Far East Journal of Mathematical Sciences (FJMS)

Volume 45, Number 1, 2010, Pages 49-68 Published Online: November 15, 2010

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2010 Pushpa Publishing House

BEST PROXIMITY RESULTS FOR KKM₀-MULTIMAPS

U. KARUPPIAH and M. MARUDAI

Department of Mathematics St. Joseph's College Tiruchirappalli-620002, India e-mail: u.karuppiah@gmail.com

Department of Mathematics Bharathidasan University Tiruchirappalli-620024, India e-mail: marudaim@hotmail.com

Abstract

We establish the existence of theorems of best proximity pairs for KKM_0 multimap (resp. $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimap) in the setting of Hausdorff locally convex topological vector space E, with a continuous seminorm p which generalizes the previous best proximity theorems of Al-Thagafi and Shahzad [2].

1. Introduction

The best approximation theorem due to Fan [7] states that if K is a nonempty compact convex subset of a locally convex Hausdorff topological vector space E with a continuous seminorm p and $f: K \to E$ is a single valued continuous function, then there exists an element $x \in K$ such that

2010 Mathematics Subject Classification: Primary 47H10; Secondary 54H25.

Keywords and phrases: best proximity pair, fixed point, equilibrium pair, Kakutani maps, free *n*-person game.

Submitted by E. Thandapani

Received June 21, 2010

$$p(f(x) - x) = d_p(f(x), K) = \inf\{p(f(x) - y)/y \in K\}.$$

Since then, a number of generalizations of this theorem have been obtained in various directions by several authors (e.g., see [8, 16, 18, 19]). Indeed, Reich [15] has shown that even if K is a nonempty approximately p-compact convex subset of a locally convex Hausdorff topological vector space E with a relatively compact image f(K), then the same conclusion holds. Also, there is no guarantee that such an approximate solution is optimal. For suitable subsets A and B of E and a multimap $T: A \rightarrow 2^B$ Sadiq Basha and Veeramani [16] provided sufficient conditions for the existence of an optimal solution (a, T(a)), (called a *best proximity pair*) such that

$$d_p(a, T(a)) = d_p(A, B) = \inf\{p(x - y) : x \in A, y \in B\}.$$

Srinivasan and Veeramani [18, 19] extended these results and obtained existence theorems of equilibrium pairs for constrained generalized games. Kim and Lee [8, 9] generalized the results [18, 19] and obtained existence theorems of equilibrium pairs for free *n*-person games. Al-Thagafi and Shahzad [1] generalized and extended the above results to Kakutani multimaps.

In this paper, we establish the existence theorems of best proximity pairs for KKM_0 -multimaps (resp. $\mathfrak{U}^{\mathfrak{K}}_{\mathfrak{c}}$ -multimaps) in Hausdorff locally convex topological vector space E with a continuous seminorm p. As applications, we obtain existence theorems of equilibrium pairs for free n-person games as well as free 1-person games. We consider A^0_i as approximately p-compact and convex for each $i \in I_n$ and one of A^0_i 's contained in some compact subset of $A \subset E$ instead of A^0_i is compact for each $i \in I_n$.

Lemma 1.1. If X is a nonempty compact and convex subset of a locally convex Hausdorff topological vector space E, then any generalized Kakutani factorizable multifunction $T: X \to 2^X$ has a fixed point.

2. Preliminaries

Throughout E is a Hausdorff locally convex topological vector space with a continuous seminorm p, A and B are nonempty subsets of E, 2^A is the family of all

subsets of A, C_0A is the convex shell of A in E, int A is the interior of A in E, C(A, B) is the set of all continuous single-valued maps, $d_p(x, A) = \inf\{d_p(x, a) : a \in A\}$ and $d_p(A, B) = \inf\{p(a - b) : a \in A \text{ and } b \in B\}$. A map $T: A \to 2^B$ is called a *multimap* (*multifunction* or *correspondence*) if T(x) is nonempty for each $x \in A$. A multimap $T: A \to 2^A$ is said to have a *fixed point* $a \in A$ if $a \in T(a)$; the set of all fixed points of T is denoted by F(T). A multimap $T: A \to 2^B$ is said to be a

- (a) upper semicontinuous if $T^{-1}(D) = \{x \in A : T(x) \cap D \neq \emptyset\}$ is closed in A whenever D is closed in B;
 - (b) *compact* if $\overline{T(A)}$ is compact in B;
- (c) closed if its graph $Gr(T) = \{(x, y) : x \in A \text{ and } y \in T(x)\}$ is closed in $A \times B$; and
- (d) compact valued (resp. convex) if T(x) is compact (resp. convex) in B for every $x \in A$.

A map $f: A \to B$ is proper if $f^{-1}(K)$ is compact in A whenever K is compact in B. A map $f: A \to E$ is quasi p-affine if the set $Q(x) = \{a \in A: p(f(a) - x) \le r\}$ is convex for every $x \in E$ and $r \in [0, \infty)$.

Definition 2.1 ([4]). Given a convex subset C of a topological vector space E with a seminorm p. A single valued function $g:C\to E$ is said to be *almost* p-affine if

$$p((\lambda u + (1 - \lambda)v) - x) \le p(u - x) + (1 - \lambda)p(v - x),$$

for all $u, v \in C$ and $x \in E$.

Clearly, any almost p-affine mapping is quasi p-affine but the converse is not true.

Example 2.2. Let $E = \mathbb{R}^2$ and the seminorm p on E be defined as $p(x, y) = \sqrt{x^2 + y^2}$. Let $g: E \to E$ be defined as follows:

$$g(x, y) = \begin{cases} (2, e^x), & \text{if } u \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Then it is clear that g is quasi p-affine but not almost p-affine.

Definition 2.3. Let A be a nonempty subset of a topological vector space E with a continuous seminorm p. Then a single valued function $g: A \to E$ is said to be p-continuous if $p[g(x_a) - g(x)] \to 0$ for each x in A and every net $\{x_\alpha\}$ in A converging to x.

It is apparent that p-continuity is, in general, weaker than continuity.

