 

than ( )rsh  such that .12211 cc arrarar ∗
−

∗∗=  Let ( )rd gd≥  and ( ).rh sh≥  Let P, 

LQR ⊆  such that ( ) ( )., RPrL T⊆  
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Let ,:0 PP =  and for ,1 ci <≤  let ( ( )).,: 1
∗

−δ= iiii rLaPP  Finally, let 

( ).,: 1 ccc aPP −δ=  To show ( ) ( ),,, RPTrL hd⊆  we apply the definition of 

( )RPT hd ,,  with ....,,0 cPP  We defined ,0 PP =  and we can easily show =cP  

( )( ) .,0 RrLP ⊆δ  Clearly, .dc ≤  To complete the proof, we show the following 

two assertions: 

1. for every ,1 di ′≤≤  we have ( ),,10,1 iii PPTa −∈  and 

2. for every ,1 di ′<≤  we have ( ) ( ).,1, iihdi PPTrL −⊆  

(1) Clearly, ( ) ( ( ) ) .,, 11 iiiiii PrLaPaP =δ⊆δ ∗
−−  Hence, ( )iii PPTa ,10,1 −∈  

follows from the definition of ( ).,10,1 ii PPT −  

(2) We have ( ) hri <sh  and ( ) .g dri ≤d  In order to apply the inductive 

hypothesis, we still have to show ( )( ) ., iii PrLP ⊆δ  We have ( ) ( ) ⊆∗
iii rLrLa   

( ) .∗ii rLa  Thus, we obtain 

( )( ) ( ( ( ) ) ( ))iiiiii rLrLaPrLP ,,, 1
∗

−δδ=δ  

( ( ) ( )) ( ( ) ) .,, 11 iiiiiiii PrLaPrLrLaP =δ⊆δ= ∗
−

∗
−   

Let P, LQR ⊆  and ( )( )., RPh Tsh≥  By Lemma 5.1, there is a string 

expression r such that ( ) ( )RPrL ,T=  and ( ).rh sh≥  Let ( ).g: rd d=  We have 

( ) ( ) ( ) ( ),,,,
11.5Lemma

,
12.5Lemma

RPRPTrLRP hd TT ⊆⊆=  

i.e., the ( )RPT hd ,, -hierarchy collapses for h. 

Conversely, let ,N∈h  P, LQR ⊆  and assume that the ( )RPT hd ,, -hierarchy 

collapses for h. Let 1≥d  such that ( ) ( ).,,, RPRPT hd T=  As already seen, we 

can construct a string expression r such that ( ) ( ),,, RPTrL hd=  ( ) ,hr ≤sh  and 

( ) .g dr ≤d  Thus, ( )( )., RPh Tsh≥  

To sum up, the ( )RPT hd ,, -hierarchy collapses for h iff ( )( )., RPh Tsh≥  
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Proposition 5.13. Let .N∈h  There exists some 1≥d  such that ⊆1K   

( ( ))LLLhd FQIT \,,
+σ  iff ( ) .,,, 21 hmKK ≤σsh  

Proof. ⇒  Let r be a string expression such that ( ) ( ),\,, LLLhd FQITrL =  

( ) ,hr ≤sh  and ( ) .g dr ≤d  From ( ) ( )LLL FQIrL \,T⊆  { },\ ε= L  it follows 

( )( ) ( ) .2KLrL ⊆σ⊆σ  

Moreover, we have ( )( ) ( )( ).1 rLrLK σ⊆σ⊆ +  Consequently, ( ) ≥≥ rh sh  

( ).,,, 21 σmKKsh  

⇐  Let s be a solution of ( ).,,, 21 σmKK  By Lemma 5.4, we can assume 

( )( ) ( )( ).sLsL +σ=σ  Thus, 

( )( ) .21 KsLK ⊆σ⊆ +  

Our aim is to apply Lemma 5.12 to show that ( )sL  is subsumed by the set 

( )LLLhd FQIT \,,  for some .1≥d  However, the empty word causes some trouble. 

