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Abstract

A representation theoretic definition of Brandt matrix is given and we
prove that this definition is equivalent to the old one.

1. Introduction

Let N be a natural number and T'y(N) be the congruence modular group of level

N, that is, To(N) = {(i 3) e SL(2, Z)|c = 0 mod N}. There is a close connection

between the theory of modular forms of weight k >2 on Ty(N) and the

arithmetical theory of a rational quaternion algebra. An order M of a quaternion
algebra A over a local field k is called primitive if it satisfies one of the following
conditions. If A is a division algebra, then M contains the full ring of integers of a
quadratic extension field of k. If A is isomorphic to Mat,,,(k), then M contains a
subring which is isomorphic either to O @ O, where O s the ring of integers in k

or to the full ring of integers in a quadratic extension field of k. In [4], the subspace
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of modular forms of weight 2 generated by theta series associated with certain orders
was studied. However, he studied the subspace of cusp forms. In this paper, we
investigate the properties of representation theoretic definition of Brandt matrices
and Eisenstein series in the subspace of modular forms treated in [4].

2. Hecke Ring

Let A be a quaternion algebra over a number field k ramified precisely at a
prime g and oo. For simplicity, we restrict to the case which interest us at present,
namely, fix an order O in A of level N' = (q; L(p), v(p)) [3]. Let J denote the

idele group of A:
Ja = {é =(a)e 1_[A|X |a) € OF for almost all I},
[

where the product is over all | finite and infinite.

Let U=UO)={li=(u)edpluy €Of foralll <o} Since aUA is
commensurable with U for all & € J 5, Hecke ring H(U, J,) can be defined as the
free Z -module generated by all double cosets UaU, a e J, with multiplication
defined as in [5].

Let Jg denote the idele group of Q and put U(Z) = {i = (u) € Jg |uj € Zf
for all | < oo}. The reduced norm N : A — Q induces the reduced norm N : Jp
— Jg- For a positive integer n, we denote by T(n) the element of H(U, Ja)
which is the sum of all double cosets UaU such that the left ideal ©4 is integral
and of norm n, i.e., such that a; € O for all | <o and N(&) e nU(Z), where
a=(a).

Let Dy =Dn(O)={a=(a))e Jala €Oy, VIIN} and let H(U, Dy ) denote
the subring of H(U, J,) generated by all UaU with 4 € Dy. Note that T(n) e
H(U, Dy).

It is well known that
In = Ul UR A",

where h is the class number of O.
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2.1. The double coset representative X; = (x;;) can be chosen so that x;; € Of
for all I|N. For A =1 to h, let 1, = 0%, O, =%'0%, U, =%'U%, and
U, =U,; NA*. Then I,, A =1 .., h are representatives of all the distinct left
O -ideal classes, O, is the right order of I, and U; = Oj is the unit group of O; .

Fix an isomorphism A, ® C = (A, ®gp R) ® C ~ Mat,(C) which gives a
natural embedding of A into GL,(C). Let ¢ denote the projection Dy — A, the

above embedding A; < GL,(C).

Denote by M,(O) the complex vector space of all continuous functions f(x)

on Ja, taking values in F = C, which satisfy
f(uxa) = f(x)
forall ueU, xeJu, and a € A™.

We define a representation of the Hecke ring H(U, Dy ) on M,(O) as follows.
For a double coset UyU € H(U, Dy ), let UyU =U;Uy; be its decomposition

into disjoint right cosets.

We denote by p(U yU) the operator defined by

p(UYU) £ (x) = g(x), where g(x) = D F(y;x)

It is easy to see that p(UyU) is an endomorphism on all of H(U, Dy ).

Lemma 2.1. The structure of M,(Q) is independent of the particular choice of
0.

Proof. Let O’ be another order in A having the same level as O. Since Oy is
isomorphic to O for all 1 <o, let O = [3(9[3‘1, where B:(b|)e Ja with
b, =1. Then U(O")=pU(O)B* and Dy (O')=BDy(O)B~. The map v : f(x) -

f (Bx) induces a complex vector space isomorphism of M,(O") onto M,(O"). Then
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M, (0" is isomorphic to M (O) as Hecke modules. Clearly, the map U (O) yU(O)
—>U((’)’)[§y[§‘1u((’)') induces an isomorphism of H(U(O), Dy(0O)) onto
HU(O'), Dy(0O")). It follows by an easy calculation that v is in fact an
H(U(O), Dy (0)) module isomorphism. U

3. Brandt Matrices

Elements of M,(O) are completely determined by their values at X,

A =1 .., h Infact, for f € M,(O), put f, = f(X;). Then the mapping
f—(fy, o fp) (3.1)

gives an isomorphism of M into = FM =Fx...xF.

Using this isomorphism, we consider p as giving a representation of H(U, Dy )
on F". Specifically, for & e H(U, Dy ), we can represent p(§) as the matrix
p11(§) - (&)

p(E)=| : : o
pni(€) - phn(8)

where pj; (&) is the linear map of ith coordinate, F; = (, ..., F, ...,), to jth coordinate,

Fj= (, .- F, ...,), which is the composition of the canonical injection of F; into

Fh, the inverse of the isomorphism in (3.1), p(&§), the isomorphism in (3.1), and

finally the canonical projection of Fy x---x Fy. Let

p=e ) o), (32)

veUy
where e, =|U,|.

p; define a projection of F into F. Let i; denote the canonical injection of F;

into F. For £ € H(U, Dy ), put

Bij(€) = ij o pjj(&) o pj.
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Then B (€) is an endomorphism of F and

1311‘(@ Blh‘(a)

B() - ©3)

Bra(€) - Brn(&)

gives an endomorphism of FM" = Fx---x F which is a matrix representation of

p(&).