Example 2.4. Let $E = \mathbb{R}^2$ with the seminorm $p : E \to [0, \infty)$ be defined as p(x, y) = |x|, for all $(x, y) \in E$. Let $g : E \to E$ be defined as

$$g(x, y) = \begin{cases} (0, 1), & \text{if } (x, y) \neq (0, 0), \\ (0, 0), & \text{otherwise.} \end{cases}$$

Then *g* is *p*-continuous but not continuous.

Definition 2.5 ([15]). Let A be a nonempty subset of a Hausdorff locally convex topological vector space E with a continuous seminorm p. Then the set K is said to be *approximately p-compact* if for each $y \in E$ and each net $\{x_{\alpha}\}$ in A satisfying the condition that $p(x_{\alpha} - y) \to d_p(y, A)$, there exists a subnet $\{x_{\beta}\}$ of $\{x_{\alpha}\}$ converging to an element in A.

It is remarked that approximately compact subsets are closed.

Evidently, any compact subset of a Hausdorff locally convex topological vector space with a continuous seminorm p is approximately p-compact. However, approximately compact sets, which are not compact, are available in great profusion. Indeed, any nonempty closed and convex subset of a uniformly convex Banach space is approximately compact.

The set $P_A(x) = \{a \in A : p(a-x) = d_p(x, A)\}$ is called the *set of p-best approximation* in A to $x \in E$. Let A and B be nonempty subsets of E. Then a polytope P in A is any convex hull of a nonempty finite subset D of A. Whenever $\mathfrak X$ is a class of maps, denote the set of all finite compositions of maps in $\mathfrak X$ by $\mathfrak X_c$ and

denote the set of all multimaps $T: A \to 2^B$ in \mathfrak{X} by $\mathfrak{X}(A, B)$. Let \mathfrak{U} be an abstract class of maps [14] satisfying the following properties:

- 1. $\mathfrak U$ contains the class $\mathbb C$ of continuous single valued maps.
- 2. Each $T \in \mathfrak{U}_c$ is upper semicontinuous with compact values.
- 3. For any polytope P, each $T \in \mathfrak{U}_{c}(P, P)$ has a fixed point.

Definition 2.6. Let $T:A\to 2^B$. Then we say that (a) T is an $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimap [14] if for every compact set K in A, there exists an $\mathfrak{U}_{\mathfrak{c}}$ -multimap $f:K\to 2^B$ such that $f(x)\subseteq T(x)$ for each $x\in K$, (b) T is a K-multimap (or Kakutani multimap) [10] if T is upper semicontinuous with compact and convex values (c) $S:A\to 2^B$ is a generalized KKM-multimap with respect to T [5] if $T(\operatorname{CoD})\subseteq S(D)$ for each finite subset D of A (d) T has the KKM property [5] if whenever $S:A\to 2^B$ is a generalized KKM multimap w.r.t. T, the family $\{\overline{S(x)}:x\in A\}$ has the finite intersection property (e) T is a PK-multimap [13] if there exists a multimap $g:A\to 2^B$ satisfying $A=\bigcup\{\inf g^{-1}(y):y\in A\}$ and $C_0(g(x))\subseteq T(x)$ for every $x\in A$. Note that each $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{R}}$ -multimap has the KKM property and each K-multimap (resp. $\mathfrak{U}_{\mathfrak{c}}$ -multimap has the KKM property and each K-multimap, K-multimap is an $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{R}}$ -multimap (see [11, 12, 14]).

Let A and B_i be nonempty subsets of a topological vector space with a seminorm p for each $i \in I_n = \{1, 2, 3, ..., n\}$. Define

$$d_p(A, B) = \inf\{p(a - b) : a \in A \text{ and } b \in B_i\},$$

$$Prox(A, B_i) = \{(a, b) \in A \times B_i : p(a - b) = d_p(A, B_i)\},$$

$$A_i^0 = \{a \in A : p(a - b) = d_p(A, B_i) \text{ for some } b \in B_i\},$$

$$B_i^0 = \{b \in B_i : p(a - b) = d_p(A, B_i) \text{ for some } a \in A\}.$$

 $A^0 = \bigcap_{i \in I_n} A_i^0$. For n = 1, let $A_0 = A_1^0 = A^0$ and $B_0 = B_1^0$ (see [16]). Notice that for each $i \in I_n$, A_i^0 is nonempty if and only if B_i^0 is nonempty.

The following are essential in proving our results in this sequel.

Lemma 2.7. Let A and for each $i \in I_n$, B_i be nonempty subset of E. Then the following statements hold for each $i \in I_n$:

- (a) If A_i^0 (resp. A) and B_i are convex, then B_i is (resp. A_i^0 and B_i^0) convex.
- (b) If A_i^0 (resp. A) and B_i are compact, then B_i^0 is (resp. A_i^0 and B_i^0) compact.

(c)
$$P_A(B_i^0) = P_{A_i^0}(B_i^0) = A_i^0$$
.

(d) If A_i^0 is nonempty, compact and convex and B_i^0 is convex, then $P_{A_i^0}/B_i^0$ is a K-multimap.

Proof. (a) Let $b_1, b_2 \in B_i$. Then there exist $a_1, a_2 \in A_i$ such that $p(a_K - b_K) = d_p(A, B_i)$ for K = 1, 2. Let $\lambda \in (0, 1)$, $x = \lambda a_1 + (1 - \lambda)a_2$ and $y = \lambda b_1 + (1 - \lambda)b_2$. If A_i^0 and B_i are convex, then it follows that $x \in A_i^0$, $y \in B_i$ and

$$p(x - y) = p((\lambda a_1 + (1 - \lambda)a_2) - (\lambda b_1 + (1 - \lambda)b_2))$$

$$= p(\lambda(a_1 - b_1) + (1 - \lambda)(a_2 - b_2))$$

$$\leq p(\lambda(a_1 - b_1)) + p((1 - \lambda)(a_2 - b_2))$$

$$= \lambda p(a_1 - b_1) + (1 - \lambda)p(a_2 - b_2)$$

$$\therefore p(x - y) = \lambda d_p(A, B_i) + (1 - \lambda)d_p(A, B_i)$$

$$= d_p(A, B_i).$$

(b) Suppose A_i^0 and B_i are compact. Let $\{b_n\}$ be a sequence in B_i^0 such that $b_n \to b \in B_i$. Then there exists a sequence $\{a_n\}$ in A_i^0 such that $p(a_n - b_n) = d_p(A, B_i)$. Since A_i^0 is compact, we may assume that $a_n \to a \in A_i^0$. It follows from

$$d(A, B_i) \le p(a - b)$$

$$= p(a - a_n + a_n - b_n + b_n - b)$$

$$\leq p(a - a_n) + d_p(A, B_i) + p(b_n - b)$$

$$\to d_p(A, B_i).$$

Therefore, $d_p(A, B_i) = p(a - b) \Rightarrow b \in B_i^0$. Therefore, B_i^0 is closed and hence compact. The rest follows similarly.