Since ,1K∉ε  we obtain 

( ) { }( ) .\ 21 KsLK ⊆εσ⊆ +  

By Lemmas 5.1 and 5.2, we can transform s into a string expression r by preserving 
the star height such that ( ) ( ) { }.\ ε= sLrL  Thus, 

( )( ) .21 KrLK ⊆σ⊆ +  

From ( ) ( ) LsLrL ⊆⊆  and ( ),rL∉ε  it follows ( ) { } ( ).\,\ LLL FQILrL T=ε⊆  

Let ( ).g: rd d=  Since ( ),rh sh≥  we can apply Lemma 5.12 and get ( ) ⊆rL  

( ),\,, LLLhd FQIT  i.e., 

( )( ) ( ( )).\,,1 LLLhd FQITrLK ++ σ⊆σ⊆   

5.7. A Reduction to Limitedness 

In this section, we construct for given N∈h  and P, LQR ⊆  a ( )1+h -nested 

distance desert automaton ( )RPh ,A  over the alphabet Γ. This automaton associates 
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to each word +Γ∈w  the least integer d such that ( ).,,1 RPTw hd +∈  It computes ∞ 

if such an integer d does not exist, i.e., if ( )., RPw T∉  

The automaton ( )LLLh FQI \,A  will be of particular interest. By applying the 

construction from Section 4.2, we transform ( )LLLh FQI \,A  to a distance desert 

automaton which associates to each word ∗Σ∈w  the least integer d such that 

( ( )).\,,1 LLLhd FQITw +
+σ∈  

In combination with Proposition 5.13 and the decidability of limitedness 
(Theorem 3.3), this construction allows us to decide whether ( ) .,,, 21 hmKK ≤σsh  

Proposition 5.14. Let N∈h  and P, .LQR ⊆  We can construct an ( )1+h -

nested distance desert automaton ( ) [ ]θ= ,,,,, FIh qqEQRPA  with the following 
properties: 

1. { }( ) { }( ),\\ IF qQqQE ×Γ×⊆  

2. 1
1
11 +

−
−+≤ +

k
kkQ

h
h  where ,2 LQk =  

3. for every ( ) ,,, Eqap ∈  we have ( )( ) hqap =θ ,,  if ,Iqp =  and 

( )( ) { }hhqap ∠∠∈θ − ...,,,...,,,, 010  if  ,Iqp ≠  

4. for every ,∗Γ∈w  ( ) { ( )}.,11 , RPTwdw hd∈|≤=+Δ minA  

Proof. We employ the mapping Lδ  from the beginning of Section 5.5. We 

proceed by induction on h. Let P, LQR ⊆  be arbitrary. 

Let .0=h  At first, we construct an automaton which accepts every word w 
with ( ) ., RwP ⊆δ  We use ( )LQP  as set of states. For every S, ,LQT ⊆  ,Γ∈b  

we set a transition ( )TbS ,,  iff ( ) ., TbSL ⊆δ  The initial state is P, every non-

empty subset of R is an accepting state. We apply to this automaton a standard 
construction to get an automaton [ ]FI qqEQ ,,,  which satisfies (1) where 

( ) { }., FIL qqQQ ′′= ∪P  Hence, ( ) ,22 +=+= kQQ LP  i.e., (2) is satisfied. 

