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Abstract 

In this article, we investigate a kind of intertwining phenomenon of many 
attractors, and give some conditions to guarantee the existence intertwined 
attractors of the dynamical systems in a smooth two-dimensional 
manifold. 

1. Introduction 

The purpose of dynamical system theory is to study rules of change in state 
which depends on time. In the investigation of dynamical systems, one of very 
interesting topics is to determine the topological structure of the basin of attraction 
for an attractor (see [1, 7-9, 13]). As an example with topological complexity, the 
Lakes of Wada continuum can be a common basin boundary for three attracting 
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fixed points [1]. For the case of planar flows, the situation is simpler. Recently, 
several authors have discussed the property of intertwined basins of attraction, to 
some extent it also leads to the obstruction to predictability (see [10-12]). In [9], 
intertwined basins of attraction are elucidated by examples without much theoretical 
analysis. In [10], the author gave a definition of intertwined basins of attractors. 

Definition 1.1 ([10, Definition 2.1]). Let p be a regular point of system (2.1), 
and L is a transversal at p. We call that the system has intertwined basins of 
attraction beside p, if there exists an arc LL ⊂1  such that p is an endpoint of ,1L  

and for any 0>ε  both 

( ) ( ) ∅≠ε,11 pDABL ∩∩    and   ( ) ( ) ∅≠ε,21 pDABL ∩∩  

hold for two different attractors 1A  and .2A  

This definition characterizes a kind of intertwined attractors which is very 
interesting. But when p is not a regular point of the dynamical system (2.1) in [10], 
we find that nearby p, there still may exist the intertwining phenomenon of attractor 
basins. In [14], the authors gave a definition of intertwined basins of attractors when 
p is a singular point of the dynamical system in the plane. We now shall investigate 
the kind of intertwining phenomenon and give some conditions to guarantee the 
existence intertwined attractors of the dynamical systems on smooth manifold and 
get some related results. In Section 2, we fix some notations and definitions. In 
Section 3, we give the main results about intertwining phenomenon. In Section 4, we 
give an example to characterize the intertwining property of basins of attraction of 
the dynamical systems on a smooth manifold. 

2. Preliminaries 

First of all, we recall some basic notions. Let M be a smooth two-dimensional 
manifold with a metric d, on which there is a flow MRMf →×:  defined by the 

vector field: 

( ),xVx =    ,Mx ∈  (2.1) 

where ( )xV  is continuous, and assume that solutions of arbitrary initial value 

problems are unique. For MA ⊂  and ,RI ⊂  we denote { ( ) ,, AptpfIA ∈|=⋅  

}It ∈  for brevity, in particular, ( )., tpftp =⋅  A set A is invariant under the flow 

f if ARA =⋅  holds. In particular, for a point ,Mp ∈  the orbit Rp ⋅  is an invariant 
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set. Throughout the paper for ,MA ⊂  A  and A∂  denote, respectively, the closure 

and boundary of A. The ω-limit set ( )pω  of p (or of the orbit )Rp ⋅  is defined to 

be the set [ ),,0 ∞+⋅≥ tpt∩  equivalently, ( )pq ω∈  means that there is a sequence 

{ }nt  with ∞+→nt  such that qtp n →⋅  as .∞+→n  Similarly, we define the 

α-limit set ( )pα  of p by reversing the direction of time. ( ) ( ){ }rpxdxrpB <|= ,,  

denotes a ball with p the center and r the radius. In the literature, several different 
concepts of attractor are used by different authors. To avoid confusion, here we 
admit the following definitions. 

Definition 2.1. An attractor, for the flow f, is a compact and invariant set 
,MA ⊂  satisfying the following property: A has a shrinking neighborhood, i.e., 

there is an open neighborhood U of A such that UtU ⊂⋅  for 0>t  and =A  
tUt ⋅>0∩  

Definition 2.2. If ( )MA ⊂  is an attractor, then its basin of attraction ( )AB  is 

defined to be the set of initial points p such that ( ) ,Ap ⊂ω  i.e., ( ) 0, →⋅ Atpd  

( ),∞+→t  where ( ) ( ){ },,inf, AaatpdAtpd ∈|⋅=⋅  d is the ordinary metric on 

M and with no confusion we also use it for the distance between a point and a set. 

Observe that the basin of attraction ( )AB  can be expressed as tUt ⋅<0∪  for a 

shrinking neighborhood U of A. Thus ( )AB  is an open set. 

Here, we give a new definition of intertwined basins of attractors. 