(c) To show that $P_A(B_i^0) \subseteq A_i^0$, let $a \in P_A(B_i^0)$. Then there exists $b \in B_i^0$ and $y \in A$ such that $a \in P_A(b)$ and $p(y - b) = d_p(A, B_i)$. Since

$$d_p(A, B_i) \le p(a - b) = d_p(b, A) \le p(y - b) = d_p(A, B_i),$$

hence $d_p(A, B_i) = p(a - b)$ and $a \in A_i^0$. Therefore, $P_A(B_i^0) \subseteq A_i^0$.

To show that $A_i^0 \subseteq P_A(B_i^0)$, let $a' \in A_i^0$. Then there exists $b' \in B_i$ such that $p(a'-b') = d_p(A, B_i) \le d_p(b', A)$. Therefore, $a' \in P_A(b') \le P_A(B_i)$.

$$\therefore A_i^0 \subseteq P_A(B_i^0).$$

- $\therefore P_A(B_i^0) = A_i^0$. By a similar argument, we can show that $P_{A_i^0}(B_i^0) = A_i^0$.
- (d) Since A_i^0 is nonempty, compact and convex, $P_{A_i^0}: E \to 2^{A_i^0}$ is a K-multimap. Since B_i^0 is convex and from part (c), B_i^0 is compact.

$$P_{A_i^0/B_i^0}$$
 is a K-multimap.

Remark 2.8. We note from part (c) of the above theorem and the definitions of A^0 , A_i^0 and B_i^0 that

- (c1) A_i^0 is nonempty if and only if B_i^0 is nonempty.
- (c2) $A^0 \neq \emptyset$ is equivalent to $\bigcap_{i=1}^n P_A(b_i) \neq \emptyset$ for some $(b_1, b_2, ..., b_n) \in \prod_{i=1}^n B_i^0$.

(c3) $P_A(B_i^0) = A_i^0$ if and only if $A_i^0 = A^0$; so by Kim and Lee [8, 9, Theorems 1, 2 and 4] are valid only whenever $A_i^0 = A^0$.

(c4)
$$\bigcap_{i=1}^{n} P_{A}(B_{i}^{0}) = \bigcap_{i=1}^{n} P_{A_{i}^{0}}(B_{i}^{0}) = \bigcap_{i=1}^{n} A_{i}^{0} = A^{0}$$
. So $A^{0} \neq \emptyset$ if and only if $\bigcap_{i=1}^{n} P_{A_{i}^{0}}(y_{i}) \neq \emptyset$ for some $(y_{1}, y_{2}, ..., y_{n}) \in \prod_{i=1}^{n} B_{i}^{0}$.

Lemma 2.9 ([15]). Let A be a nonempty, approximately p-compact and convex subset of a Hausdorff locally convex topological vector space E with a continuous seminorm p.

For every element $y \in E$, let $P_A(y) = \{x \in A : p(x - y) = d_p(y, A)\}$. Then the following statements hold good:

(a) The set $P_A(y)$ is a nonempty, compact and convex subset of A.

(Every element of $P_A(y)$ is called a p-best approximation in A to $y \in E$.)

(b) The multifunctions $P_A: E \to 2^A$ is upper semicontinuous.

(The multifunction P_A is called a projection map.)

Definition 2.10 ([2]). Let $T: A \to 2^B$ be a multimap. Then we say that T is a KKM_0 -multimap if T and so $T: A \to 2^A$ are closed and have the KKM property for each K-multimap $S: B \to 2^A$.

Lemma 2.11 ([17]). Let A and B be nonempty subsets of a normed space E. If $A \to 2^B$ is an upper semicontinuous multimap with compact values, then T is closed.

Lemma 2.12 ([5, 12]). Let A be nonempty convex subset of a normed space E. If $T: A \to 2^A$ is closed and compact multimap having the KKM property, then T has a fixed point.

Lemma 2.13 ([6]). For each $i \in I_n$, let B_i be a nonempty, compact and convex subset of a normed space E and $P_i : \prod_{i=1}^n B_j \to 2^{B_i}$ be a map such that

(a)
$$x_i \notin C_0 P_i(x)$$
 for each $u = (x_1, x_2, ..., x_n) \in B = \prod_{i=1}^n B_i$.

(b) $P_i^{-1}(y)$ is open in B for each $y \in B_i$.

Then there exists $b \in B$ such that $P_i(b) = \emptyset$ for each $i \in I_n$.

Lemma 2.14 ([3, 6, 8, 9]). Let B be a nonempty, compact and convex subset of a normed space E and $P: B \to 2^B$ be a map such that

- (a) $x \notin C_0 P(x)$ for each $x \in B$.
- (b1) If $z \in P^{-1}(y)$, then there exists some $y' \in B$ such that $z \in \text{int } P^{-1}(y')$.
- (b2) $P^{-1}(y')$ is open in B for each $y \in B$.

Then there exists $b \in B$ such that $P(b) = \emptyset$.

