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Abstract 

The extended generalized hyperbolic function method is used to construct 
the exact traveling wave solutions of the nonlinear partial differential 
equations in a unified way. The main idea of this method is to take full 
advantage of the Riccati equation which has more new solutions by using 
the generalized hyperbolic functions and generalized triangular functions. 
More new solitons and periodic solutions for the Dodd-Bullough-
Mikhailov, the Tzitzeica-Dodd-Bullough, the special type of the Dodd-
Bullough-Mikhailov and the Liouville equations are formally derived. 

1. Introduction 

Nonlinear equations play a major role in scientific fields. Two classes of 
equations, namely, 
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( ) 0=+ ufuxt  (1) 

and 

( ) ,0=+− ufuu xxtt  (2) 

play a significant role in many scientific applications such as solid state physics, 
nonlinear optics and quantum field theory. The function ( )uf  takes many forms 

such as 

( ) ( ) ( ) ,,sinh,sin ueufuufuuf ===  

( ) ( ) ,, 22 uuuu eeufeeuf −−− +=+=  (3) 

that characterize the sine-Gordon equation, sinh-Gordon equation, Liouville 
equation, Dodd-Bullough-Mikhailov (DBM) equation, and the Tzitzeica-Dodd-
Bullough (TDB) equation, respectively, [15, 16, 23]. The first two equations gained 
its importance when it gave kink and antikink solutions with the collisional 
behaviors of solitons. A kink is a solution with boundary values 0 and π2  at the left 
and the right infinity, respectively, [18]. However, antikink is a solution with 
boundary values 0 and π−2  at the left and the right infinity, respectively. In addition, 

these two equations are integrable, when boundary conditions are periodic, giving 
plenty of quasi periodic solutions. Moreover, these two equations appear in many 
fields such as the propagation of fluxons in Josephson junctions [15, 16, 23] between 
two superconductors, the motion of rigid pendula attached to a stretched wire, solid 
state physics, nonlinear optics, and dislocations in metals. The DBM equation and 
the TDB equation appear in problems varying from fluid flow to quantum field 
theory. Other equations for other forms of ( )uf  appear such as the Klein-Gordon 

equation and the 4φ  equation. 

It has recently become more interesting to obtain exact solutions of nonlinear 
partial differential equations (NLPDEs) using symbolical computer programs such 
as Maple, Matlab, Mathematica that facilitate complex and tedious algebraical 
computations. Various effective methods have been developed to understand the 
mechanisms of these physical models such as Bäcklund transformation, Darboux 
transformation, Painlevé method, Exp-method, tanh method, sine-cosine method, 
Lucas Riccati method, projective Riccati method, homogeneous balance method, 
similarity reduction method and so on [1-14, 17-22]. 
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The rest of this paper is organized as follows: in the following section, we 
introduce the extended generalized hyperbolic function (EGHF) method to NLPDEs. 
In Section 3, we solve the DBM, the TDB, the special type of the DBM and the 
Liouville equations by the EGHF method. Finally, we conclude the paper and give 
some features and comments. 

2. The Extended Generalized Hyperbolic Function Method 

Consider a given NLPDE 

( ) .0...,,,,,, =xxtxttxt uuuuuuH  (4) 

The EGHF method proceeds in the following four steps: 

Step 1. We seek its traveling wave solution of Eq. (4) in the form 

 ( ) ( ),, ξ= utxu    ( ),tx ω−α=ξ  (5) 

where α and ω are constants to be determined later. Substituting Eq. (5) into Eq. (4) 
yields an ordinary differential equation (ODE) 

( ) .,etc...,,,0...,,,~
ξ

=′=′′′=
d
duuuuuH  (6) 

where H~  is a polynomial of u and its various derivatives. If H~  is not a polynomial 
of u and its various derivatives, then we may use new variables ( )ξ= vv  which 

makes H~  become polynomial of v and its various derivatives. 