If £=T(n)e H(U, Dy), then we next prove that B(T(n)) is just the Brandt
matrix defined in [4].

Proposition 3.1. For n > 0, the matrix B(T(n)) defined in (3.3) is identical to

Brandt matrix. We assume that the primitive order O, the same set of ideal class

representations, the same embedding of A* into GL,(C), and the same basis of F
used to define B(T(n)) and B(n).

Proof. Let £ =UyU € H(U, Dy). Then p;;(&) is the sum, is over all cosets
U;j;lf(“on (o € A*) contained in U;L)A(;lyf(;\uk. Thus

Bij (&) = ij o pjj (&) o p;j
1
= — 11

where Za is over all cosets Uxf(;lﬁuoc (o € A¥) contained in U;j;lyikuk and

Zv isoverall y e U,

1
Bij (&) = ry ZL (3.4)
n
where the sum is over all n € A* N fglu yU X, . Thus

ByTm) =g D DL (35)
& M

where the sum Z& is over all &=UyU such that y; € O, for all | <o and
N(y) = n modU(Z) and for fixed &, the sum Zn isas in (3.5).
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We claim

By (T(M) = - D1 (35)
n

. -1 .
where the sum is over all ne I 71, with N(n)=nN(l;)/N(l,). We recall that

I, =OX, and N(l,) is the unique positive rational number in the coset
n(X, U (Z).

Assume that n e I;M1; with N(n) = nN(I; )/N(1,,). Then letting %, = (x;, ),
etc., we have n e I;llk = 2;1(92;\ soforall | <o, m = i;1y| X, for some y; € Oy,
where N(y;) =n mod Zj'. Thus letting y = (y;), we have N(y) e nmodU(Z) and
ne AN XU YUK,

Conversely, if

ne A NRU YUK, (3.7)

where y, €O, for all <o and n(y)=nmodU(Z), then we have n e )2;[1(’)2;»
= 1.1 with N(n) = N(&H)N(y)N(%;,) = nN(1;,)/N(1,,) mod U(Z). Since the

double coset UnU is uniquely determined by n, we see that the two sums are

identical.

Thus, B, (T(n)) equals the Apth the entry of Brandt matrix which shows that
the matrices B(T(n)) and B(n) are identical. U

4. Eisenstein Series

In this section, we determine the Eisenstein series part M5(0) of M,(O) and

explicitly determine the action of T(n) on this subspace.

Denote by M5(O) the subspace of M,(0O) consisting of those f which factor

through the norm, i.e., such that there exists a function g : J@ — F with f(x)=

g(N(x)) forall x e Ja, here 3§ = N(Jp) ={y =(y;) € g | Vs > O}.
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Any modular form f is determined by its values on a set of representatives for
the double cosets U \J /A", Thus, if f(x) = g(N(x)), then fis determined by its
values on a set of representatives for

NU)WN(I4)/N(A) = JE/NU)QS = U(Z)Q5/NU)Q (4.)

Now, U(Z)Q}/N(U)Q} =~ Z}/N(O%). In particular, it was shown that the

cardinality of Z,/N(O%) is always 1 or 2 so that M3(©) has dimension at most 2.

Theorem 4.1. Let O be a primitive order of level N’ = (q; L(p), v(p)).

(1) L(p) is unramified over Q. Then M5(O) is one dimensional and the

action of T(n), (n, gp) =1, on f € M5(O) isgivenby T(n)f = degT(n) f.

(2) L(p) is ramified over Q. Then M5 (0O) is two dimensional and there exist
bases f;, f, € M5(O) such that for (n, qp) =1, T(n) f; = degT(n) f; and T(n) f, =
(%)degT(n) f5.

Proof. If L(p) is unramified, then | Z;/N(O’% )| =1 and M3(O) has dimension
at most 1. Consider the mapping f : Jo — C defined as follows: for o € Ja,
N(a) = Ua for a unique U = (u;) e U(Z) and a e Q%. Let f(a)=(up). Then it
is clear that M 5(©) is one dimensional.

Define g(z) by g(z)=9g(N(z))= f(x). Let (n, N)=1 and recall that
T f)(x) = Zi f(y;x), where the sum is over representatives y; € J5 of all

cosets Uy; such that Oy; is an integral ideal of norm n. In particular,
N(yj)/n € U(Z). Also, the number of such y; is deg(T(n)). Now, let x € J5 with

N(x) = ua foraunique U € U(Z) and a € Q7. Then

T f =D fyix)= D g(N(y;)-T-a)

_ Z(%) F(x) = Z f(x) by (4.1)

=degT(n) f(x).
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Next, if L(p) is ramified, then | Z7,/N(O})| = 2. Define (%) :Ja > {£1} as
follows: for @ € J4, N(a)=u-a for a unique U = (u)) eU(Z) and a e Q7.
Then let fi(@) = (up) and f,(@) = ((%D f1(a) = (UFD (up)} It is easy to check

that f, and f, form a basis for M5(©) so that M5(©) has dimension 2. For the

action of T(n), as in the unramified case, let g (N(z)) = f(z). Assume (n, N)=1,

T(n)fj =Z £(yi%)

=Zgj(N(nyi).g.a.nj

- Zgi[N(nyi) -Jj by (4.1).

If j =1, then this equals

> (M) 10 - deatr(n

- n
1

while if j =2, then

Z(N(ﬂyo]['“(ygp/ “szm,

where N(yi)p denotes the p component of the idele N(y;) e Jgp. Now, Oy; isan

integral ideal of norm n, where (n, N) =1 so that y; = (y;;) € J5 With yj, € O%.

Hence, N(y; )p = N(yjp) is a residue mod p and

) ()

Thus, T(n) f, = deg T(n) f(x). O
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