3. Best Proximity Results for KKM_0 -multimaps (resp. $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimaps)

Lemma 3.1. Let A and B_i be subsets of a Hausdorff locally convex topological vector space E with a continuous seminorm p such that A_i^0 (resp. B_i^0) are nonempty approximately p-compact (resp. closed) and convex for each $i \in I_n$. Assume that one of A_i^0 's is contained in some compact subset of A. Let $f: A^0 \to A^0$ be a p-continuous, proper, quasi p-affine and surjective self-map, and $P: Y \to 2^{A^0}$ be a multimap defined by $P(y_1, y_2, ..., y_n) = \bigcap_{i=1}^n P_{A_i^0}(y_i)$ for each $(y_1, y_2, ..., y_n) \in Y$ $= \prod_{i=1}^n B_i^0$. Then $P: Y \to 2^{A^0}$ is a K-multimap.

Proof. Fix $i \in I_n$. As A_i^0 is an approximately *p*-compact and convex subset of E, by Lemma 2.9, it is known that the projection map $P_{A_i^0}: E \to 2^{A_i^0}$ is upper semicontinuous with compact and convex values. Therefore, $P_{A_i^0}: E \to 2^{A_i^0}$ is a K-multimap. In order to show B_i^0 is convex, let $x_1, x_2 \in B_i^0$ be arbitrary. Then

there exist $y_1, y_2 \in A_i^0$ such that

$$d_p(x_1, y_1) = d_p(A, B_i), \quad d_p(x_2, y_2) = d_p(A, B_i).$$

Let $\lambda \in (0, 1)$, $y = \lambda y_1 + (1 - \lambda)y_2$, $x = \lambda x_1 + (1 - \lambda)x_2$. Since A_i^0 is convex, $y \in A_i^0$, we have

$$p(x - y) = p(\lambda x_1 + (1 - \lambda)x_2) - (\lambda y_1 + (1 - \lambda)y_2)$$

$$\leq \lambda p(x_1 - y_1) + (1 - \lambda)p(x_2 - y_2)$$

$$= d_p(A, B_i).$$

Therefore, $x \in B_i^0$ and hence B_i^0 is convex. Since A_i^0 is approximately p-compact, A_i^0 is closed for each $i \in I_n$ and hence A^0 is closed. Since one A_i^0 's is contained in some compact subset of A, A_i^0 is compact and convex. Therefore, A_i^0 is nonempty, compact and convex, and B_i^0 is convex. By Lemma 2.7(d), $P_{A_i^0/B_i^0}$ is a K-multimap and hence $P: Y \to 2^{A^0}$ is a K-multimap. Let $S = f^{-1}P$. Since f is surjective and $S(Y) = f^{-1}P(Y) \subseteq f^{-1}(A^0) = A^0$, $S: Y \to 2^{A^0}$ is a multimap. To show that S is a convex valued function, it is enough to prove that S(y) is convex

$$p(f(a_1) - y_i) = d_p(y_i, A_i^0) = p(f(a_2) - y_i).$$

for $y \in Y$. For $a_1, a_2 \in S(y)$, we have $f(a_1), f(a_2) \in P_{A_i^0}(y_i)$. This implies that

Since f is quasi p-affine, the set

$$Q(y_i) = \{ a \in A^0 / p(f(a) - y_i) \le d_p(y_i, A_i^0) \}$$

is convex.

Therefore, $a_1, a_2 \in Q(y_i)$ which is convex. $\Rightarrow \lambda a_1 + (1 - \lambda)a_2 \in Q(y_i)$, for all $\lambda \in [0, 1]$.

Let
$$y_{\lambda} = \lambda a_1 + (1 - \lambda)a_2$$
. Then $y_{\lambda} \in Q(y_i)$. $\Rightarrow p(f(y_{\lambda}) - y_i) = d_p(y_i, A_i^0)$

$$\Rightarrow f(y_{\lambda}) \in P_{A_i^0}(y_i)$$

$$\Rightarrow f(y_{\lambda}) \in P(y)$$

$$\Rightarrow f(y_{\lambda}) \in f^{-1}P(y) = S(y)$$
 hence $S(y)$ is convex.

To show that S is upper semicontinuous, let D be a closed subset of A^0 and $\{y_{\alpha}\}$ be any net in $S^{-1}(D)$ such that $y_{\alpha} \to y = (y_1, ..., y_n)$. Then by definition of $S^{-1}(D)$ for each α , $S(y_{\alpha}) \cap D \neq \emptyset$. Choose a net $\{x_{\alpha}\}$ in (D) such that $x_{\alpha} \in S(\alpha) \cap D$ so that

$$d_p(f(x_\alpha), y_\alpha) = d_p(y_\alpha, A_i^0)$$

 $\Rightarrow x_{\alpha} \in f^{-1}P(y_{\alpha})$ which is compact

 $\Rightarrow \{x_{\alpha}\}$ has a convergent subnet.

Since D is closed subset of A^0 , without loss of generality, we may assume that $\{x_{\alpha}\} \to x \in D$. Since f is p-continuous, $p(f(x_{\alpha}) - f(x)) \to 0$.

Now

$$\begin{split} p(f(x_{\alpha})-f(x)) &\leq p(f(x)-f(x_{\alpha})) + p(f(x_{\alpha})-y_{\alpha}) + p(y_{\alpha}-y) \\ &\Rightarrow p(f(x)-y) \leq p(f(x_{\alpha})-y_{\alpha}) + p(y_{\alpha}-y) \\ &= d_p(y_{\alpha},\,A_i^0) + p(y_{\alpha}-y) \ \, (\because p(f(x_{\alpha})-y_{\alpha}) = d_p(y_{\alpha},\,A_i^0)). \end{split}$$
 Also, $d_p(y_{\alpha},\,A_i^0) \to d_p(y,\,A_i^0).$ So
$$p(f(x)-y) = d_p(y,\,A_i^0) \\ &\Rightarrow f(x) \in P_{A_i^0}(y_i) \end{split}$$

and hence $f(x) \in P(y)$. Therefore, $x \in f^{-1}P(y) = S(y)$. So

$$x\in S(y)\cap D$$

$$\Rightarrow y \in S^{-1}(D).$$

Therefore,

$$S^{-1}(D)$$
 is closed

 \Rightarrow S is upper semicontinuous.