For every transition ( ) ,,, EqbqI ∈  we set ( )( ) .,, 0=θ qbqI  For every transition 

( ) Eqbp ∈,,  with ,Iqp ≠  we set ( )( ) .,, 0∠=θ qbqI  This completes the 

construction of ( ) [ ],,,,,,0 θ= FI qqEQRPA  and (3) is satisfied. 
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We show (4). For every ∗Γ∈w  with ( ),, RPw T∉  the equation in (4) reduces 

to ∞=∞  by the construction of ( )RP,0A  and Lemma 5.11. For ( ),, RPw T∈  

the equation in (4) reduces to ww =  by the construction of ( )RP,0A  and the 

definition of ( ).,0, RPTd  

Now, let .N∈h  We assume that the claim is true for h and show the claim for 
.1+h  At first, we construct an automaton [ ].,,,: FI qqEQ ′′=′A  Let ( )LQQ P=′ :  

{ }., FI qq∪  

Let Γ∈b  and S, LQT ⊆  be arbitrary. If TS ≠  and ( ) ,, TbS ⊆δ  then we 

put the transition ( )TbS ,,  into .E′  If ( ) ,, TbP ⊆δ  then we put the transition 

( )TbqI ,,  into .E′  If ( ) ,, RbS ⊆δ  then we put the transition ( )FqbS ,,  into .E′  

Finally, if ( ) ,, RbPL ⊆δ  then we put the transition ( )FI qbq ,,  into .E′  For every 

word w which A′  accepts, we have ( )., RPw T∈  

We define { }., 11 ++ ∠→′=θ′ hhE  For every transition ( ) ,,, EqbqI ′∈  let 

( )( ) .,, 1+=′θ′ hI qbq  For every transition ( ) Eqbp ′∈,,  with ,Iqp ≠  we set 

( )( ) .,, 1+∠=′θ′ hI qbq  

We construct ( ).,1 RPh+A  For every ,LQS ⊆  we assume by induction an 

automaton ( )SSh ,A  which satisfies ( ).4...,,1  We assume that the sets of states of 

the automata ( )SSh ,A  are mutually disjoint. We construct ( )RPh ,1+A  

[ ]θ= ,,,, FI qqEQ  as a disjoint union of A′  and the automata ( )SSh ,A  for every 

LQS ⊆  and unifying both the initial and accepting state of ( )SSh ,A  with the 

state S in .A ′  Because we did not allow self loops in ,A′  the union of the 

transitions is disjoint, and hence, θ arises in a natural way as union of θ′  and the 
corresponding mappings of the automata ( )., SShA  If ( ) { }11, ++ ∠∈θ hht  for 

some ,Et∈  then t stems from .A′  Conversely, if ( ) { }hht ∠∠∈θ ...,,,...,, 00  for 

some ,Et ∈  then t stems from some automaton ( )., SShA  

Let π be some path in ( )RPh ,1+A  and assume that for every transition t in π, 

we have ( ) { }....,,,...,, 00 hht ∠∠∈θ  Then, the entire path π stems from some 

automaton ( ),, SShA  i.e., π cannot visit states in ( ) { }.\ SQLP  Conversely, if π is a 
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path in ( ),,1 RPh+A  and two states S, LQT ⊆  with TS ≠  occur in π, then π 

contains some transition t with ( ) .1+∠=θ ht  

Clearly, ( )RPh ,1+A  satisfies (1) and (3). We show (2). The states of 

( )RPh ,1+A  are ,Iq  ,Fq  k states from ( ),LQP  and the states of the k inserted 

automata ( )., SShA  We obtain 

( )

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−+++≤

∗

+ 1
1
12 1

k
kkkkQ

h
h  

( )∗  is the bound on the number of states of one ( )SSh ,A  by the inductive 

hypothesis (2) reduced by two states which are lost by identification. 

=++
−
−+=−

−
−+++=

+
++ 11

11
2

1
22

k
kkkk

k
kkkk

h
h

h
h  

1
1

11
1
1

1

1
2

1
2 +

−
−+=+

−
−+

−
−+=

+
+

+
+

k
kk

k
kk

k
kkk

h
h

h
h  

Thus, we have shown (2). 

