Far East Journal of Mathematical Sciences (FJMS)

Volume 47, Number 1, 2010, Pages 99-107 Published Online: November 30, 2010

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2010 Pushpa Publishing House

FUNCTIONS WITH πg -CLOSED GRAPHS

I. AROCKIARANI and K. MOHANA

Department of Mathematics Nirmala College of Women Coimbatore-641 018, India e-mail: stell11960@yahoo.co.in

Department of Mathematics DMI College of Engineering Chennai-602 103, India

e-mail: mohanamaths@yahoo.co.in

Abstract

In this paper, the concepts of πg -closed graphs for functions between topological spaces are introduced with the help of πg -open sets. Some properties of functions with a πg -closed graph have been obtained.

1. Introduction

Closed graph notion is now an active area of research and a large number of topologists have established its far-reaching effect on different concepts of point set topology. In 1969, Long [7] studied the properties of functions with closed graph in great detail. In 1983, Dube et. al [2] introduced the notion of semi-closed graph utilizing semi-open sets introduced by Levine [6]. Bandyopadhyay and Bhattacharyya [8] studied the notion of pre-closed graph utilizing pre-open sets. Dontchev and Noiri [1] have developed the concept Quasi Normal spaces and

2010 Mathematics Subject Classification: 54C10.

Keywords and phrases: πg -closed graphs, πg -open, πg -continuous, πg -irresolute, πg -connected.

Submitted by E. Thandapani

Received September 22, 2010

 πg -closed sets in topological spaces. In this paper, we introduce πg -closed graphs with the aid of πg -open sets. Some properties of functions with a πg -closed graph have been discussed.

2. Preliminaries

Throughout the present paper (X, τ) , (Y, σ) (or simply X, Y) will always denote topological spaces on which no separations axioms are assumed unless explicitly stated. If A is a subset of a space (X, τ) , then the closure of A (resp. interior of A) is denoted by cl(A) (resp. int(A)). A subset A is said to be *regular open* (resp. *regular closed*) if A = intcl(A) (resp. A = clint(A)). The finite union of regular open sets is said to be π -open.

Definition 2.1. A subset A of (X, τ) is called

- (1) πg -closed [1] if $cl(A) \subset U$ whenever $A \subset U$ and U is π -open.
- (2) πg -open [1] if X-A is πg -closed.
- (3) πg -clopen if A is both πg -open and πg -closed.

The family of all πg -open sets containing x (resp. πg -closed sets) is denoted by $\pi GO(X, x)$ (resp. $\pi GC(X, x)$).

Definition 2.2. A function $f:(X,\tau)\to (Y,\sigma)$ is called

- (1) πg -continuous [3] (resp. πg -irresolute) if the inverse image of every open (resp. πg -open) subset of Y is πg -open in X.
- (2) Contra πg -continuous [3] if the inverse image of every open subset of Y is πg -closed in X.
 - (3) $M \pi g$ -open if f(U) is πg -open for all $U \in \pi GO(X)$.

Definition 2.3 [4]. Let $f:(X, \tau) \to (Y, \sigma)$ be any function. Then the subset $G(f) = \{(x, f(x)) : x \in X\}$ of the product space $(X \times Y, \tau \times \sigma)$ is called the *graph* of f.

Definition 2.4 [4]. Let X, Y be topological spaces. A mapping $f(X, \tau) \rightarrow$

 (Y, σ) is said to have a *closed graph* if its graph G(f) is closed in the product space $X \times Y$.

Lemma 2.5 [4]. Let $f:(X, \tau) \to (Y, \sigma)$ be given. Then G(f) is closed iff for each $(x, y) \in X \times Y - G(f)$ there exists $U \in \sum (x)$ in X and $V \in \sum (y)$ in Y such that $f(U) \cap V = \phi$.

Definition 2.6. A space *X* is called

- (1) $\pi g T_1$ if for $x, y \in X$ such that $x \neq y$ there exist a πg -open set containing x but not y and a πg -open set containing y but not x.
- (2) $\pi g T_2$ if for $x, y \in X$ such that $x \neq y$ there exist $U \in \pi GO(X, x)$, $V \in \pi GO(Y, y)$ such that $U \cap V = \phi$.
 - (3) πGO -compact if every πg -open cover of X admits a finite subcover.
- (4) πg -connected if X cannot be expressed as the disjoint union of two πg -open sets.