Notice, as $P: Y \to 2^{A^0}$ is K-multimap, P is compact valued map and P(y) is compact in A^0 for each $y \in Y$. Since $f: A^0 \to A^0$ is proper, $f^{-1}(P(y))$ is compact in A^0 , that is, S(y) is compact in A^0 . Therefore, $S = f^{-1}P: Y \to 2^{A_i^0}$ is upper semicontinuous with compact and convex valued map.

$$\Rightarrow f^{-1}P: Y \to 2^{A_i^0}$$
 is a K-multimap.

Definition 3.2. Let A and B_i be nonempty subsets of a topological space E with a continuous seminorm p. Let $T_i: A \to 2^{B_i}$ be a multimap for each $i \in I_n$. Then $f: A' \to A'$ is a self-map of a nonempty subset A' of A and $a \in A$.

If $d_p(f(a), T_i(a)) = d_p(A, B_i)$, then we can say that $(f(a), T_i(a))$ is a *best proximity pair*. The best proximity set for the pair $(f(a), T_i(a))$ is given by

$$\mathfrak{T}_{\mathfrak{a}}^{\mathsf{i}}(f) = \{ b \in T_{\mathsf{i}}(a) : d_{p}(f(a), T_{\mathsf{i}}(a)) = p(f(a) - b) = d_{p}(A, B_{\mathsf{i}}) \}.$$

For n = 1, let $\mathfrak{T}_{\mathfrak{a}}(f) = T'_{a}(f)$. Whenever f is the identity map, we write T'_{a} instead of $\mathfrak{T}_{\mathfrak{a}}^{\mathfrak{i}}(f)$.

Theorem 3.3. Let A and B_i be subsets of a Hausdorff locally convex topological vector space E with a continuous seminorm p such that A_i^0 (resp. closed) and nonempty approximately p-compact (resp. closed) and convex for each $i \in I_n$. Assume that one of A_i^0 's is contained in some compact subset of A. Suppose that $\bigcap_{i=1}^n P_{A_i^0}(y_i)$ is nonempty for each $(y_1, y_2, ..., y_n) \in Y = \prod_{i=1}^n B_i^0$ and $T: A^0 \to 2^Y$ is a KK_0 -multimap (resp. $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimap) where $T(x) = \prod_{i=1}^n T_i(x)$ for each $x \in A^0$. Then for each p-continuous, proper, quasi p-affine and surjective self-map $f: A^0 \to A^0$, there exists $a \in A^0$ such that the best proximity set $\mathfrak{T}_{\mathfrak{a}}^{\mathfrak{i}}(f)$ is nonempty and closed.

Proof. Fix $i \in I_n$. Define $P: Y \to 2^{A^0}$ by $P(y_1, y_2, ..., y_n) = \bigcap_{i=1}^n P_{A_i^0}(y_i)$ for each $(y_1, y_2, ..., y_n) \in Y = \prod_{i=1}^n B_i^0$. Let $f: A^0 \to A^0$ be a self-map. As $\bigcap_{i=1}^n P_{A_i^0}(y_i)$ is nonempty for each $(y_1, y_2, ..., y_n) \in Y$, it follows from Lemma 3.1 that $f^{-1}P: Y \to 2^{A_i^0}$ is a K-multimap.

Now assume that $T:A^0\to 2^Y$ is a KKM_0 -multimap. It follows from the definition of KKM_0 -multimap that $f^{-1}P\circ T:A^0\to 2^{A^0}$ and T are closed multimap and have the KKM-property. Since A_i^0 is approximately p-compact for each $i\in I_n$, A_i^0 is closed for each $i\in I_n$. But $A^0=\bigcap_{i=1}^nA_i^0$ and one of A_i^0 's is contained in some compact subset of A. Therefore, A_i^0 is compact and hence A^0 is compact. Therefore, $f^{-1}P\circ T$ is a compact multimap. By Lemma 2.12, there exists $a\in A^0$ such that $a\in (f^{-1}P\circ T)(a)$ and hence $f(a)\in P(T(a))$. Thus there exists $(b_1,b_2,...,b_n)\in T(a)=\prod_{i=1}^nT_i(a)$ such that $f(a)\in P(b_1,b_2,...,b_n)=\bigcap_{i=1}^nP_{A_i^0}(b_i)$ $\subseteq A^0$. Hence $f(a)\in P_{A_i^0}(b_i)\subseteq A_i^0$ and $b_i\in T_i(a)\subseteq B_i^0$. This implies that there exists $a_i'\in A_i^0$ such that $p(a'-b_i)=d_p(A,B_i)$ and hence

$$d_p(A, B_i) \le d_p(f(a), T_i(a)) \le p(f(a) - b_i) = d_p(b_i, A_i^0) \le p(a_i' - b_i) = d(A, B_i).$$
Thus $d_p(f(a), T_i(a)) = p(f(a) - b_i) = d_p(A, B_i)$. Therefore, $b_i \in \mathfrak{T}^{\mathbf{i}}_{\mathfrak{a}}(f)$.

Suppose $T:A^0\to 2^Y$ is an $\mathfrak{U}^{\mathfrak{K}}_{\mathfrak{c}}$ -multimap. Then by definition, there exists $\mathfrak{U}^{\mathfrak{K}}_{\mathfrak{c}}$ -multimap $T':A^0\to 2^Y$ such that T' is upper semicontinuous with compact values and $T'(x)=\prod_{i=1}^n T_i'(x)\subseteq T(x)$ for each $x\in A^0$. Now $f^{-1}P$ is a K-multimap implies $f^{-1}P$ is a $\mathfrak{U}^{\mathfrak{K}}_{\mathfrak{c}}$ -multimap. Also, T' is a $\mathfrak{U}^{\mathfrak{K}}_{\mathfrak{c}}$ -multimap and hence T' is a multimap having the KKM property.