Step 2. Suppose that ( )ξu  can be expressed by a finite power series of ( )ξF  

( ) ( )∑
=

ξ=ξ
n

j

j
j Fau

0

,  ,0≠na  (7) 

where n is a positive integer which can be determined by balancing the highest 
derivative term with the nonlinear term(s) in Eq. (6) and ja  are some parameters to 

be determined. The function ( )ξF  satisfies the Riccati equation 

 ( ) ( ),2 ξ+=ξ′ BFAF  ,
ξ

=′ d
d  (8) 

where A, B are constants. 
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Step 3. Substituting Eq. (7) with Eq. (8) into the ODE Eq. (6), then the left-hand 
side of Eq. (6) can be converted into a polynomial in ( ).ξF  Setting all coefficients 

of the polynomial to zero yields system of algebraic equations for ,...,,, 10 naaa  α 

and ω. 

Step 4. Solving this system obtained in Step 3, then ,...,,, 10 naaa  α and ω can 

be expressed by A, B. Substituting these results into Eq. (7), then a general formulae 
of traveling wave solutions of Eq. (4) can be obtained. Choose properly A and B in 
ODE Eq. (8) such that the corresponding solution ( )ξF  is one of the generalized 

hyperbolic function (GHF) and generalized triangle function (GTF) [9, 17] given 
below, some definitions and properties are given in the Appendix. 

Case 1. If kA =  and ,kB =  then Eq. (8) possesses a solution ( ).tan ξpqk  

Case 2. If kA =  and ,kB −=  then Eq. (8) possesses a solution ( ).cot ξpqk  

Case 3. If kA =  and ,kB −=  then Eq. (8) possesses solutions ( ),tanh ξpqk  

( ).coth ξpqk  

Case 4. If ,
2
kA = ,

2
kB −=  ⎟

⎠
⎞⎜

⎝
⎛ ==

l
plp 1or  and ( ),or1 lq

l
q ==  then 

Eq. (8) possesses a solution 
( )
( ) .sech1

tanh
ξ±

ξ

pqk

pqk  

Case 5. If ,
2
kA =  ,

2
kB =  ⎟

⎠
⎞⎜

⎝
⎛ ==

l
plp 1or  and ( ),or1 lq

l
q ==  then Eq. 

(8) possesses solutions ( ) ( ),sectan ξ±ξ pqkpqk  
( )
( ) .

sec1
tan

ξ±
ξ

pqk

pqk  

Case 6. If ,kA =  ,4kB =  ⎟
⎠
⎞⎜

⎝
⎛ ==

l
plp 1or  and ( ),or1 lq

l
q ==  then Eq. 

(8) possesses a solution 
( )

( )
.

tanh1

tan
2 ξ+

ξ

pqk

pqk  

Case 7. If ,kA =  ,4kB −=  ⎟
⎠
⎞⎜

⎝
⎛ ==

l
plp 1or  and ( ),or1 lq

l
q ==  then Eq. 

(8) possesses a solution 
( )

( )
,

tanh1

tanh
2 ξ+

ξ

pqk

pqk  where l is an arbitrary constant. 
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3. Applications 

3.1. The Dodd-Bullough-Mikhailov equation 

The DBM equation is given by 

.02 =++ − uu
xt eeu  (9) 

In order to apply the EGHF method, we use the Painlevé transformation 

uev =   or  .ln vu =  (10) 

This transformation will change Eq. (9) into 

.013 =++− vvvvv txxt  (11) 

Using the traveling wave ( )tx ω−α=ξ  carries Eq. (11) into the ODE 

( ) .01 2223 =′ωα+′′ωα−+ vvvv  (12) 

Balancing the linear terms of highest order in the last equation with the highest order 
nonlinear terms, we have .2=n  This gives the solution in the form 

( ) ( ).210 ξ+ξ+= 2FaFaav  (13) 

Substituting Eq. (13) with Eq. (8) into Eq. (12) yields the system of algebraic 
equations for ,,, 210 aaa  α and ω: 