3. πg -closed Graphs

Definition 3.1. For a function $f:(X, \tau) \to (Y, \sigma)$, the graph G(f) is said to be πg -closed graph if for each $(x, y) \in X \times Y - G(f)$ there exist $U \in \pi GO(X, x)$, $V \in \pi GO(Y, y)$ such that $(U \times V) \cap G(f) = \phi$.

Lemma 3.2. The function $f:(X, \tau) \to (Y, \sigma)$ has a πg -closed graph iff for each $(x, y) \in X \times Y - G(f)$ there exist $U \in \pi GO(X, x)$, $V \in \pi GO(Y, y)$ such that $f(U) \cap V = \phi$.

Proof. It follows from definition and the fact that for any subsets $U \subset X$ and $V \subset Y$, $(U \times V) \cap G(f) = \emptyset$ iff $f(U) \cap V = \emptyset$.

Theorem 3.3. Every closed graph is πg -closed graph.

Proof. Straightforward.

Converse of the above is not true as seen in the following example.

Example 3.4. Let $X = \{a, b\}$, $Y = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}\}$ and $\sigma = \{\phi, Y, \{c, d\}\}$, respectively. Let $f : (X, \tau) \to (Y, \sigma)$ be the mapping defined by f(a) = a, f(b) = b. Then G(f) is πg -closed but not closed.

Remark 3.5. Functions having πg -closed graph need not be πg -continuous.

Example 3.6. Let $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, X, \{c, d\}\}$ and $f : (X, \tau) \to (X, \sigma)$ be the identity mapping. Then G(f) is πg -closed but f is not πg -continuous.

Remark 3.7. A πg -continuous function need not have a πg -closed graph as shown by the following example.

Example 3.8. Let $X = \{a, b, c\}$ with the topology $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}\}$ and $\sigma = \{\phi, X, \{a, b\}\}\}$ and $f : (X, \tau) \to (X, \sigma)$ be the mapping defined by f(a) = b, f(b) = a, f(c) = c. Then f is πg -continuous but G(f) is not πg -closed.

Remark 3.9. Examples 3.6 and 3.8 show that πg -closed graph and πg -continuous function are independent concepts.

Theorem 3.10. Let $f:(X, \tau) \to (Y, \sigma)$ be πg -irresolute surjection, where X is an arbitrary topological space and Y is $\pi g - T_2$. Then G(f) is πg -closed.

Proof. Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Since Y is $\pi g - T_2$ there exist πg -open sets U, V in Y such that $f(x) \in U$, $y \in V$ and $U \cap V = \phi$. Since f is πg -irresolute, $W = f^{-1}(U) \in \pi GO(X, x)$. Hence $f(W) = f(f^{-1}(U)) \subset U$ implies $f(W) \cap V = \phi$. Hence by Lemma 3.2, G(f) is πg -closed.

Theorem 3.11. Let $f:(X, \tau) \to (Y, \sigma)$ be πg -continuous surjection, where X is an arbitrary topological space and Y is T_2 . Then G(f) is πg -closed.

Proof. Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Since Y is T_2 , there exist open sets U and V containing f(x) and y, respectively such that $U \cap V = \emptyset$. Since f is πg -continuous, $f^{-1}(U) = W \in \pi GO(X, x)$. Since f is surjection, $f(W) = f(f^{-1}(U)) \subset U$. Hence $f(W) \cap V = \emptyset$. By Lemma 3.2, G(f) is πg -closed.

Remark 3.12. From Example 3.8, we find that the condition πg -irresolute in Theorem 3.10 cannot be replaced by πg -continuous.

Theorem 3.13. Let $f:(X, \tau) \to (Y, \sigma)$ be any surjection with G(f) πg -closed. Then Y is $\pi g - T_1$.