Definition 2.3. Let M be a smooth two-dimensional manifold and .Mp ∈  Then 

we call that the dynamical system (2.1) has intertwined basins of attraction beside p, 
providing there exists a small sector S, where p is the vertex, such that for any 0>ε  
and any radius L in the sector S, such that both 

( ) ( ) ∅≠ε,1 pDABL ∩∩   and   ( ) ( ) ∅≠ε,2 pDABL ∩∩  (2.2) 

hold for two different attractors 1A  and .2A  

From the above definition, beside p the basins ( )1AB  and ( )2AB  approach to p 

alternately, meanwhile they become narrower and narrower. By the continuity of 
dependence on initial conditions, we can say that the basins ( )1AB  and ( )2AB  

intertwine together beside p. 
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Denote O to be a saddle point of system (2.1), then the stable manifold ( )OW s  

and unstable manifold ( )OW u  are defined to be the following sets: 

( ) { },as ∞+→→⋅|∈= tOtpMpOW s  

( ) { }.as ∞−→→⋅|∈= tOtpMpOW u  

We note that the existence of a saddle point with its two branches of unstable 
manifold approaching different attractors plays an essential role in occurrence of 
intertwined basins of attraction. 

3. Main Results 

We now assume that the flow f defined by the system (2.1) has a saddle point O 
and two attractors 1A  and ,2A  where 1A  and 2A  need not be equilibria as in the 

system (2.1). Let ( )1AB  and ( )2AB  be, respectively, the basins of 1A  and .2A  

Denote by ( )OW s
1  and ( )OW s

2  the two branches of the stable manifold ( ),OW s  

similarly, ( )OW u
1  and ( ),2 OW u  respectively, denote the two branches of the unstable 

manifold ( ).OW u  

Theorem 3.1. Suppose that the system (2.1) has a saddle point O and its two 
branches of unstable manifold connect two distinct attractors 1A  and .2A  If the   

α-limit set ( )qα  of ( ) { }OOWq s \∈  has at least two points, then the system (2.1) 

has the intertwining property. 

Proof. Now let { }∞=∗ ∪MM  be the one-point compactification of M. 

Extend the dynamical system f on M to a dynamical system ∗f  on ,∗M  where ∗f  

is given by ( ) ( )txftxf ,, =∗  for ,Mx ∈  Rt ∈  and ( ) ∞=∞∗ tf ,  for all .Rt ∈  

The α-limit set ( )qα  of ( ) { }OOWq s \∈  is a compact and connected set in M by 

Theorem 3.6 [2, p. 23]. Since ( )qα  has at least two points, ( )qα  contains 

uncountable points. So there is a connected component containing uncountable 
points, furthermore, there at least exists an arc S connecting two points in this 
connected component. Otherwise, arbitrarily choose two distinct points 1p  and 2p  

in the connected component, there exists a ( )0>δ  such that ( )δ,1pB  and ( )δ,2pB  
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are relatively compact sets and there is no point of ( )qα  on ( )δ∂ ,1pB  and 

( ),,2 δ∂ pB  which, respectively, are the boundaries of ( )δ,1pB  and ( ).,2 δpB  

Since 1p  and 2p  in ( ),qα  there exist sequences { }( )∞−→′′ nn tt  and { }nt ′′  

( )∞−→′′nt  such that ( )δ∈′ ,1pBtq n  and ( ).,2 δ∈′′ pBtq n  Now choose a sequence 

{ }( )nnnn tt ′′<τ<′τ  such that nqτ  in ( ).,1 δ∂ pB  By the compactness of ( ),,1 δpB  

( )δ∂ ,1pB  is compact, so { }nqτ  has a convergence subsequence { }nqτ′  whose 

convergence point in ( ).,1 δ∂ pB  That is, there exists a point in ( ) ( ),,1 δ∂α pBq ∩  

which is a contradiction. Hence there exists an arc C containing at least two points in 
some connected component of ( ).qα  Now we arbitrarily choose one arc C of ( ).qα  

