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Abstract 

Agglomeration of particles in a fluid environment is an integral part of 
many industrial processes and has been the subject of scientific 
investigation. The fundamental mathematical problem is the determination 
of the number of particles of each particle-type as a function of time for a 
system of particles that may agglutinate during two particle collisions. In 
this paper, we document a complete solution to the Fundamental 
Agglomeration Problem (FAP) with a time-varying kernel. 

1. Introduction 

Agglomeration of particles in a fluid environment (e.g., a chemical reactor or 
the atmosphere) is an integral part of many industrial processes (e.g., Goldberger 
[2]) and has been the subject of scientific investigation (e.g., Siegell [15]). The 
fundamental mathematical problem is the determination of the number of particles of 
each particle-type as a function of time for a system of particles that may agglutinate 
during two particle collisions. Little or no work has been done for systems where 
particle-type requires several variables. Efforts have been focused on a particle-type 
list with only one variable, size (or mass). This allows use of what is often referred 
to as the coagulation equation which has been well studied in aerosol research 
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(Drake [1]). Original work on this equation was done by Smoluchowski [16] and it 
is also referred to as Smoluchowski’s equation. The agglomeration equation is 
perhaps more descriptive since the term coagulation implies a process carried out 
until solidification whereas we focus on the agglomeration process; that is, on the 
determination of a time-varying particle-size distribution even if coagulation is 
never reached. 

In his original work, Smoluchowski considered the agglomeration equation in a 
discrete form. Later it was considered in a continuous form by Müller [14]. In either 
case, an initial particle-size distribution to specify the initial number of particles for 
each size is needed to complete the initial value problem (IVP). We refer to these as 
the Discrete Agglomeration Model and the Continuum Agglomeration Model. Since 
both models have an infinite number of sizes, the state (or phase) space is infinite 
dimensional. Solution of either model yields an updated particle-size distribution 
giving number densities as time progresses. For various conditions, studies of these 
models include Morganstern [9], Melzak [8], Marcus [5], Spouge [17], McLeod [7], 
White [19], Treat [18], McLaughlin et al. [6] and Moseley [13]. Moseley divided the 
Discrete Agglomeration Model up into several problems to be considered separately. 
This allows individual progress on the separate problems. 

Let R be the real numbers, { IIInto :R⊆=  is a finite, infinite or semi-infinite 

open interval}, and for ,oIntI ∈  ( ) { }.oncontinuousis::, IfIfIC RR →=  

Under certain conditions, a reasonably complicated change of (both the independent 
and dependent) variables transforms the Discrete Agglomeration Model (see 
Moseley [13]) into an IVP consisting of an infinite system of nonlinear Ordinary 
Differential Equations (ODEs) each with an Initial Condition (IC) that may be 
written in scalar form as: 

System of ODE’s: ( )∑
−

=
−τ=

τ

1

1
,~~~

2
1~ i

j
jij

i xxA
d
xd

 .pI∈τ  (1.1) 

IVP                                { }....,3,2,1=∈ Ni  

IC’s ( ) ,0~ 0
ii nx =  (1.2) 

where ( ) ( )R,~
pCA I∈τ  is the kernel, τ is the scaled time, and for ,1=i  the empty 

sum on the right hand side of (1.1) is assumed to be zero. We refer to this IVP as the 
Fundamental Agglomeration Problem (FAP) with a time-varying kernel. A solution 
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is a time-varying ( ){ } ( ) { ( ){ } ( ) ∈==∈= ∞
=

∞∞
= txtxxCtxx ipi

~:~~,~~”vector“ 11 RI  

( )}R,pC I  that satisfies (1.1) on pI  and has an initial number density given by 

{ } {{ } }.:11
0

0 RR ∈=∈= ∞
=

∞∞
= iiiii aann  

Thus, we show that (even though (1.1) is nonlinear) the interval of validity is indeed 
,pI  (i.e., exactly where ( )τA  is defined). We have used the extended interval 

notation, ( )+− ττ= 00 ,0,pI  to indicate that ( ).,0 00 +− ττ=∈ pI  Note that we 

can move ( )τA~  out of the summation as “stickiness” depends on time, but not on 

particle size. Unlike the Discrete Agglomeration Model, FAP does not contain an 
infinite series which needs to be shown to converge. 