( ) ,02 22
2

2
2 =ωα− Baa  

( ) ,043 22
221 =ωα− Baaa  

,0633 0
2

2
22

202
2
1

22
1

2 =ωα−++ωα− aBaaaaaBa  

( ) ,0226 2
2

0
22

20
2
11 =ωα−ωα−+ BAaaBaaaa  

,03238 0
2
1

22
2

22
0202

2 =+ωα++ωα− aaAaaaABaa  

( ) ,0223 2
22

0
22

01 =ωα+ωα− aABAaaa  

.021 3
0

22
1

2
0

2
2

2 =+ωα+ωα− aAaaAa  (14) 
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Solving this system, with the aid of Maple, we have 

,
2
1

0 =a   ,01 =a   ,
2
3

2 A
Ba =   .

4
3
2BAα

=ω  (15) 

Substituting Eqs. (15) and Eq. (13) into Eq. (10), we have the following general 
formulae of traveling wave solutions of the DBM equation: 

 .
4

3
2
3

2
1ln 2

2
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α+=

BA
txF

A
Bu  (16) 

By selecting the special values of the A, B and the corresponding function ( ),ξF  we 

have the following solutions of the DBM equation: 

,
4

3tan
2
3

2
1ln 22

2
1 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α+=

k
txu pqk  (17) 

,
4

3cot
2
3

2
1ln 22

2
2 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α−=

k
txu pqk  (18) 

,
4

3tanh
2
3

2
1ln 22

2
3 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α−=

k
txu pqk  (19) 

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α−= 22

2
4

4
3coth2

3
2
1ln

k
txu pqk  (20) 

and 

,
3sech1

3tanh

2
3

2
1ln

2

22

22
5

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α±

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α

−=

k
tx

k
tx

u
pqk

pqk
 (21) 

,
3sec1

3tan

2
3

2
1ln

2

22

22
6

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α±

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α

+=

k
tx

k
tx

u
pqk

pqk
 (22) 

,3sec3tan
2
3

2
1ln

2

22227
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α±⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α+=

k
tx

k
txu pqkpqk  (23) 
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,

16
3tanh1

16
3tanh

6
2
1ln

2

22
2

22
8

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α+

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α

+=

k
tx

k
tx

u
pqk

pqk
 (24) 

,

16
3tanh1

16
3tanh

6
2
1ln

2

22
2

22
9

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α+

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α

−=

k
tx

k
tx

u
pqk

pqk
 (25) 

with ⎟
⎠
⎞⎜

⎝
⎛ ==

l
plp 1or  and ( ).or1 lq

l
q ==  

3.2. The Tzitzeica-Dodd-Bullough equation 

We consider here the TDB equation 

.02 =++ −− uu
xt eeu  (26) 

The Painlevé transformation 

uev −=   or  ,
2

arcsinh
1 vvu −=
−

 (27) 

this transformation changes Eq. (26) into 

,043 =−−+− vvvvvv txxt  (28) 

the traveling wave carries Eq. (28) into the ODE 

( ) .022243 =′ωα−′′ωα++ vvvvv  (29) 

By using the same manner, we have .1=n  This gives the solution in the form 

( ).10 ξ+= Faav  (30) 

Substituting Eq. (30) with Eq. (8) into Eq. (29) yields the system of algebraic 
equations for α,, 10 aa  and ω: 

( ) ,02
1

222
1 =+ωα aBa  

( ) ,024 0
222

1
2
101 =ωα++ aBaaaa  
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( ) ,036 00
2
1 =+aaa  

( ) ,0234 2
0

2
001 =ωα++ BAaaaa  

( ) .022
0

2
0

2
0 =ωα−+ Aaaa  (31) 

Solving this system of equations, we obtain 

 ,
41 A

Ba −
=    ,

2
1

0 −=a    .
4

1
2α

=ω
BA

 (32) 

The general formulae of the traveling wave solution TDB equation 

.

4
14

4
4

1
arcsinh

2

2

2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α

−
+

−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
−α

−
+

=

BA
txF

A
B

BA
txF

A
B

u  (33) 

By selecting the special values of the A, B and the corresponding function ( ),ξF  we 

have the following solutions of the TDB equation: 

,

4
tanh14

4
4

tanh1
arcsinh

22

2

22
1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α+

−⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α+

=

k
tx

k
tx

u
pqk

pqk
 (34) 

.

