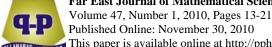
Far East Journal of Mathematical Sciences (FJMS)



This paper is available online at http://pphmj.com/journals/fjms.htm © 2010 Pushpa Publishing House

ON M-SYSTEMS IN ORDERED AG-GROUPOIDS

TARIQ SHAH*, INAYATUR REHMAN* and RONNASON CHINRAM**

*Department of Mathematics
Quaid-i-Azam University
Islamabad, Pakistan
e-mail: stariqshah@gmail.com, s_inayat@yahoo.com

**Department of Mathematics
Prince of Songkla University
Hat Yai, Songkhla, 90110 Thailand

**Centre of Excellence in Mathematics CHE, Si Ayuthaya Road Bangkok, 10400, Thailand e-mail: ronnason.c@psu.ac.th

Abstract

In this paper, we study ideals, M-systems, N-systems and I-systems of ordered AG-groupoids. We prove that if L is a left ideal of an ordered AG-groupoid with left identity, then L is quasi-prime if and only if $S \setminus L$ is an M-system; L is quasi-semiprime if and only if $S \setminus L$ is an N-system and N is quasi-irreducible if and only if $N \setminus L$ is an N-system. Moreover, we show that every quasi-semiprime left ideal of an ordered AG-groupoid with left identity is an intersection of some quasi-prime left ideals.

1. Introduction and Preliminaries

Abel-Grassmann's groupoid, abbreviated as AG-groupoid, is a groupoid whose 2010 Mathematics Subject Classification: 20N99, 06F99.

Keywords and phrases: ordered AG-groupoids, *M*-systems, *N*-systems, *I*-systems, ideals, quasi-prime, quasi-semiprime.

Received August 19, 2010; Revised October 5, 2010

elements satisfy the left invertive law: (ab)c = (cb)a. An AG-groupoid is the midway structure between a commutative semigroup and a groupoid. This structure is also known as left almost semigroup, abbreviated as LA-semigroup. A groupoid G is called *medial* if (xa)(by) = (xb)(ay) for all $a, b, x, y \in G$, and is called *paramedial* if (ax)(yb) = (bx)(ya) for all $a, b, x, y \in G$. It is well known that every AG-groupoid is medial [3] but in general AG-groupoid needs not be paramedial. However, every AG-groupoid with left identity is paramedial [8].

A nonempty subset M of a semigroup S is said to be an M-system if for all $a, b \in M$, there exists $x \in S$ such that $a(xb) \in M$ ([10]). M-systems in semigroups were studied in many papers ([1], [7], etc). Later, M-systems were studied in various kind of some generalizations of semigroups, for example, M-systems in ordered semigroups were studied by Kehayopulu ([4]), M-systems in LA-semigroups were studied by Mushtaq and Khan ([6]), M-systems in ordered Γ -semigroups were studied by Hila ([2]) and M-systems in Γ -AG-groupoids were studied by Shah and Rehman ([9]), etc.

Let S be a nonempty set, \cdot be a binary operation on S and \leq be relation on S. Then (S, \cdot, \leq) is called an *ordered AG-groupoid* if (S, \cdot) is an AG-groupoid, (S, \leq) is a partially ordered set and for all $a, b, c \in S, a \leq b$ implies that $ac \leq bc$ and $ca \leq cb$. This structure is a generalization of AG-groupoids and commutative ordered semigroups. The following theorem follows by Theorem 1 in [5] and definitions of ordered AG-groupoids and ordered semigroups.

Theorem 1.1. An ordered AG-groupoid S is an ordered semigroup if and only if a(bc) = (cb)a for all $a, b, c \in S$.

For $H \subseteq S$, let $(H] = \{t \in S \mid t \leq h \text{ for some } h \in H\}$. This lemma is similar to the case of ordered semigroups.

Lemma 1.2. Let S be an ordered AG-groupoid and A, B be subsets of S. The following statements hold:

(i) If
$$A \subseteq B$$
, then $(A] \subseteq (B]$.