Therefore, $f^{-1}P \circ T'$ and T' are closed and having the KKM property. This

implies that $f': A^0 \to 2^Y$ is a KKM_0 -multimap. It follows from the previous paragraph that there exists $(a,b) \in A^0 \times Y$ such that $b = (b_1, b_2, ..., b_n)$, $b_i \in T_i'(a)$ and $d_p(f(a), T_i'(a)) = p(f(a) - b_i) = d_p(A, B_i)$. As $d_p(A, B_i) \le d_p(f(a), T_i(a))$ $\le d_p(f(a), T_i'(a))$, we conclude that

$$d_p(f(a), T_i(a)) = p(f(a) - b_i) = d_p(A, B_i).$$

This means that $b_i \in \mathfrak{T}^{\mathfrak{i}}_{\mathfrak{a}}(f)$. Therefore, in both cases, the best proximity set $\mathfrak{T}^{\mathfrak{i}}_{\mathfrak{a}}(f)$ is nonempty and its closedness follows from the continuity of the seminorm.

Corollary 3.4. Let A and B_i be subsets of a Hausdorff locally convex topological vector space E with a continuous seminorm p such that A_i^0 (resp. B_i^0) are nonempty approximately p-compact (resp. closed) and convex for each $i \in I_n$. Assume that one of A_i^0 's is contained in some compact subset of A. Suppose that $\bigcap_{i=1}^n P_{A_i^0}(y_i)$ is nonempty for each $(y_1, y_2, ..., y_n) \in Y = \prod_{i=1}^n B_i^0$ and $T_i : A^0 \to 2^{B_i^0}$ is an $\mathfrak{U}_{\mathfrak{C}}^{\mathfrak{K}}$ -multimap for each $i \in I_n$. Then for each continuous, proper, quasi p-affine and surjective self-map $f: A^0 \to A^0$, there exists $a \in A^0$ such that the best proximity set $\mathfrak{T}_{\mathfrak{A}}^i(f)$ is nonempty and closed.

Proof. Define $T:A^0\to 2^Y$ by $T(x)=\prod_{i=1}^n T_i(x)$ for each $x\in A^0$. Since $T_i:A^0\to 2^{B_i^0}$ is an $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimap for each $i\in I_n$ for every compact set K in A^0 , (that is, K may be treated as A^0) there exists an U_c -multimap $f:K(=A^0)\to 2^{B_i^0}$ such that $f(x)\subseteq T_i(x)$ for each $x\in A^0$ and for each $i\in I_n$. This implies that $f(x)\subset\prod_{i=1}^n T_i(x)=T(x)$ for each $x\in A^0$. Therefore, $T:A^0\to 2^Y$ is an $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimap. The result follows from Theorem 3.3.

Theorem 3.5. Let A and B_i be subsets of a Hausdorff locally convex topological vector space E with a continuous seminorm p, A_i^0 (resp. B_i^0) be nonempty, approximately p-compact (resp. closed) and convex, $T_i: A^0 \to 2^{B_i}$ be an

upper semicontinuous multimap with compact values and $T_i(x) \cap B_i^0$ be nonempty for each $x \in A^0$, for each $i \in I_n$. Suppose that $\bigcap_{i=1}^n P_{A_i^0}(y_i)$ is nonempty for each $(y_1, y_2, ..., y_n) \in Y = \prod_{i=1}^n B_i^0$. Assume that one of A_i^0 's is contained in some compact subset of A. Then for each continuous, proper, quasi p-affine and surjective self-map $f: A^0 \to A^0$, there exists $a \in A^0$ such that the best proximity set $\mathfrak{T}_{\mathfrak{a}}^{\mathfrak{i}}(f)$ is nonempty and closed.

Proof. Fix $i \in I_n$. Define $T_i': A^0 \to 2^{B_i^0}$ by $T_i'(x) = T_i(x) \cap B_i^0$ for each $x \in A^0$. Thus $T_i': A^0 \to 2^{B_i^0}$ is an upper semicontinuous multimap with compact values. Define $T: A^0 \to 2^Y$ by $T(x) = \prod_{i=1}^n T_i'(x)$ for each $x \in A^0$. As in Theorem 3.3, A^0 is compact. Therefore, $T: A^0 \to 2^Y$ is an upper semicontinuous multimap with compact values. This implies that T is K-multimap and hence $\mathfrak{U}_{\mathfrak{C}}^{\mathfrak{K}}$ -multimap. Then the result follows from the second half of Theorem 3.3.

Remark 3.6. Lemma 3.1, Theorem 3.3, Corollary 3.4 and Theorem 3.5 generalize Lemma 3.1, Theorem 3.4, Corollary 3.5 and Theorem 3.8 of Al-Thagafi and Shahzad [2] by relaxing the condition A_i^0 is compact for each $i \in I_n$ into the weaker condition A_i^0 is approximately p-compact for each $i \in I_n$ in the setting of Hausdorff locally convex topological vector space with a continuous seminorm p. Also, we relaxed the condition " A_i^0 is compact for each $i \in I_n$ by the weaker condition" one of A_i^0 's is contained in some compact subset of $A \subset E$ (Hausdorff locally convex topological vector space with a continuous seminorm p).

4. Equilibrium Pair Results for Free n-person Games

A free *n*-person game is a family of ordered quadruples $(A, B_i, T_i, P_i)_{i \in I_n}$ such that A and B_i are nonempty subsets of a normed space E, $T_i: A \to 2^{B_i}$ is a constraint multimap, and $P_i: B \to 2^{B_i}$ is a preference map where $B := \prod_{j=1}^n B_j$

(see [9]). An equilibrium pair for $(A, B_i, T_i, P_i)_{i \in I_n}$ is a point $(a, b) \in A \times B$ such that $T_i(a) \cap P_i(b) = \emptyset$. For details on economic terminology, see [8, 9].

Theorem 4.1. Let $(A, B_i, T_i, P_i)_{i \in I_n}$ be a free n-person game such that A and B_i are nonempty subsets of a Hausdorff locally convex topological vector space E with a continuous seminorm p. Then $T_i: A \to 2^{B_i}$ is a constraint multimap, and $P_i: B \to 2^{B_i}$ is a preference map where $B:=\prod_{j=1}^n B_j$. Assume that A^0 is nonempty, $T(x):=\prod_{j=1}^n T_i(x)$ for each $x \in A^0$, $Y:=\prod_{j=1}^n B_j^0$, and for each $i \in I_n$,

- (a) A_i^0 is approximately p-compact and convex for each $i \in I_n$, B_i is compact and convex for each $i \in I_n$. Also, one of the A_i 's is contained in some compact subset of A;
 - (b) $\bigcap_{i=1}^{n} P_{A_{i}^{0}}(y_{i})$ is nonempty for each $(y_{1}, y_{2}, ..., y_{n}) \in \prod_{i=1}^{n} B_{i}^{0}$;
 - (c) $T: A^0 \to 2^Y$ is a KKM_0 -multimap (resp. $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimap);
 - (d) $x_i \notin coP_i(x)$ for each $x = (x_1, x_2, ..., x_n) \in B$;
 - (e) $P^{-1}(y)$ is open for each $y \in B_i$.