Proof. Let $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Since f is surjective, there exist $x_1 \in X$ such that $f(x_1) = y_2$. Now $(x_1, y_1) \in X \times Y - G(f)$. Since G(f) is πg -closed, there exist a πg -open set U_1 containing x_1 and a πg -open set V_1 containing y_1 such that $f(U_1) \cap V_1 = \emptyset$. Now $x_1 \in U_1 \Rightarrow f(x_1) = y_2 \in f(U_1) \cdot y_2 \in f(U_1)$ and $f(U_1) \cap V_1 = \emptyset \Rightarrow y_2 \notin V_1$. Again, since f is surjective, there exist a point $x_2 \in X$ such that $f(x_2) = y_1$. Now $(x_2, y_2) \in X \times Y - G(f)$. Since G(f) is πg -closed, there exist $U_2 \in \pi GO(X, x_2)$ and $V_2 \in \pi GO(Y, y_2)$ such that $f(U_2) \cap V_2 = \emptyset$. Now $x_2 \in U_2 \Rightarrow f(x_2) = y_1 \in f(U_2)$. Now $y_1 \in f(U_2)$ and $f(U_2) \cap V_2 = \emptyset \Rightarrow y_1 \notin V_2$. Thus we obtain sets $V_1, V_2 \in \pi GO(Y)$ such that $y_1 \in V_1$ but $y_2 \notin V_1$ while $y_2 \in V_2$, $y_1 \notin V_2$. Hence Y is $\pi g - T_1$.

Theorem 3.14. Let $f:(X, \tau) \to (Y, \sigma)$ be any $M - \pi g$ -open surjection with G(f) πg -closed. Then Y is $\pi g - T_2$.

Proof. Let $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Since f is surjective, there exist $x_1 \in X$ such that $f(x_1) = y_2$. Then $(x_1, y_1 \in X \times Y) - G(f)$. Since G(f) is πg -closed by Lemma 3.2, there exist $U \in \pi GO(X, x_1)$ and $V \in \pi GO(Y, y_1)$ such that $f(U) \cap V = \emptyset$. Since f is $M - \pi g$ -open, f(U) is πg -open in Y. Now $x_1 \in U$ $\Rightarrow f(x_1) = y_2 \in f(U)$. Therefore, there exist $V \in \pi GO(Y, y_1)$ and $f(U) \in \pi GO(Y, y_2)$ such that $f(U) \cap V = \emptyset$. Hence Y is $\pi g - T_2$ space.

Theorem 3.15. Let $f:(X, \tau) \to (Y, \sigma)$ be injective with G(f) πg -closed. Then X is $\pi g - T_1$.

Proof. Let $x_1, x_2 (\neq x_1) \in X$. Since f is injective, $f(x_1) \neq f(x_2)$. Hence $(x_1, f(x_2)) \in X \times Y - G(f)$. Since G(f) is πg -closed by Lemma 3.2 there exist $U \in \pi GO(X, x_1)$ and $V \in \pi GO(Y, f(x_2))$ such that $f(U) \cap V = \emptyset$. $f(x_2) \in V$ and $f(U) \cap V = \emptyset \Rightarrow f(x_2) \notin f(U)$ and so $x_2 \notin U$. Similarly for $(x_2, f(x_1)) \in V$

 $X \times Y - G(f)$ there exist $U_1 \in \pi GO(X, x_2)$ and $V_1 \in \pi GO(Y, f(x_1))$ such that $f(U_1) \cap V_1 = \emptyset$. Therefore $f(x_1) \notin f(U_1)$ and so $x_1 \notin U_1$. Hence we obtain πg -open sets U and U_1 in X respectively such that $x_1 \in U$ but $x_2 \notin U$ and $x_2 \in U_1$ but $x_1 \notin U_1$. Thus X is $\pi g - T_1$.

Corollary 3.16. Let $f:(X, \tau) \to (Y, \sigma)$ be bijective and G(f) be πg -closed. Then both X and Y are $\pi g - T_1$.

Proof. It follows from Theorems 3.13 and 3.15.

Theorem 3.17. If $f:(X, \tau) \to (Y, \sigma)$ is injective, πg -irresolute with a πg -closed graph, then X is $\pi g - T_2$.

Proof. Let $x_1, x_2 (\neq x_1) \in X$. Since f is injective, $f(x_1) \neq f(x_2)$. Hence $(x_1, f(x_2)) \in X \times Y - G(f)$. Since G(f) is πg -closed by Lemma 3.2, there exist $U \in \pi GO(X, x_1)$ and $V \in \pi GO(Y, f(x_2))$ such that $f(U) \cap V = \emptyset$. Hence $U \cap f^{-1}(V) = \emptyset$. Since f is πg -irresolute, $f^{-1}(V) \in \pi GO(X, x_2)$. Hence there exist πg -open sets U and $f^{-1}(V)$ in X containing x_1 and x_2 respectively such that $U \cap f^{-1}(V) = \emptyset$. Therefore, X is $\pi g - T_2$.