(ii)
$$(A](B] \subseteq (AB]$$
.

(iii)
$$((A](B]] = (AB].$$

The aim of this paper is to study ideals, *M*-systems, *N*-systems and *I*-systems of ordered AG-groupoids.

2. Main Results

A nonempty subset A of an ordered AG-groupoid S is called a *left ideal* of S if $(A] \subseteq A$ and $SA \subseteq A$ and called a *right ideal* of S if $(A] \subseteq A$ and $AS \subseteq A$. A nonempty subset A of S is called an *ideal* of S if A is both left and right ideals of S.

Proposition 2.1. Let S be an ordered AG-groupoid with left identity. Then every right ideal of S is a left ideal of S.

Proof. Let R be a right ideal of S. Then $(R] \subseteq R$ and $RS \subseteq R$. We claim that $SR \subseteq R$, indeed, $SR = (eS)R = (RS)e \subseteq Re \subseteq R$.

Let *S* be an ordered AG-groupoid. For $A \subseteq S$, let $\langle A \rangle_l$ denote the left ideal of *S* generated by *A* and for $a \in S$, $\langle \{a\} \rangle_l$ be denoted by $\langle a \rangle_l$.

Lemma 2.2. Let S be an ordered AG-groupoid with left identity and $A \subseteq S$. Then S(SA) = SA and $S(SA] \subseteq (SA]$.

Proof. Since *S* has a left identity, S = SS. Then by definition of AG-groupoids and paramedial law, we have S(SA) = (SS)(SA) = (AS)(SS) = (AS)S = (SS)A = SA. Thus S(SA) = SA. By Lemma 1.2, we have S(SA) = SA = SA. \square

Lemma 2.3. Let S be an ordered AG-groupoid with left identity and $a \in S$. Then $\langle a \rangle_I = (Sa]$.

Proof. Since S has a left identity, $a \in (Sa]$. By Lemma 2.2, we have $S(Sa] \subseteq (Sa]$. So (Sa] is a left ideal of S containing a. Next, let L be another left ideal containing a. Thus $Sa \subseteq L$, so $(Sa] \subseteq L$.

An ordered AG-groupoid is called *fully idempotent* if all ideals of S are idempotent. For $A \subseteq S$, let $\langle A \rangle_i$ denote the ideal of S generated by A and for $a \in S$, $\langle \{a\} \rangle_i$ denoted by $\langle a \rangle_i$.

Proposition 2.4. Let S be an ordered AG-groupoid with left identity e and A, B be ideals of S. If S is fully idempotent, then $A \cap B = \langle AB \rangle_i$ and the ideals of S form a semilattice (L_S, \land) , where $A \land B = \langle AB \rangle_i$.

Proof. Since $AB \subseteq A \cap B$, $\langle AB \rangle_i \subseteq A \cap B$. Conversely, let $a \in A \cap B$. Thus $a \in \langle a \rangle_i = \langle a \rangle_i \langle a \rangle_i \subseteq AB \subseteq \langle AB \rangle_i$. Thus $A \cap B \subseteq \langle AB \rangle_i$. Hence $A \cap B = \langle AB \rangle_i$.

Since $A \wedge B = \langle AB \rangle = A \cap B$ and \cap is associative, commutative and idempotent binary operation, (L_S, \wedge) is a semilattice.

Let *S* be an ordered AG-groupoid. A nonempty subset *M* of *S* is called an *M*-system of *S* if for each $a, b \in M$, there exist $x \in S$ and $c \in M$ such that $c \le a(xb)$. Equivalent definition: for each $a, b \in M$, there exists $c \in M$ such that $c \in (a(Sb)]$.

Remark. (i) If (S, \cdot) is an AG-groupoid, we endow S with the order relation $\leq := id_S$, then (S, \cdot, \leq) is an ordered AG-groupoid. Moreover, the set M is an M-system of an AG-groupoid (S, \cdot) if and only if M is an M-system of an ordered AG-groupoid (S, \cdot, \leq) .