To prove (4), we show the following two claims: 

4a. Let .1≥d  For every ( ),,1, RPTw hd +∈  there is a successful path π in 

( )RPh ,1+A  with the label w and ( )( ) .1 d≤+πθΔ  

4b. Let π be a successful path in ( )RPh ,1+A  with the label w. We have 

( )( ) ( ).,1,1 RPTw h++πθΔ∈  

Claim (4a) (resp. 4b) proves ”“ ≤  ( )”“.resp ≥  in (4). Thus, (4) is a 

conclusion from (4a) and (4b). 

We show (4a). We decompose w according to the definition of ( ).,1, RPT hd +  

There are some dc ≤≤1  and Lc QPP ⊆...,,0  with PP =0  and .RPc ⊆  For 

every ,1 ci ≤≤  there is some ( ),,10,1 iii PPTa −∈  and for every ci <≤1  there is 

some ( ( ))∗∈ iihdi PPTw ,,  such that .2211 cawawaw =  By Lemma 5.10, we can 

assume ii PP ≠−1  for every .2 ci <≤  
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If ,1=c  then w is a letter. We set ( ).,,: FI qwq=π  Then, ( ) 1+∠=πθ h  and 

( )( ) 0=πθΔ  which proves (4a). We assume 2≥c  in the rest of the proof of (4a). 

Let ( )111 ,,: Paqt I=  and ( ).,,: 1 Fccc qaPt −=  For every ,2 ci <≤  let 

( ).,,: 1 iiii PaPt −=  Clearly, ctt ...,,1  are transitions in ( ),,1 RPh+A  ( ) ,11 +∠=θ ht  

and for ,2 ci ≤≤  ( ) .1+∠=θ hit  

Let .1 ci <≤  We decompose .iw  There is some N∈in  and ∈inii ww ,1, ...,,  

( )iihd PPT ,,  such that ....,, ,1, iniii www =  

Let ci <≤1  and .1 inj ≤≤  Then, ( ).,,, iihdji PPTw ∈  By the inductive 

hypothesis, there is a path ji,
~π  in ( )iih PP ,A  with the label jiw ,  and ( ( ))ji,

~πθΔ  

.1 d≤+  The first transition of this path is marked ,h∠  any other transition is 

marked by some member in { }....,,,...,, 010 hh ∠∠∠∠ −  We rename the first and 

the last state in ji,
~π  to iP  and call the resulting path ., jiπ  Since ( )RPh ,1+A  

contains ( ),, iih PPA  ji,π  is a path in ( ).,1 RPh+A  Let ....,,: ,1, iniii ππ=π  

Clearly, iπ  is a path in ( )RPh ,1+A  from iP  to iP  with the label .iw  The 

transitions of iπ  are marked by members in { }....,,,...,, 00 hh ∠∠∠∠  In the 

particular case ,ε=iw  iπ  is simply the empty path from iP  to .iP  

Clearly, cttt 2211: ππ=π  is a successful path in ( )RPh ,1+A  with the label 

w. It remains to show ( )( ) .1 d≤+πθΔ  We apply the definition of Δ from Section 2.2. 

Let π′  be an arbitrary factor of ( ).πθ  We have ( ) .11 11 dchh ≤=+πθ≤+π′ ++  Let 

,0 hg ≤≤  and assume { } ....,,,...,, 010
∗

− ∠∠∠∠∈π′ gg  Then, π′  is a factor of 

( )ji,πθ  for some ,1 ci <≤  .1 inj ≤≤  Since ( ( )) ,1~
, dji ≤+πθΔ  we have 1+π′ g   

.d≤  Consequently, ( )( ) .1 d≤+πθΔ  

We show (4b). Let π be a successful path in ( )RPh ,1+A  with the label w. The 

first transition of π is marked ,1+∠h  any other transitions are marked by some 

member of { }....,,,...,, 100 +∠∠∠∠ hh  Let 1≥c  and factorize π into =π  

cttt 2211 ππ  such that ctt ...,,2  are the transitions in π which are marked by .1+∠h  

