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Abstract 

In this paper, authors introduce and study a unified class ( )λα;;;, qnmHS  

of harmonic univalent functions in the open unit disk. A number of results 
are obtained which include the coefficient estimates, sharp distortion 
theorems and extreme points of functions belonging to the class 

( ).;;;, λαqnmHS  Results concerning the convolutions of functions of 

this class with univalent, harmonic and convex functions in the unit disc 
and harmonic functions having positive real part are obtained. Relevant 
connections of the results presented here with various known results are 
briefly indicated. 

1. Introduction 

A continuous complex-valued function ivuf +=  defined in a simply 

connected domain D is said to be harmonic in D if both u and v are real harmonic in 
D. In any simply connected domain we can write ,ghf +=  where h and g are 
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analytic in D. We call h the analytic part and g the co-analytic part of f. A necessary 
and sufficient condition for f to be locally univalent and sense-preserving in D is that 

( ) ( ) ,, Dzzgzh ∈′>′  see Clunie and Sheil-Small [2]. 

Denote by HS  the class of functions ghf +=  that is harmonic univalent and 

sense-preserving in the unit disk { }1: <= zzU  for which ( ) ( ) .0100 =−= zff  

Then for ,HSghf ∈+=  we may express the analytic functions h and g as 
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Denote by ( )λα;;;, qnmHS  the class of all functions of the form (1.1) that 

satisfies the condition 

( ) ( )∑
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where 

{ } 10,1,0,,, 0 ≤λ≤∈>∈∈ qnmNnNm  and .10 <α≤  

The class ( )λα;;;, qnmHS  with 01 =b  will be denoted by ( ).;;;,0 λαqnmHS   

We note that by specializing the parameters we obtain the following known 
subclasses which have been studied by various authors. 

1. The class ( ) ( )α≡α ;,0;;0;, nmHSnmHS  was studied by Dixit and Porwal 
[3]. 

2. The class ( ) ( )kTHS H ,,;;1;0,1 λα≡λα  was studied by Joshi and Darus [5]. 

3. The classes ( ) ( )α≡α HSHS 0;;0;0,1  and ( ) ( )α≡λα HCHS ;;0;1,2  were 

studied by Öztürk and Yalcin [6]. 

4. The classes ( ) HSHS ≡0;0;0;0,1  and ( ) HCHS ≡λ;0;0;1,2  were studied 

by Avci and Zlotkiewicz [1]. 

If h, g, H, G are of the form (1.1) and if ( ) ( ) ( )zgzhzf +=  and ( ) =zF  

( ) ( ),zGzH +  then the convolution of f and F is defined to be the function 
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while the integral convolution is defined by 
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2. Main Results 

First, we show that the class ( )λα;;;, qnmHS  consists of sense-preserving 

and harmonic univalent mappings in U. 

Theorem 2.1. The class ( )λα;;;, qnmHS  consists of univalent sense-

preserving harmonic mappings. 

Proof. If ,21 zz ≠  then 
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which proves univalence. 
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Note that f is sense-preserving in U, this is because 
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In the following theorem, we determine the distortion bounds for the functions 
of ( ).;;;, λαqnmHS  

Theorem 2.2. If ( ),;;;, λα∈ qnmHSf  then 
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Proof. We only prove the right hand inequality. The proof for the left hand 
inequality is similar and will be omitted. Let ( ).;;;, λα∈ qnmHSf  
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Taking the absolute value of f we obtain 
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The following covering result follows from the left hand inequality in Theorem 
2.2. 

Corollary 2.3. Let f of the form (1.1) be so that ( ).;;;, λα∈ qnmHSf  Then 
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Theorem 2.4. The extreme points of ( )λα;;;,0 qnmHS  are only the functions 

of the form k
k zaz +  or l

l zbz +  with 

( ) ( ) ( ){ ( ) }
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Proof. Suppose that 
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Then, if 0>ξ  is small enough we can replace ka  by ξ+ξ− kk aa ,  and we 

obtain two functions that satisfy the same condition for which one obtains ( ) =zf  

( ) ( )[ ].
2
1

21 zfzf +  Hence, f is not a possible extreme point of ( ).;;;,0 λαqnmHS  

Now, let ( )λα∈ ;;;,0 qnmHSf  be such that 
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.0,0 ≠≠ lk ba  

If 0>ξ  is small enough and if μ, τ with 1=τ=μ  are properly, chosen 

complex numbers, then leaving all but lk ba ,  coefficients of ( )zf  unchanged and 

replacing lk ba ,  by 
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we obtain functions ( ) ( )zfzf 21 ,  that satisfy (2.1) such that 

( ) ( ) ( )[ ].
2
1
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In this case f cannot be an extreme point. Thus for 
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( ) k
k zazzf +=  and ( ) l

l zbzzf +=  are extreme points of ( ).;;;,0 λαqnmHS   

Remark 1. 

1. If ,0,0 =λ=q  then the extreme points of the class ( )α,,0 nmHS  are 
obtained. 

2. If ,1,0,1 === qnm  then the extreme points of the class ( )kTH ,, λα  are 
obtained. 

3. If ,0,0,0,1 =λ=== qnm  then the extreme points of the class ( )α0HS  
are obtained. 

4. If ,0,0,1,2 =λ=== qnm  then the extreme points of the class ( )α0HC  
are obtained. 

Let 0
HK  denote the class of harmonic univalent functions of the form (1.1) with 

01 =b  that map U onto convex domains. It is known [2, Theorem 5.10] that the 

sharp inequalities 2
1,2

1 −≤+≤ kBkA kk  are true. These results will be used in 

next theorem. 

Theorem 2.5. Suppose that 
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belongs to .0
HK  Then if ( ),;;;,0 λα∈ qnmHSf  then ( ;1,10 −−∈∗ nmHSFf  

),;; λαq  provided 1≥n  and ( ).;;;,0 λα∈◊ qnmHSFf  
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Proof. Since ( ),;;;,0 λα∈ qnmHSf  we have 
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It follows that  

( ).;;;1,10 λα−−∈∗ qnmHSFf  

Next, again using (2.2), we have 
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Thus, we have  

( ).;;;,0 λα∈◊ qnmHSFf  

This completes the proof of Theorem 2.5.  
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Let S denote the class of analytic univalent functions of the form ( ) += zzF  

∑
∞

=2
.

k

k
k zA  It is well known that the sharp inequality kAk ≤  is true. It is required 

in next theorem. 

Theorem 2.6. If ( )λα∈ ;;;,0 qnmHSf  and ,SF ∈  then for 

( ) ( ),;;;1,1,1 0 λα−−∈ε+∗≤ε qnmHSFFf    if .1≥n  

Proof. The proof of this theorem is much akin to that of Theorem 2.5, therefore 
we omit the details involved. 

Let 0
HP  denote the class of functions F complex and harmonic in U, ghf +=  

such that ( ) UzzfRe ∈> ,0  and ( ) ( )∑ ∑
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It is known [4, Theorem 3] that the sharp inequalities ,1+≤ kAk  1−≤ kBk  

are true. 

Theorem 2.7. Suppose that 
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1
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A
 

Proof. The proof of this theorem is similar to that of Theorem 2.5, therefore, we 
omit details involved.  
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