(ii) If an ordered AG-groupoid S is an ordered semigroup, then the set M is an M-system of an ordered AG-groupoid S if and only if M is an M-system of an ordered semigroup S.

A nonempty subset P of an ordered AG-groupoid S is called *quasi-prime* if and only if for any left ideals A, B of S, $AB \subseteq P$ implies $A \subseteq P$ or $B \subseteq P$.

Lemma 2.5. Let L be a left ideal of an ordered AG-groupoid S with identity e. Then L is quasi-prime if and only if for all $a, b \in S$, $a(Sb) \subseteq L$ implies $a \in L$ or $b \in L$.

Proof. Suppose that $a(Sb) \subseteq L$. We get $S(a(Sb)) \subseteq SL \subseteq L$ and by medial law, paramedial law and the definition of AG-groupoid, we have

$$S(a(Sb)) = (SS)(a(Sb)) = (Sa)(S(Sb)) = (Sa)((SS)(Sb))$$
$$= (Sa)((bS)(SS)) = (Sa)((bS)S) = (Sa)((SS)b) = (Sa)(Sb).$$

So S(a(Sb)) = (Sa)(Sb). Since L is a left ideal of S, $(Sa](Sb] \subseteq ((Sa)(Sb)] = (S(a(Sb))] \subseteq L$. Since (Sa] and (Sb] are left ideals of S and L is quasi-prime, $(Sa] \subseteq L$ or $(Sb] \subseteq L$. By Lemma 2.3, $a \in L$ or $b \in L$. Conversely, let A and B be left ideals of S such that $AB \subseteq L$ and $A \nsubseteq L$. Then there exists an element x in S

such that $x \in A$ but $x \notin L$. Now for all $y \in B$, we have $x(Sy) \subseteq A(SB) \subseteq AB \subseteq L$. Hence by assumption, $y \in L$ for all $y \in B$. Hence $B \subseteq L$, this implies that L is quasi-prime.

Theorem 2.6. Let S be an ordered AG-groupoid with left identity and L be a proper left ideal of S. Then L is quasi-prime if and only if $S \setminus L$ is an M-system.

Proof. Assume L is quasi-prime and let $a, b \in S \setminus L$. Suppose $c \notin (a(Sb)]$ for all $c \in S \setminus L$. Then $(a(Sb)] \subseteq L$, this implies $a(Sb) \subseteq L$. By Lemma 2.5, $a \in L$ or $b \in L$, which is impossible. Then there exists $c \in S \setminus L$ such that $c \in (a(Sb)]$. Hence, $S \setminus L$ is an M-system.

Conversely, assume that $S \setminus L$ is an M-system. Let $a, b \in S$ such that $a(Sb) \subseteq L$. Suppose that $a, b \in S \setminus L$. Since $S \setminus L$ is an M-system, there exist $c \in S \setminus L$ and $c \in S \setminus L$ and $c \in S \setminus L$ such that $c \in A(c) \in A(c)$ is a left ideal of C, we have $c \in L$, which is impossible. Hence $c \in L$ or $c \in L$. By Lemma 2.5, $c \in L$ is quasi-prime.

Let *S* be an ordered AG-groupoid. A nonempty subset *N* of *S* is called an *N-system* of *S* if for each $a \in N$, there exist $x \in S$ and $c \in N$ such that $c \le a(xa)$. Equivalent definition: for each $a \in N$, there exists $c \in N$ such that $c \in (a(Sa)]$.

Remark. (i) In [6], definition of *N*-systems in AG-groupoids is called a *P-system*. If (S, \cdot) is an AG-groupoid, we endow *S* with the order relation $\leq := id_S$, then (S, \cdot, \leq) is an ordered AG-groupoid. Moreover, the set *N* is a *P*-system of an AG-groupoid (S, \cdot) if and only if *N* is an *N*-system of an ordered AG-groupoid (S, \cdot, \leq) .