As continuity of ( )τA  is sufficient for a unique solution of FAP in ( ),, ∞RpC I  

this leads to a larger function space for uniqueness for the Discrete Agglomeration 
Model than was claimed by Moseley. To accomplish this and to provide details not 
provided by Moseley, in this paper we provide complete documentation of a solution 

of FAP for a general (physical and non-physical) time-varying kernel ( ).~
τA  We 

begin with a recursive solution which provides existence and uniqueness and then 
derive the explicit solution: 

 ( )
( )

[ ( )]∑
−

=

+
τ+=τ

1
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1
0 ,
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n
n

n
i
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nx A  (1.3) 

where 

( ) ( )∫
τ=σ

=σ
σσ=τ

0

~~
dAA  

and 
( ) ∑

=+++

+

+
+

=
iiii

iii
n

i
n

n
nnnk

121
121
.0001  

In later work, we will investigate further the other problems defined by Moseley and 

detail the change of variables which leads to FAP. Recall that ( )1+n
ik  is the 

coefficient of is  in 
1

1

0
+∞

= 










∑

n

i

i
i sn  using the Henrici notation (Henrici [3]) so that 
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( ) 01 =+n
ik  for .1−> in  Note that 
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and in general 
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To rearrange terms in finite and infinite series, we will need 
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By change of variables, we obtain 
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2. Solution of FAP 

We solve the Fundamental Agglomeration Problem (FAP) recursively and then 
explicitly. Recall that the problem parameters are ( ( ) ) ( )R,Int,, 0 pp CnA II ×∈τ ο  

.∞× R  Since (1.1) is a sequentially linear system (i.e., only backward coupled), it is 
easy to see that FAP has a unique solution with interval of validity .pI  It can be 

solved recursively by forward substitution, i.e., we first obtain ( ) 0
11

~ nx =τ  and then 

for ,2≥i  ( )txi
~  can be obtained recursively from ( ),~ tx j  ,0 ij <≤  up to obtaining 

antiderivatives (i.e., up to quadrature) in a finite number of steps. Hence the solution 

( ) ( ){ }∞== 1
~~

ii txtx  of FAP can be computed recursively as: 

 ( ) ( ) ( ) ( )∫ ∑
τ=σ

=σ

−

=
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i
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where the empty sum for 1=i  means ( ) .~ 0
11 nx =τ  Thus ( ) ( ){ }∞=τ=τ 1

~~
iixx  solves 

FAP in ( )∞R,pC I  with interval of validity .pI  We have proved: 

Theorem 2.1. Let ( ( ) ) ( ) ( ) .,,,, 000
∞

ο ××∈τ RRpp CItIntnA II  Then FAP 

has a unique solution given recursively by (2.1) with interval of validity .pI  

Again, even though (1.1) is nonlinear, since it is sequentially linear, we have a 
unique solution with interval of validity .pI  
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It is easy to see that ( )τix~  is a polynomial in τ and that pI  can be taken to be R. 

Also, it is clear that if ( )τA~  is a polynomial in τ, then ( )τix~  is a polynomial in τ and 

.R=pI  

To obtain an explicit formula for ( ),~ τix  we use two steps. We first derive the 

solution without worrying about rigor. In particular, we do not need to worry about 
convergence of infinite series. We then prove that our formula is correct on pI  by 

checking the initial conditions and then substituting the formula into the (system of) 
ODEs (1.1). Since (1.3) contains no infinite series, this will not require proof of 
convergence. 

To solve for ( )τix~  explicitly, we assume ( ) { ( )}∞=τ=τ 1
~~

iixx  is a solution to (1.1) 

and (1.2) and use a generating function: 

 ( ) ( )∑
∞

=

τ=τ
1

.~,
i

i
i sxsG  (2.2) 

The process of using a generating function may be considered to be a discrete 
analogue of the Laplace transform. ( )τ,sG  is a formal sum that “sums out” the 

discrete variable i, but maintains the integrity of ( )τix~  as the coefficient of .is  The 

variable τ is treated as a parameter. Again, since we already have existence and 
uniqueness and will show that the formula is correct by substitution, we do not need 
to worry about rigor in the derivation. (Rigor may be useful for a better 

understanding.) Multiplying (each equation in) (1.1) by is  and summing over i, we 
obtain formally 
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where we have used the first infinite sum in (1.6). Hence we have 

( ) ( )∑
∞

=

ττ=
τ

1
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i

ii sGA
d
xds  (2.3) 

We have an infinite sum in (2.3), but recall that we do not require rigor. Since (under 
certain conditions) 
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we obtain the nonlinear (partial) differential equation 

 ( ) ( ) ( )ττ=
τ∂
τ∂ ,

2

~, 2 sGAsG  (2.5) 

with the initial condition 

 ( ) ( )∑ ∑
∞

=

∞
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==
1 1

0.0~0,
i i

i
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i
i nsxssG  (2.6) 

Since there are no derivatives with respect to s, we may view (2.5) as a first order 
separable ODE in τ with s being a parameter and solve to obtain 
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where ( ) ( )∫
τ=σ

=σ
σσ=τ

0
~~

dAA  and φ is an arbitrary function of s. Applying the initial 

condition (2.6), we obtain 
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so that 
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Hence, substituting φ given by (2.7) into (2.9), we have 