Corollary 3.18. If $f:(X, \tau) \to (Y, \sigma)$ is bijective, $M - \pi g$ -open, πg -irresolute and G(f) is πg -closed, then both X and Y are $\pi g - T_2$.

Proof. Follows from Theorems 3.14 and 3.17.

Definition 3.19. A function $f:(X, \tau) \to (Y, \sigma)$ is sub contra- πg -continuous provided there exist an open base B for the topology on Y such that $f^{-1}(V)$ is πg -closed in X for every $V \in B$.

Theorem 3.20. If $f:(X, \tau) \to (Y, \sigma)$ is sub-contra- πg -continuous function and Y is T_1 . Then G(f) is πg -closed.

Proof. Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$. Let B be an open base for the topology on Y. Since f is sub contra- πg -continuous, $f^{-1}(V)$ is πg -closed in X for every $V \in B$. Since Y is T_1 , there exist a $V \in B$ such that $y \in V$ and $f(x) \notin V$. Then $(x, y) \in (X - f^{-1}(V)) \times V \subset X \times Y - G(f)$. Hence G(f) is πg -closed.

Corollary 3.21. If $f:(X, \tau) \to (Y, \sigma)$ is contra- πg -continuous function and Y is T_1 , then G(f) is πg -closed.

Proof. It follows from the fact that every contra- π g-continuous function is sub contra- π g-continuous.

4. πG -connectedness

Definition 4.1. A function $f:(X, \tau) \to (Y, \sigma)$ is said to be πg -connected if for every πg -connected set U, f(U) is πg -connected.

Definition 4.2. A topological space X is locally πG -connected if for each $x \in X$ and each $U \in \pi GO(X, x)$ there exist a $V \in \pi GO(X, \tau)$ such that $x \in V \subset U$, where V is πg -connected.

Definition 4.3. Two subsets *A* and *B* of a space *X* are called πg -separated iff $A \cap \pi g - cl(B) = \emptyset$ and $\pi g - cl(A) \cap B = \emptyset$.

Lemma 4.4. If E is a πg -connected subset of a topological space X such that $E \subset A \cup B$, where A and B are πg -separated sets, then either $E \subset A$ or $E \subset B$.

Lemma 4.5. In a topological space, if E is a πg -connected and F is any other set such that $E \subset F \subset \pi g - cl(E)$, then F is πg -connected.

Proof. Suppose F is not πg -connected. Then F can be written as the disjoint union of non-empty πg -closed sets G and H such that $F = G \cup H$. Since $E \subset F$ and E is πg -connected, $E \subset G$ or $E \subset H$. Let $E \subset G$. Then $\pi g - cl(E) \subset \pi g - cl(G) \Rightarrow \pi g - cl(E) \cap H \subset \pi g - cl(G) \cap H \Rightarrow \pi g - cl(E) \cap H = \emptyset$. Also, $F \subset \pi g - cl(E) \Rightarrow G \cup H \subset \pi g - cl(E) \Rightarrow H \subset \pi g - cl(E) \Rightarrow H \subset \emptyset$ which is a contradiction. Hence F is πg -connected.

Theorem 4.6. If $f:(X, \tau) \to (Y, \sigma)$ is πg -connected, injective, $M - \pi g$ -open map and G(f) is πg -closed, then X is $\pi g - T_2$ provided it is T_1 and locally πg -connected.

Proof. Let $x_1, x_2 \neq x_1 \in X$. Since f is injective, $f(x_1) \neq f(x_2)$. Hence $(x_1, f(x_2)) \in X \times Y - G(f)$. Since G(f) is πg -closed by Lemma 3.2, there exist $U \in \pi GO(X, x_1)$ and $V \in \pi GO(Y, f(x_2))$ such that $f(U) \cap V = \emptyset$. Since X is