- (ii) If an ordered AG-groupoid S is an ordered semigroup, then the set N is an N-system of an ordered AG-groupoid S if and only if N is an N-system of an ordered semigroup S.
 - (iii) Let S be an ordered AG-groupoid. Each M-system of S is an N-system of S.

A nonempty subset P of an ordered AG-groupoid S is called *quasi-semiprime* if for any left ideal A of S, $A^2 \subseteq P$ implies that $A \subseteq P$. It is obvious that a quasi-prime subset of S is a quasi-semiprime subset of S.

18

Lemma 2.7. Let L be a left ideal of an ordered AG-groupoid S with identity e. Then L is quasi-semiprime if and only if for all $a \in S$, $a(Sa) \subseteq L$ implies $a \in L$.

Proof. Suppose that $a(Sa) \subseteq L$. We get $S(a(Sa)) \subseteq SL \subseteq L$ and by similar in the proof of Lemma 2.5, we have S(a(Sa)) = (Sa)(Sa). Since L is a left ideal of S, $(Sa](Sa] \subseteq ((Sa)(Sa)] = (S(a(Sa))] \subseteq L$. Since (Sa] is a left ideal of S and L is quasi-semiprime, $(Sa] \subseteq L$. By Lemma 2.3, $a \in L$. Conversely, let A be a left ideal of S such that $A^2 \subseteq L$. Now for all $x \in A$, we have $x(Sx) \subseteq A(SA) \subseteq A^2 \subseteq L$. Hence by assumption, $x \in L$ for all $x \in A$. Hence $A \subseteq L$, this implies that L is quasi-semiprime.

Theorem 2.8. Let S be an ordered AG-groupoid with left identity and L be a proper left ideal of S. Then L is quasi-semiprime if and only if $S \setminus L$ is an N-system.

Proof. Assume L is quasi-semiprime and let $a \in S \setminus L$. Suppose $c \notin (a(Sa)]$ for all $c \in S \setminus L$. Thus $(a(Sa)] \subseteq L$, this implies $a(Sa) \subseteq L$. By Lemma 2.7, $a \in L$, which is impossible. So there exists $c \in S \setminus L$ such that $c \in (a(Sa)]$. Hence, $S \setminus L$ is an *N*-system.

Conversely, assume that $S \setminus L$ is an N-system. Let $a \in S$ such that $a(Sa) \subseteq L$. Suppose that $a \in S \setminus L$. Since $S \setminus L$ is an N-system, there exist $c \in S \setminus L$ and $x \in S$ such that $c \le a(xa) \in a(Sa) \subseteq L$. Then $c \in L$, which is impossible. Therefore $a \in L$. By Lemma 2.7, L is quasi-semiprime.

The intersection of quasi-prime left ideals of an ordered AG-groupoids S (if it is non empty) needs not to be quasi-prime left ideals of S. The following proposition shows that it becomes quasi-semiprime.

Proposition 2.9. Let J_i be any set of quasi-prime left ideals of an ordered AG-groupoid for all $i \in I$. If $P = \bigcap_{i \in I} J_i \neq \emptyset$, then P is a quasi-semiprime left ideal of S.

Proof. Let L be a left ideal of S such that $L^2 \subseteq P$. Then $L^2 \subseteq J_i$ for all $i \in J$. This implies $L \subseteq J_i$ for all $i \in J$. So $L \subseteq P$. Hence, P is a quasi-semiprime left ideal of S.

Theorem 2.10. Every quasi-semiprime left ideal of an ordered AG-groupoid with left identity is an intersection of some quasi-prime left ideals.