( )

( ) ( )

( )
( ) ( ) ( )

.
0,,;

~
211

0,

,;
~

211

,
0

1

0
0

1

0

sGpt
sG

nspt

ns

sG
g

i
i

i
g

i
i

i

τ−
=

τ−

=τ

∑

∑
∞

=

∞

=

A
A

 (2.10) 

Obtaining ( )τix  is analogous to obtaining the inverse Laplace transform. But 

before obtaining ( )τix  explicitly, we derive a recursion formula that gives the 

values of the integrals in (2.1) in terms of ( )τjx~  for .1 ij <≤  Multiplying (2.10) by 

the denominator, we obtain 

( ) [ ( ) ( ) ( )] ( ),0,0,,;
~

211, 0 sGsGptsG g =τ−τ A  

( ) ( ) ( ) ( ) ( ) ( ).,0,
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210,, ττ+=τ sGsGsGsG A  (2.11) 

Hence, substituting (2.2) and (2.6) into (2.11) and using the first infinite sum in 
(1.6), we have 
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so that 
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This provides an explicit formula for the integral in (2.1) in terms of the previous 
( )τjx~  for ij <≤1  without having to find antiderivatives. We have 
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We now compute ( )τix~  explicitly. From (2.11), using the geometric series and 

a property of ( ) ,1+n
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Hence using the second infinite sum in (1.6), we obtain 
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so that ( )τix~  is given by (1.3). 

3. Verification of the Explicit Solution 

We will show that ( )τix~  given by (1.3) is the solution of the Fundamental 

Agglomeration Problem (FAP) with interval of validity pI  by substituting it 

directly into (1.1). Note that the domains of ( )τA~  and ( ) ( )∫
τ=σ

=σ
σσ=τ

0
~~

dAA  are 

both pI  so that the domain of ( )τix~  is also .pI  Clearly, ( )τix~  satisfies the initial 

condition in (1.2) as ( ) .00
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=A  To substitute into the differential equation in (1.1), 

we first compute the derivative of ( )τix~  
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Equating this with the right hand side of (1.1), we obtain 
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Cancelling ( ),~
τA  we see that to show that ( )τix~  satisfies (1.1), we must show for 
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For ,1=i  both sums in (3.3) are empty so that both sides are zero. For 2=i  
and 3, it is straightforward to compute both sides of (3.3) to see that they are equal. 
For ,4≥i  we substitute ( )τix~  into the left hand side of (3.3) and obtain the right 
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sum, when ,1=j  the inside sum is empty. In the fourth term, when ,1−= ij  the 

second inside sum is empty. Hence (3.4) becomes 
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In the third term on the right hand side of (3.5), we let ji −=  so that it becomes 
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where we have now replaced  with j. The last step follows since when ,1−= ij  

the sum is empty. Hence, the second and third terms in (3.5) are the same and add to 
become 
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where we have used the second equation in (1.7) and then (1.4) for the last step. 
Substituting (3.7) into (3.5), we obtain 
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where we have used the second equation in (1.7) with mn =  and the fact that the 
inside sum is empty, when .1=j  Now using the first equation in (1.7), we obtain 
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Noting that the inside sum is now empty when ,2−= im  we have 
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Now using the first equation in (1.8), we obtain 
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Now, we let mn +=  to obtain 
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Replacing n with m, we obtain 
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and then  with n, we obtain 
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Now using (1.4) and the last sum in (1.8), we obtain 
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Now divide and multiply the first sum on the right hand side by 2 and then write out 
its first term to obtain 
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Now add the two sums on the right hand side together to obtain 
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Letting ,1−= mn  we obtain 
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where we have now let .nm =  Hence, we have shown that ( )τix~  given by (1.3) is 

an explicit formula for the solution of FAP. 

4. Summary 

Moseley [13] divided the Discrete Agglomeration Model up into several 
problems which can be considered separately. This allows progress on the separate 
problems individually. Under certain conditions, a reasonably complicated change of 
(both the independent and dependent) variables transforms the Discrete 
Agglomeration Model into an IVP consisting of an infinite system of nonlinear 
Ordinary Differential Equations (ODEs) each with an Initial Condition (IC) that may 

be written in scalar forms as (1.1) and (1.2), where ( ) ( )R,~
pCA I∈τ  is the kernel. 

We refer to this IVP as the Fundamental Agglomeration Problem (FAP) with a time-
varying kernel. We have shown that since (1.1) is sequentially linear, the unique 
solution to FAP is given recursively by (2.1) and (2.12) and explicitly by (1.3). In 
future work, we will investigate other problems defined by Moseley [13] and show 
the relation of these and FAP to the Discrete Agglomeration Model. 
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