Then there exists $b \in B$ such that $P_i(b) = \emptyset$ and, for each continuous, proper, quasiaffine, and surjective self-map $f: A^0 \to A^0$, there exists $a \in A^0$ such that the best proximity set $\mathfrak{T}^i_{\mathfrak{a}}(f)$ is nonempty and compact. If, in addition, $P_i(z)$ is nonempty for each $z \notin \prod_{i=1}^n \mathfrak{T}^i_{\mathfrak{a}}(f)$, then (a,b) is an equilibrium pair in $A^0 \times \prod_{i=1}^n \mathfrak{T}^i_{\mathfrak{a}}(f)$.

Proof. Fix $i \in I_n$. Since A_i^0 is approximately p-compact, A_i^0 is closed for each $i \in I_n$ and hence A^0 is closed. Since one of A_i^0 's is contained in some compact subset of A, A_i^0 is compact. As A_i^0 and B_i are compact and convex, it follows from Lemma 2.7(b) that B_i^0 is compact and convex. By Theorem 3.3, there exists $a \in A^0$ such that the best proximity set $\mathfrak{T}_{\mathfrak{a}}^{\mathfrak{i}}(f)$ is nonempty and closed. By Lemma 2.14,

there exists $b=(b_1,\,b_2,\,...,\,b_n)\in Y$ such that $P_i(b)=\varnothing$. As $P_i(z)$ is nonempty for each $z\in\prod_{i=1}^n\mathfrak{T}^{\mathfrak{i}}_{\mathfrak{a}}(f)$, we conclude that $b=(b_1,\,b_2,\,...,\,b_n)\in\prod_{i=1}^n\mathfrak{T}^{\mathfrak{i}}_{\mathfrak{a}}(f)$. Thus $(a,b)\in A^0\times Y,\;b=(b_1,b_2,...,b_n)\in\prod_{i=1}^nT_i(a),\;T_i(a)\cap P_i(b)=\varnothing$ and $d(f(a),T_i(a))=p(f(a)-b_i)=d(A,\,B_i)$. Thus $(a,\,b)$ is an equilibrium pair in $A^0\times\prod_{i=1}^n\mathfrak{T}^{\mathfrak{i}}_{\mathfrak{a}}(f)$.

Theorem 4.2. Let $(A, B_i, T_i, P_i)_{i \in I_n}$ be a free n-person game such that A and B_i are subsets of a Hausdorff locally convex topological vector space E with continuous seminorm p. Then $T_i: A \to 2^{B_i}$ is a constraint multimap, and $P_i: B \to 2^{B_i}$ is a preference map where $B:=\prod_{j=1}^n B_j$. Assume that A^0 is nonempty, $Y:=\prod_{i=1}^n B_i^0$, and for each $i \in I_n$,

- (a) A_i^0 is approximately p-compact and convex for each $i \in I_n$, B_i is compact and convex for each $i \in I_n$. Also, one of the A_i 's is contained in some compact subset of A;
 - (b) $\bigcap_{i=1}^{n} P_{A_{i}^{0}}(y_{i})$ is nonempty for each $(y_{1}, y_{2}, ..., y_{n}) \in \prod_{i=1}^{n} B_{i}^{0}$;
- (c) $T_i | A^0$ is an upper semicontinuous multimap with compact values and $T_i(x) \cap B_i^0$ is nonempty for each $x \in A^0$;
 - (d) $x_i \notin coP_i(x)$ for each $x = (x_1, x_2, ..., x_n) \in B$;
 - (e) $P_i^{-1}(y)$ is open for each $y \in B_i$.

Then, there exists $b \in B$ such that $P_i(b) = \emptyset$ and, for each continuous, proper, quasiaffine and surjective self-map $f: A^0 \to A^0$, there exists $a \in A^0$ such that the best proximity set $\mathfrak{T}^i_{\mathfrak{a}}(f)$ is nonempty and compact. If, in addition, $P_i(z)$ is nonempty for each $z \notin \prod_{i=1}^n \mathfrak{T}^i_{\mathfrak{a}}(f)$, then (a,b) is an equilibrium pair in $A^0 \times \prod_{i=1}^n \mathfrak{T}^i_{\mathfrak{a}}(f)$.

Proof. Use Theorem 3.5 instead of Theorem 3.3 in the proof of Theorem 4.1. \square

Theorem 4.3. Let (A, B, T, P) be a free 1-person game such that A and B are subsets of a Hausdorff locally convex topological vector space E. Then $T: A \to 2^B$ is a constraint multimap, and $P: B \to 2^B$ is a preference map. Assume that

- (a) A_i^0 is approximately p-compact and convex for each $i \in I_n$, B is compact and convex and one of A_i^0 's is contained in some compact subset of A;
 - (b) $T: A^0 \to 2^{B_0}$ is a KKM₀-multimap (resp. $\mathfrak{U}_{\mathfrak{c}}^{\mathfrak{K}}$ -multimap);
 - (c) $x_i \notin coP(x)$ for each $x \in B$;
 - (d) one of the following conditions is satisfied;
- (d1) if $z \in P^{-1}$ for some $y \in B$, then there exists some $y' \in B$ such that $z \in \text{int } P^{-1}(y')$;
 - (d2) for each $y \in B$, $P^{-1}(y)$ is open in B.