Proof. Let L be a quasi-semiprime left ideal of S and $\{J_i | i \in I\}$ be the set of all quasi-prime left ideals of S containing L. This set is not empty because S itself is a quasi-prime left ideal of S. Let $a \in S \setminus L$. Then $a(Sa) \not\subseteq L$, take $a_1 \in a(Sa) \subseteq L$ (a(Sa)] but $a_1 \notin L$. From $a_1(Sa_1) \not\subseteq L$, we have $a_2 \in S$ such that $a_2 \in a_1(Sa_1)$ $\subseteq (a_1(Sa_1)]$ but $a_2 \notin L$. We continue this way, take $a_i \in (a_{i-1}(Sa_{i-1})]$ but $a_i \notin L$. We put $a = a_0$ and let $A = \{a_0, a_1, a_2, ...\}$. So $A \cap L = \emptyset$. Next, we claim that M is an M-system. Let a_i , $a_i \in M$. Let us assume that $i \leq j$. If i = j, then $a_{i+1} \in M$ $(a_i(Sa_i)] = (a_j(Sa_i)].$ If i < j, then $a_{j+1} \in (a_j(Sa_j)] \subseteq (a_j(S(a_{j-1}(Sa_{j-1})))] \subseteq$ $(a_i(Sa_{i-1})] \subseteq \cdots \subseteq (a_i(Sa_i)]$ by Lemma 2.2 and Lemma 1.2. A similar argument takes care of the case in which i > j. Now we have that A is an M-system and $A \cap L = \emptyset$. Let $T = \{M \mid M \text{ is an } M\text{-system of } S \text{ such that } a \in M \text{ and } M \cap L$ $=\emptyset$. Then $T \neq \emptyset$ because $A \in T$. By Zorn's Lemma, there exists a maximal element, say M' in T. Again let $X = \{J \mid J \text{ is a left ideal of } S \text{ such that } J \cap M' = \emptyset$ and $L \subseteq J$. Then $X \neq \emptyset$ because $L \in X$. By Zorn's Lemma, there exists a maximal element, say J' in X. Let $x, y \in S \setminus J'$. Then $(Sx \cup J'] \cap M' \neq \emptyset$ and $(Sy \cup J' \cap M' \neq \emptyset)$. So there exist $s, t \in M'$ such that $s \leq ux$ and $t \leq vy$ for some $u, v \in S$. Since M' is an M-system, there exists $m \in M$ such that $m \leq S(wt)$ for some $w \in S$. Thus $m \le (ux)(w(vy)) = ((vy)x)(wu) = (uw)(x(vy)) = (e(uw))(x(vy))$ =(ex)((uw)(vy))=x((yw)(vu))=x(((vu)w)y). Then $S\backslash J'$ is an M-system. From maximality of M', $S \setminus J' = M'$ and so J' is a quasi-prime left ideal of S containing L. Since $a \notin J'$, $L = \bigcap \{J_i | i \in I\}$.

Theorem 2.11. Let S be an ordered AG-groupoid. If N is an N-system of S and $a \in N$, then there exists an M-system M of S such that $a \in M \subseteq N$.

Proof. Since N is an N-system and $a \in N$, there exists $c_1 \in N$ such that $c_1 \in (a(Sa)]$. So $(a(Sa)] \cap N \neq \emptyset$, take $a_1 \in (a(Sa)] \cap N$. Since N is an N-system, there exists $c_2 \in N$ such that $c_2 \in (a_1(Sa_1)]$. So $(a_1(Sa_1)] \cap N \neq \emptyset$, take $a_2 \in (a_1(Sa_1)] \cap N$. We continue this way, take $a_i \in (a_{i-1}(Sa_{i-1})] \cap N$. We put $a = a_0$ and let $M = \{a_0, a_1, a_2, ...\}$. We have M is an M-system and $a \in M \subseteq N$.

Let *S* be an ordered AG-groupoid with left identity and a nonempty subset of *S* be called *quasi-irreducible* if for any left ideals *A*, *B* of *S*, $A \cap B \subseteq P$ implies that $A \subseteq P$ or $B \subseteq P$.