Also, choose a point Cp ∈  which is not the end point of C. Since ( ),qp α∈  choose 

a sector S beside the arc C, where p is the vertex of S, such that the intersection of S 
and C has only a point p, and ( ) { }.pqS =α∩  For any radius L in the sector S, there 

exists a ( ) 011 <= Ltt  such that ,1 Lqt ∈  otherwise, by the continuous axiom, we 

can show that L is contained in ( ),qα  which contradicts with ( ) { }.pqS =α∩  

Without loss of generality, 1qt  is the other end point of L. Hence we can assert that 

all the orbits cross L in the same direction beside the point p by the continuous 
dependence on initial conditions when L is sufficiently small. Then the negative 

semi-orbit −⋅ Rq  crosses L successively at it  with 210 tt >>  ( )∞−→> it  and 

itq ⋅  tends monotonously to p along L (see [3, Chapter 7]). On the other hand, 

obviously, one branch of unstable manifold ( ) { }OOW u \  lies in ( ),1AB  and the 

other in ( ).2AB  Thus ( )1AB  and ( )2AB  are, respectively, open neighborhoods of 

two branches of unstable manifold ( ) { }.\ OOW u  Now, for any ,0>ε  we have 

( )2, ε∈⋅ pDtq k  for a sufficiently large .kt  By the continuity of dependence on 

initial conditions, there exists a 0>δ  such that ( ) ( )ε⊂δ⋅ ,, pDtqD k  holds. 

Consider the diffeomorphism ( ) .:1, MMfF →∗=  By the Inclination Lemma [4, 

p. 82], it is easy to see that both ( )( ) ∩δ,k
n qtDF  ( ) ∅≠1AB  and ( )( )δ,k

n qtDF  

( ) ∅≠2AB∩  hold for a sufficiently large n. Hence we obtain that ( )( )nqtDf k ,, δ  

( ) ∅≠1AB∩  and ( )( ) ( ) .,, 2 ∅≠δ ABnqtDf k ∩  It implies that two components of 

( ) RqtqD k ⋅δ⋅ \,  also lie, respectively, in ( )1AB  and ( ).2AB  Thus it follows that 

(2.2) in Definition 2.3 is true, so we are done. 
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Remark 3.2. In applications of Theorem 3.1, we need to determine the location 

of stable manifold ( ).OW s  By the notations in Theorem 3.1, ( )qα  may be either 

bounded or unbounded, also ( )qα  may have equilibria (see [9]). Of course, ( )qα  

can be a closed orbit in [12]. 

Theorem 3.3. Suppose that ( ) ( )11 ABOW u ⊂  and ( ) ( ).22 ABOW u ⊂  If the system 

(2.1) has the intertwining property, then the α-limit set ( )qα  of ( ) { }OOWq s \1∈  or 

( ) { }OOWq s \2∈  is not empty. 

The proof of the above theorem is similar to the proof of Theorem 3 in [14]. We 
omit it. 

4. An Example 

To characterize the intertwining property of basins of attraction of the 
dynamical systems on a smooth manifold, we give the following example. 

We now consider the dynamical system defined by the following differential 

equations in the disc {( ) }:3, 22 ≤+|= yxyxD  

( ),322 −+⋅= yxyx    ( ( ) ) ( ),322223 −+⋅+φ−−= yxyyxxxy  (4.1) 

where φ is a sufficiently smooth function satisfying ( ) 022 >+φ yx  for 20 x≤  

32 <+ y  and ( ) 022 =+φ yx  for .322 =+ yx  By the Gluing lemma in [6], we 

consider a dynamical system defined on the sphere 2S  with the center ( )ooO ,  and 

the radius 3=r  as follows: the flow of the system (4.1) vertically projects to the 
northern hemisphere; similarly, the flow of the system (4.1) vertically projects to the 
flow on the southern; on the equator the flow homeomorphism the flow on 

322 =+ yx  of the system (4.1), so on the sphere 2S  we define a dynamical 

system. It is easy to verify that the system (4.1) has a saddle point and two sinks 

( ),0,1  ( ).0,1−  Take ( ) 422
4
1

2
1

2
1, xxyyxH +−=  and note that ( )yxH ,  is the 

first integral of unforced and undamped Duffing oscillator. But now we have 

( ) ( ) ( ) ( ).3, 22222
1.4 −+⋅+φ−=| yxyyxyxH  Thus it follows that if an orbit lies 
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in the open disc {( ) }3, 222 <+|∈ yxRyx  at some time ,0t  then tp ⋅  goes to one 

of the three equilibria of the system (4.1). Also, the stable manifold of ( )0,0=O  is 

bounded, hence in this case for ( ) { }OOWq s \∈  the α-limit set ( )qα  must be 

compact and connected. Actually, ( )qα  is the simple closed curve {( ) 22, xRyx |∈  

},32 =+ y  which consists of singular points. So the equator of 2S  is the limit set 

( )qα  of the projection q of ( ) { }.\ OOWp s∈  From Theorem 3.1, we immediately 

assert that the system on the sphere 2S  has the intertwining property by two sides of 

the equator of .2S  
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