We have ( )( ) ,1−≥πθΔ c  i.e., ( )( ) .1+πθΔ≤c  
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We denote the labels of ctt ...,,1  and 11 ...,, −ππ c  by caa ...,,1  and ,...,, 11 −cww  

resp., i.e., .2211 cawqwaw =  Every transition ctt ...,,1  starts and ends at some 

state in ( )LQP  except 1t  which starts in Iq  and ct  which ends in .Fq  

Let .1 ci <≤  Let iP  be the state in which iπ  starts. Since the transitions of iπ  

are marked by members in { },...,,,...,, 00 hh ∠∠∠∠  iπ  is a path inside ( )., iih PPA  

Clearly, iπ  ends in the same state in which 1+it  starts, i.e., iπ  ends in some state in 

( ).LQP  To sum up, iπ  ends in .iP  

Let PP =:0  and .: RPc =  By the construction of ( ),,1 RPh+A  (in particular by 

the definition of ),E′  we have for every ,1 ci ≤≤  ( ) ,,1 iii PaP ⊆δ −  and thus, 

( ).,10,1 iii PPTa −∈  

To show ( )( ) ( ),,1,1 RPTw h++πθΔ∈  we show for every ,1 ci <≤  ∈iw  

( ( )( ) ( )) .,,1
∗

+πθΔ iih PPT  

Let .1 ci <≤  We decompose iπ  into cycles. There are some ,N∈in  and non-

empty paths inii ,1, ...,, ππ  such that iniii ,1, ...,,: ππ=π  and every path among 

inii ,1, ...,, ππ  starts and ends at ,iP  but none of the paths inii ,1, ...,, ππ  contains the 

state iP  inside. 

Let .1 inj ≤≤  We denote the label of ji,π  by ., jiw  In order to show 

( ( )( ) ( )) ,,,1
∗

+πθΔ∈ iihi PPTw  we show ( )( ) ( ).,,1, iihji PPTw +πθΔ∈  We rename the 

first (resp. last) state of ji,π  to Fq  (resp. Fq ) and obtain a path which we call 

.~
, jiπ  Clearly, ji,

~π  is an accepting path in ( )iih PP ,A  with the label ., jiw  

Let d be the weight which ( )iih PP ,A  computes on ., jiw  We have 

( ( )) ( ( )) ( )( ).~
,, πθΔ≤πθΔ=πθ≤ jijid  By induction, or more precisely, by (4) for 

( ),, iih PPA  we have ( ),,,1, iihdji PPTw +∈  and thus, ( )( ) ( ).,,1, iihji PPTw +πθΔ∈   

Proposition 5.15. Let .N∈h  We can construct an ( )2+h -nested distance 

desert automaton A  over Σ such that for every ∗Σ∈w  

( ) { ( ( ))}.\,11 , LLLhd FQITwdw +σ∈|≥=+Δ minA  
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In particular, A  has at most 

( )121
1
11 +−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
−+ σ

+ nn
k

kk
h

h  

states where .2 LQk =  

Proof. The initial point of our construction is the automaton ( )LLLh FQI \,A  

from Proposition 5.14. We denote its mapping by .hAΔ  

We consider the following mapping { }∞→ΣΔ′ ∗ ∪N:  

( ) { ( ) ( )}.,min: uwuuw h
+∗ σ∈Γ∈|Δ=Δ′ A  

If ( ) N∈Δ′ w  then there exists some ∗Γ∈u  such that ( )uw +σ∈  and 

( ) ( ).wuh Δ′=ΔA  By Proposition 5.14(4), we have ( ) ( ) ⊆∈ +Δ LLLhu FQITu \,,1A
 

( ) ( ).\,,1 LLLhw FQIT +Δ′  Thus, ( ( ) ( )).\,,1 LLLhw FQITw +Δ′
+σ∈  

Conversely, let 1≥d  and assume ( ( )).\,, LLLhd FQITw +σ∈  There is some 

( )LLLhd FQITu \,,∈  such that ( ).uw +σ∈  By Proposition 5.14 (4), we have 

( ) ,1 duh ≤+ΔA  and hence, ( ) .1 dw ≤+Δ′  

To prove the proposition, we just need an ( )2+h -nested distance desert 

automaton A  which computes Δ. We can construct such an automaton by 
Proposition 3.4. The bound on the number of states follows from Propositions 3.4 
and 5.14(2).  