Let *S* be an ordered AG-groupoid with left identity. A nonempty subset *I* of *S* is called an *I-system* of *S* if for each $a, b \in I$, $(\langle a \rangle_l \cap \langle b \rangle_l) \cap I \neq \emptyset$.

Theorem 2.12. Let S be an ordered AG-groupoid with left identity and L be a proper left ideal of S. Then the following statements are equivalent.

- (1) L is quasi-irreducible.
- (2) For all $a, b \in S$, $\langle a \rangle_1 \cap \langle b \rangle_1 \subseteq L$ implies $a \in L$ or $b \in L$.
- (3) $S \setminus L$ is an I-system.

Proof. (1) \Rightarrow (2): Assume L is quasi-irreducible and let $a, b \in S$ such that $\langle a \rangle_l \cap \langle b \rangle_l \subseteq L$. Thus $\langle a \rangle_l \in L$ or $\langle b \rangle_l \in L$. Then $a \in L$ or $b \in L$.

- (2) \Rightarrow (3): Let $a, b \in S \setminus L$. Suppose $(\langle a \rangle_l \cap \langle b \rangle_l) \cap (S \setminus L) = \emptyset$. This implies $\langle a \rangle_l \cap \langle b \rangle_l \subseteq L$. So $a \in L$ or $b \in L$, it is impossible. Hence $(\langle a \rangle_l \cap \langle b \rangle_l) \cap (S \setminus L) \neq \emptyset$. Therefore, $S \setminus L$ is an I-system.
- $(3)\Rightarrow (1)$: Let A,B be left ideals of S such that $A\cap B\subseteq L$. Suppose $A\nsubseteq L$ and $B\nsubseteq L$. Let $a\in A\backslash L$ and $b\in B\backslash L$. This implies that $a,b\in S\backslash L$. By hypothesis, $(\langle a\rangle_l\cap\langle b\rangle_l)\cap(S\backslash L)\neq\varnothing$. Then there exists an element $c\in S$ such that $c\in\langle a\rangle_l\cap\langle b\rangle_l$ and $c\in S\backslash L$. It shows that $c\in\langle a\rangle_l\cap\langle b\rangle_l\subseteq A\cap B\subseteq L$, it is impossible. Thus $A\subseteq L$ or $B\subseteq L$. Hence, L is quasi-irreducible.

References

- [1] R. D. Giri and A. K. Wazalwar, Prime ideals and primeradicals in noncommutative semigroups, Kyungpook Math. J. 33 (1993), 37-48.
- [2] K. Hila, On quasi-prime, weakly quasi-prime left ideals in ordered-Γ-semigroups, Mathematica Slovaca 60 (2010), 195-212.
- [3] M. A. Kazim and M. Naseerudin, On almost semigroups, Aligarh Bulletin of Mathematics 2 (1972), 1-7.

- [4] N. Kehayopulu, *M*-systems and *n*-systems in ordered semigroups, Quasigroups and Related Systems 11 (2004), 55-58.
- [5] Q. Mushtaq, Zeroids and idempoids in AG-groupoids, Quasigroups and Related Systems 11 (2004), 79-84.
- [6] Q. Mushtaq and M. Khan, *M*-systems in LA-semigroups, Southeast Asian Bulletin of Mathematics 33 (2009), 321-327.
- [7] Y. S. Park and J. P. Kim, Prime and semiprime ideals in semigroups, Kyungpook Math. J. 32 (1992), 629-633.
- [8] P. V. Protic and N. Stevanovic, AG-test and some general properties of Abel-Grassmann's groupoids, Pure Math. Appl. 6 (1995), 371-383.
- [9] T. Shah and I. Rehman, On M-systems in Γ -AG-groupoids, Proceedings of the Pakistan Academy of Sciences 47 (2010), 33-39.
- [10] M. Petrich, Introduction to Semigroups, Merrill Publ. Co., A Bell and Howell Comp., Columbus, 1973.