4
coth14

4
4

coth1
arcsinh

22

2

22
2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α+

−⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛

α
+α+

=

k
tx

k
tx

u
pqk

pqk
 (35) 

We omitted the reminder solutions for simplicity. 

3.3. Special type of the Dodd-Bullough-Mikhailov equation 

The special type of the DBM equation takes the form 

,02 =++− − uu
ttxx eeuu  (36) 

we use the Painlevé transformation 

 uev =   or  .ln vu =  (37) 
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This transformation will change Eq. (37) to 

.01322 =+++−− vvvvvvv xtxxtt  (38) 

The traveling wave transforms Eq. (38) into the ODE 

( ) ( ) ( ) .0111 222223 =′−ωα−′′−ωα++ vvvv  (39) 

We have .2=n  This gives the solution 

( ) ( ).2
210 ξ+ξ+= FaFaav  (40) 

Substituting Eq. (40) with Eq. (8) into Eq. (39) yields a system of algebraic 
equations for 210 ,, aaa  α and ω. Solving this system of equations, we obtain 

,01 =a   ,
2
1

0 =a   ,
2
3

2 A
Ba =   

( )
.

1
3

2
1

2 −ω
=α

BA
 (41) 

The general formulae of traveling wave solution of the special type of DBM 
equation 

( )
( ) .

1
3

2
1

2
3

2
1ln 2

2
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

−ω
+= tx

BA
F

A
Bu  (42) 

By selecting the special values of the A, B and the corresponding function ( ),ξF  we 

have the following solutions of the special type of DBM equation: 

( ) ,
1

3
2
1tan

2
3

2
1ln 2

2
1 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

−ω
+= tx

k
u pqk  (43) 

( ) ,
1

3
2
1cot

2
3

2
1ln 2

2
2 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω−
−−= tx

k
u pqk  (44) 

( ) ,
1

3
2
1tanh

2
3

2
1ln 2

2
3 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω−
−−= tx

k
u pqk  (45) 

( ) .
1

3
2
1coth

2
3

2
1ln 2

2
4 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω−
−−= tx

k
u pqk  (46) 

We omitted the reminder solutions for simplicity. 
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3.4. The Liouville equation 

Finally, we consider the Liouville equation 

,0=+ u
xt eu  (47) 

the Painlevé transformation 

uev =   or  .ln vu =  (48) 

This transformation will change Eq. (47) into the form 

.03 =+− vvvvv txxt  (49) 

The traveling wave carries Eq. (49) into the ODE 

( ) .02223 =′ωα+′′ωα− vvvv  (50) 

We have .2=n  This gives the solution 

( ) ( ).2
210 ξ+ξ+= FaFaav  (51) 

Substituting Eq. (51) with Eq. (8) into Eq. (50) yields the system of algebraic 
equations for 210 ,, aaa  α and ω. Solving this system of equations, we obtain 

 ,01 =a   ,0
2 A

Ba
a =   .

2
0
AB

a
ω

=α  (52) 

The general formulae of traveling wave solution of the Liouville equation: 

( ) .
2

ln 020
0 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω
+= tx

AB
a

F
A
Ba

au  (53) 

By selecting the special values of the A, B and the corresponding function ( ),ξF  we 

have the following solutions of the special type of the Liouville equation: 

( ) ,2
1tanln 02

001 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω
+= txa

kaau pqk  (54) 

( ) ,2
1cotln 02

002 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω
−−= txa

kaau pqk  (55) 

( ) ,2
1tanhln 02

003 ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω
−−= txa

kaau pqk  (56) 
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( ) .
2

1cothln 02
004 ⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω−

ω
−−= tx

a
k

aau pqk  (57) 

Remark 1. To our knowledge, the solutions by the GHFs and GTFs have been 
not found before. 

Remark 2. If ,1=== kqp  then the obtained results reduced to the well- 

known solution obtained by tanh function method, extended tanh function method 
and other methods. 