5.8 Decidability and Complexity 

In this section, we show the decidability of the relative inclusion star height 
problem and we prove the complexity bounds stated in Section 3.2. 

Given ,N∈h  an algorithm can decide whether ( ) hmKK ≤σ,,, 21sh  as 

follows. 

At first, the algorithm decides by Proposition 5.9 whether ( )σ,,, 21 mKKsh  

has a solution. More precisely, it constructs the automaton LA  which recognizes 

{ ( ) }.2KwwL ⊆σ|Γ∈= ∗  From ,LA  it constructs an automaton which recognizes 
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( )Lσ  and decides whether ( ).1 LK σ⊆  If ( ),1 LK σ  then the algorithm answers 

“no”. 

If ( ),1 LK σ⊆  then the algorithm constructs .LA  From ,LA  it constructs the 

automaton A  in Proposition 5.15. Then, it decides by Theorem 3.3 whether A  is 
limited on .1K  If so, the algorithm answers “yes”, otherwise the algorithm answers 

“no”. 

Assume ( ) .,,, 21 hmKK ≤σsh  By Proposition 5.13, there is some N∈d  such 

that ( ( )).\,,1 LLLhd FQITK +σ⊆  By Proposition 5.15, the output of A  on words 

in 1K  is less than d, i.e., A  is limited on .1K  

Conversely, assume that A  is limited on 1K  and let d be the largest output of 

A  on .1K  We have N∈d  since ( ) ( ).1 ALLK =σ⊆  From Proposition 5.15, it 

follows ( ( )),\,,1 LLLhd FQITK +σ⊆  and by Proposition 5.13, ( )σ,,, 21 mKKsh  

.h≤  

The reader should be aware that A  might be limited even if ( )σ,,, 21 mKK  

has no solution. Just consider the extremal case that ∅=L  but .1 ∅≠K  Then, 

( )σ,,, 21 mKK  has no solution. However, A  is limited on 1K  since A  does not 
accept any word. 

5.8.1. On the Relative Inclusion Star Height Problem 

To prove the bounds on the space complexity of the relative inclusion star 
height problem shown in Table 1 in Section 3.2.1, we summarize the results from 
Section 5 in the following table: 

In the lines of the table we consider the same cases as in Table 1. 

Table 5 
 σ LQ  LQ  ( )LLLh FQIA \,  

sing. 2n  22n  222
nh  2K  

arb. 222
n

 22n  222
nh  

2\ K∗Σ  arb. 22n  2n  22hn  

both sing. 2n  2n  22hn  
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In the column LQ  resp. ,LQ  we state the bounds on the number of states 

of LA  resp. LA  as shown in Propositions 5.6 and 5.7. In the case “both sing.”, 

we  just choose the minimum from the more general cases. If ( )σ,,, 21 mKK  has 

a  solution r, then ( ) ( ).Lr shsh ≤  From any proof of Kleene’s theorem, we get 

( ) .LQL ≤sh  Hence, the entries in the column “bound” in Table 1 are the entries 

in column LQ  in Table 5. 

According to Proposition 5.9, we can decide in ( )( )121 +−⋅⋅ σ mnQn LO  

space whether ( )σ,,, 21 mKK  has a solution. We can estimate ( )12 +−σ mn  by 

.σn  In this way, we achieve the entries in the column “existence” in Table 1. 