Then, there exists $b \in B$ such that $P(b) = \emptyset$ and, for each continuous, proper, quasiaffine and surjective self-map $f: A_0 \to A_0$, there exists $a \in A_0$ such that the best proximity set $\mathfrak{T}^i_{\mathfrak{a}}(f)$ is nonempty and compact. If, in addition, P(z) is nonempty for each $z \notin \mathfrak{T}^i_{\mathfrak{a}}(f)$, then (a, b) is an equilibrium pair in $A_0 \times \mathfrak{T}^i_{\mathfrak{a}}(f)$.

Proof. Since A_i^0 is approximately *p*-compact for each $i \in I_n$, A_i^0 is closed for each $i \in I_n$. Hence $A^0 = \bigcap_{i=1}^n A_i^0$ is closed. But $A^0 \subset A_i^0$. Therefore, A^0 is compact, that is, A_0 is compact.

Since A_0 and B_0 are nonempty, compact and convex, it follows from Theorem 3.3 that there exists $(a, c) \in A_0 \times B_0$ such that $c \in T(a)$ and d(f(a), T(a)) = p(f(a) - c) = d(A, B) and so $\mathfrak{T}_{\mathfrak{a}}(f)$ is nonempty. By Theorem 3.5, there exists $b \in B_0$ such that $P(b) = \emptyset$. As P(z) is nonempty whenever $z \in B \setminus \mathfrak{T}_{\mathfrak{a}}(f)$, we conclude that $b \in \mathfrak{T}_{\mathfrak{a}}(f)$. So $(a, b) \in A_0 \times b_0$, $b \in T(a)$ and d(f(a), T(a)) = p(f(a) - b) = d(A, B). Thus (a, b) is an equilibrium pair in $A_0 \times \mathfrak{T}_{\mathfrak{a}}(f)$.

Theorem 4.4. Let (A, B, T, P) be a free 1-person game such that A and B are subsets of a Hausdorff locally convex topological vector space E. Then $T: A \to 2^B$ is a constraint multimap, and $P: B \to 2^B$ is a preference map. Assume that

- (a) A_i^0 is approximately p-compact and convex for each $i \in I_n$, B is compact and convex and one of A_i^0 's is contained in some compact subset of A;
- (b) $T | A_0$ is an upper semicontinuous multimap with compact values and $T(x) \cap B_0$ is nonempty for each $x \in A_0$;
 - (c) $x_i \notin coP(x)$ for each $x \in B$;
 - (d) one of the following conditions is satisfied;
- (d1) if $z \in P^{-1}$ for some $y \in B$, then there exists some $y' \in B$ such that $z \in \text{int } P^{-1}(y')$;
 - (d2) for each $y \in B$, $P^{-1}(y)$ is open in B.

Then, there exists $b \in B$ such that $P(b) = \emptyset$ and, for each continuous, proper, quasiaffine and surjective self-map $f: A_0 \to A_0$, there exists $a \in A_0$ such that the best proximity set $\mathfrak{T}_{\mathfrak{a}}(f)$ is nonempty and compact. If, in addition, P(z) is nonempty for each $z \notin \mathfrak{T}_{\mathfrak{a}}(f)$, then (a, b) is an equilibrium pair in $A_0 \times \mathfrak{T}_{\mathfrak{a}}(f)$.

Proof. Use Theorem 3.5 instead of Theorem 3.3 in the proof of Theorem 4.2. \Box

References

- [1] M. A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Anal. 70(3) (2007), 1482-1483.
- [2] M. A. Al-Thagafi and Naseer Shahzad, Fixed point theory and applications, 2008, Article ID 457069, 10 pages.
- [3] K. C. Border, Fixed Point Theorems with Applications to Economics and Game Theory, Cambridge University Press, Cambridge, UK, 1989.
- [4] A. Carbone, Kakutani factorizable maps and best approximation, Indian J. Math. 36 (1994), 139-145.

- [5] T.-H. Chang and C.-L. Yen, *KKM* property and fixed point theorems, J. Math. Anal. Appl. 203(1) (1996), 224-235.
- [6] X. P. Ding, W. K. Kim and K.-K. Tan, Equilibria of noncompact generalized games with L-majorized preference correspondences, J. Math. Anal. Appl. 164(2) (1992), 508-517.
- [7] K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112(3) (1969), 234-240.
- [8] W. K. Kim and K. H. Lee, Existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316(2) (2006), 433-446.
- [9] W. K. Kim and K. H. Lee, Corrigendum to "existence of best proximity pairs and equilibrium pairs", J. Math. Anal. Appl. 329(2) (2007), 1482-1483.
- [10] M. Lassonde, Fixed points for Kakutani factorizable multifunctions, J. Math. Anal. Appl. 152(1) (1990), 46-60.
- [11] L.-J. Lin, S. Park and Z.-T. Yu, Remarks on fixed points, maximal elements, and equilibria of generalized games, J. Math. Anal. Appl. 233(2) (1999), 581-596.
- [12] L.-J. Lin and Z.-T. Yu, Fixed points theorems of *KKM*-type maps, Nonlinear Anal. 38(2) (1999), 265-275.
- [13] D. O'Regan, N. Shahzad and R. P. Agarwal, Birkhoff-Kellogg and best proximity pair results, Bull. Belg. Math. Soc. Simon Stevin 13(4) (2006), 645-655.
- [14] S. Park, Foundations of the *KKM* theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31(3) (1994), 493-519.
- [15] S. Reich, Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl. 62 (1978), 104-118.
- [16] S. Sadiq Basha and P. Veeramani, Best proximity pair theorems for multifunctions with open fibres, J. Approx. Theory 103(1) (2000), 119-129.
- [17] S. Singh, B. Watson and S. Srivastava, Fixed point theory and best approximations: the *KKM* map principle, Mathematics and its Applications, Vol. 424, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
- [18] P. S. Srinivasan and P. Veeramani, On best proximity pair theorems and fixed-point theorems, Abstr. Appl. Anal. 2003(1) (2003), 33-47.
- [19] P. S. Srinivasan and P. Veeramani, On existence of equilibrium pair for constrained generalized games, Fixed Point Theory Appl. 2004(1) (2004), 21-29.
- [20] V. Vetrivel, P. Veeramani and P. Bhattacharyya, Some extensions of Fan's best approximation theorem, Numer. Funct. Anal. Optim. 13 (1992), 397-402.