4. Summary and Discussion 

In this paper, the EGHF method is used to obtain analytical solutions of the 
DBM, the TDB and the Liouville equations. These solutions include solitary wave 
solution, soliton like solutions and periodic solutions. The obtained solutions may be 
of important significance for the explanation of some practical physical problems. 
We can successfully recover the known solitary wave solutions that had been found 
by the tanh-function method and other methods. The EGHF method can be applied 
to other NLPDEs. 

5. Appendix 

5.1. The generalized hyperbolic functions 

The generalized hyperbolic sine, cosine and tangent functions are 

( ) ,
2

sinh
ξ−ξ −

=ξ
kk

pqk
qepe  

( ) ,
2

cosh
ξ−ξ +

=ξ
kk

pqk
qepe  

( ) ,tanh
ξ−ξ

ξ−ξ

+

−
=ξ kk

kk

pqk
qepe
qepe  (58) 

where ξ is an independent variable, p, q and k are arbitrary constants greater than 
zero [9, 17]. The generalized hyperbolic cotangent, secant and cosecant functions are 

( ) ( ) ,
tanh

1coth
ξ

=ξ
pqk

pqk  ( ) ( ) ,
cosh

1sech
ξ

=ξ
pqk

pqk  ( ) ( ) .
sinh

1csch
ξ

=ξ
pqk

pqk  
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These functions satisfy the following relations: 

( ) ( ) ,sinhcosh 22 pqpqkpqk =ξ−ξ  

( ) .ln
2
1sinhsinh ⎟

⎠
⎞

⎜
⎝
⎛ −ξ=ξ

p
qkpqpqk  (59) 

Note that, ( )ξpqksinh  is not odd and ( )ξpqkcosh  is not even: 

( ) ( ),sinhsinh 11 ξ−=ξ−
kqp

pqk pq  ( ) ( ),coshcosh 11 ξ=ξ−
kqp

pqk pq  .1, ≠qp  (60) 

Also, from the above definition, we give the derivative formulas of GHFs as follows: 

( ( )) ( ),coshsinh ξ=′ξ pqkpqk k  ( ( )) ( ),sinhcosh ξ=′ξ pqkpqk k  

( ( )) ( ),sechtanh 2 ξ=′ξ pqkpqk kpq  ( ( )) ( ).cschcoth 2 ξ−=′ξ pqkpqk kpq  (61) 

5.2. The generalized triangular functions 

The generalized triangular sine, cosine and tangent functions are 

( ) ,
2

sin
i
qepe ikik

pqk

ξ−ξ −
=ξ  

( ) ,
2

cos
ξ−ξ +

=ξ
ikik

pqk
qepe  

( ) ,tan
ξ−ξ

ξ−ξ

+

−
=ξ kik

ikik

pqk
qepe
qepe  (62) 

where ξ is an independent variable, p, q and k are arbitrary constants greater than 
zero [9, 17]. The generalized triangular cotangent, secant and cosecant functions are 

( ) ( ) ,
tan

1cot
ξ

=ξ
pqk

pqk  ( ) ( ) ,
cos

1sec
ξ

=ξ
pqk

pqk  ( ) ( ) .
sin

1csc
ξ

=ξ
pqk

pqk  These 

functions satisfy the following relations: 

( ) ( ) ,sincos 22 pqpqkpqk =ξ+ξ    .ln
2

sinsin ⎟
⎠
⎞

⎜
⎝
⎛ +ξ=ξ

p
qikpqpqk  (63) 

Note that, ( )ξpqksin  is not odd and ( )ξpqkcos  is not even: 

( ) ( ),sinhsin 11 ξ−=ξ−
kqp

pqk pq  ( ) ( ) .1,,coscos 11 ≠ξ=ξ− qppq
kqp

pqk  (64) 
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Also, from the above definition, we give the derivative formulas of GTFs as follows: 

( ( )) ( ),cossin ξ=′ξ pqkpqk k  ( ( )) ( ),sincos ξ−=′ξ pqkpqk k  

( ( )) ( ),sectanh 2 ξ=′ξ pqkpqk kpq  ( ( )) ( ).csccot 2 ξ−=′ξ pqkpqk kpq  (65) 
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