The column ( )”\,“ LLLh FQIA  gives, up to a constant factor, an upper bound 

to the number of states of the automaton ( )LLLh FQIA \,  according to Proposition 

5.14(2). We have to multiply this bound by σn  to get an upper bound for the 

number of states of A  in Proposition 5.15. Then, we multiply the bound by 1n  (the 

number of states of 1A ) to decide whether A  is limited on 1K  (cf. Theorem 3.3). 

In this way, we achieve the entries in the column ( ) ”,,,“ 21 hmKK ≤σsh  in Table 1. 

If h is larger than or equal to the entry in the column “bound”, then ( ,, 21 KKsh  

) hm ≤σ,  iff ( )σ,,, 21 mKK  has a solution. Thus, we can assume that h is less 

than the entry in the column “bound” in our analysis of the space complexity of the 
test whether ( ) ”.,,,“ 21 hmKK ≤σsh  

Consequently, we can absorb the factor h into ( )22 nO  in the line “ 1K  sing.” as 

follows: ( ) ( ).2222 22222 ld
2

nnnnn nh O∈=≤ +  In the other three lines, such an 

absorption just worsens the bounds. 

We already explained the entries in the column ( ) ?”,,,“ 21 =σmKKsh  in 

Section 3.2.1. 

5.8.2. On the Relative Star Height Problem 

We show the complexity bounds for the relative star height problem given in 
Table 2. 
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The entries in Table 6 are essentially taken from Table 5. The entries in line 

“both arb.” Are taken from line  2\“ K∗Σ  arb.” in Table 5. 

As for the relative inclusion star height problem, the complexity to decide the 
existence of a solution is the product of LQ  and .σnn  In lines 2 and 4 in the 

column “existence” in Table 2, the factor n is absorbed by ( )nO2  resp. 
( )

.22 nO
 

Table 6 
 σ LQ  LQ  ( )LLLh FQIA \,  

sing. N n2  nh22  
K 

arb. n22  
n2  222

nh  
arb. n n hn2  both 

sing. n2  n hn2  

Since ,21 KK =  the automaton A  in Proposition 5.15 recognizes { }.\ εK  

Hence, the algorithm has just to decide whether A  is limited rather than whether A  

is limited on K. Consequently, we can omit the factor 1n  in the complexity in 

the  two right columns. Hence, the space complexity of the problem to decide 
( ) ”,,“ hmK ≤σsh  is determined by the number of states of A  in Proposition 5.15, 

i.e., the product of the number of states of ( )LLLh FQIA \,  and .σn  

5.8.3. On the Inclusion Star Height Problem 

Let ( )21, KK  be an instance of the relative inclusion star height problem. To 

consider ( )21, KK  as an instance of the relative inclusion star height problem, we 

set .: Σ=m  We can freely assume Σ=Γ  and set ( ) { }bb =σ :  for every .Γ∈b  

Table 7 

 LQ  LQ  ( )LLLh FQIA \,  

2K  2n  22n  222
nh  

2\ K∗Σ  22n  2n  22hn  

both 2n  2n  22hn  
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Since 2KL =  in this approach, we can use the automaton 2A  resp. its 
complementation to construct LA  and .LA  

In our approach to the relative inclusion star height problem, we replaced 

transitions by automata which recognize ( )b+σ  for some .Γ∈b  The factor 

( )12 +−σ mn  in Proposition 5.15 arose due to this replacement. For the inclusion 

star height problem, we do not need this replacement. Indeed, the factor 
( )12 +−σ mn  reduces to 1 since .2 Σ=σn  Consequently, the space complexity 

to decide ( ) hKK ≤21,sh  is the product of the number of states of ( )LLLh FQI \,A  

and .1n  

5.8.4. On the Star Height Problem 

For a summary, we can essentially use Table 7 by setting .: 2nn =  

As for the relative star height problem, we have to decide whether A  in 
Proposition 5.15 is limited rather than whether A  is limited on .1K  Hence, the space 

complexity to decide whether ( ) hK ≤sh  is polynomial in the number of states of 

( ).\, LLLh FQIA  
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