locally πg -connected there exist a πg -connected set U_1 such that $x \in U_1 \subset U$. Then it follows that $f(U_1) \cap V = \emptyset$. Since f is $M - \pi g$ -open, $f(U_1)$ is πg -open. Claim: $x_2 \notin \pi g - cl(U_1)$ suppose $x_2 \in \pi g - cl(U_1)$. Since X is T_1 , $\{x_2\}$ is a closed set and hence is πg -closed. Thus $U_1 \subset U_1 \cup \{x_2\} \subset \pi g - cl(U_1 \cup \{x_2\}) \subset \pi g - cl(U_1)$. Hence by Lemma 4.5 $U_1 \cup \{x_2\}$ is πg -connected. Since f is πg -connected, $f(U_1 \cup \{x_2\}) = f(U_1) \cap f(\{x_2\})$ is πg -connected in Y which is absurd as $f(U_1)$ and Y are πg -open sets such that $f(U_1) \cap V = \emptyset$, which is a contradiction. Hence $x_2 \notin \pi g - cl(U_1)$. Setting $U_0 = X - \pi g - cl(U_1)$ we find $x_2 \in U_0$. Thus $U_1 \in \pi gO(X, x_1)$ and $U_0 \in \pi gO(X, x_2)$ with $U_1 \cap U_0 = \emptyset$. Hence X is $\pi g - T_2$.

Lemma 4.7. Every πg -closed subset of a πGO -compact space is πGO -compact relative to X.

Proof. Let A be a πg -closed subset of a πGO -compact space (X, τ) . Let $\{U_i : i \in \wedge\}$ be a cover of A by πg -open subset of X. So $A \subset \bigcup \{U_i : i \in \wedge\}$ and then $(X - A) \bigcup \{U_i : i \in \wedge\} = X$. Since X is πGO -compact there exist a finite subset \wedge_O of \wedge such that $(X - A) \bigcup \{U_i : i \in \wedge_O\} = X$. Then $A \subset \bigcup \{U_i : i \in \wedge_O\}$ and hence A is πGO -compact relative to X.

Theorem 4.8. If for the function $f:(X, \tau) \to (Y, \sigma)$, where Y is πGO -compact relative to Y, G(f) is πg -closed in $X \times Y$, then f is πg -continuous.

Proof. Let $x \in X$. Let V be open in Y and $y \in Y - V$. Then $(x, y) \in X \times Y - G(f)$. Since G(f) is πg -closed, there exist $U_y \in \pi GO(X, x)$ and $V_y \in \pi GO(Y, y)$, such that $f(U_y) \cap V_y = \emptyset$. This holds for every $y \in Y - V$. Clearly $l = \{V_y : y \in Y - V\}$ is a cover of Y - V by πg -open sets. Now Y is πGO -compact Y - V is πGO -closed. Hence by Lemma 4.7 Y - V is πGO -compact relatively to Y. So I has a finite sub family $\{V_{yi} : i = 1 \cdots n\}$ such that $Y - V \subset \bigcup_{i=1}^n V_{yi}$. Let $\{U_{yi} : i = 1 \cdots n\}$ be the corresponding sets of $\pi GO(X, x)$ satisfying $f(U_{yi}) \cup V_{yi} = \emptyset$. Set $U = \bigcap_{i=1}^n U_{yi}$. Now, $U \in \pi GO(X)$. If $\alpha \in U$, then $f(\alpha) \in V_{yi}$, for all $i = 1 \cdots n$. This implies $f(\alpha) \notin \bigcup V_{yi}$. So that $f(\alpha) \notin Y - V$ and hence $f(\alpha) \in V$. Since α is arbitrary, it follows that $f(U) \subset V$ which implies f is πg -continuous.

Acknowledgement

The authors wish to thank the referee for the valuable suggestions.

References

- [1] J. Dontchev and T. Noiri, Quasi normal spaces and πg -closed sets, Acta Math. Hungar. 89(3) (2000), 211-219.
- [2] K. K. Dube, J. Y. Lee and O. S. Panwar, A note on semi-closed graph, Ulsan Inst. Tech. Rep. 14(2) (1983), 379-383.
- [3] Erdal Ekici, On contra πg -continuous functions, Chaos Solitons Fractals 35(1) (2008), 71-81.
- [4] T. Husain, Topology and Maps, Plenum, New York, 1977.
- [5] D. S. Jankovic, On functions with α -closed graphs, Glasnik Math. 18 (1983), 141-148.
- [6] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963), 36-41.
- [7] P. E. Long, Functions with closed graphs, Amer. Math. Monthly 76(8) (1969), 930-932.
- [8] Nandini Bandyopadhyay and P. Bhattacharyya, Functions with pre-closed graphs, Bull. Malays. Math. Sci. Soc. (2) 28(1) (2005), 87-93.