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Abstract

We establish the existence of theorems of best proximity pairs for KKM,

multimap (resp. uf -multimap) in the setting of Hausdorff locally convex

topological vector space E, with a continuous seminorm p which
generalizes the previous best proximity theorems of Al-Thagafi and
Shahzad [2].

1. Introduction

The best approximation theorem due to Fan [7] states that if K is a nonempty
compact convex subset of a locally convex Hausdorff topological vector space E
with a continuous seminorm p and f : K — E is a single valued continuous function,
then there exists an element x e K such that
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p(f(x) = x) = d,(f(x), K) = inf{p(f(x) = »)/y € K}.

Since then, a number of generalizations of this theorem have been obtained in
various directions by several authors (e.g., see [8, 16, 18, 19]). Indeed, Reich [15]
has shown that even if K is a nonempty approximately p-compact convex subset of a
locally convex Hausdorff topological vector space E with a relatively compact image

f(K), then the same conclusion holds. Also, there is no guarantee that such an
approximate solution is optimal. For suitable subsets 4 and B of £ and a multimap

T:4-28 Sadiq Basha and Veeramani [16] provided sufficient conditions for the

existence of an optimal solution (a, T(a)), (called a best proximity pair) such that
d,(a, T(a)) = d,(4, B)=inf{p(x - y): x € 4, y € B}.

Srinivasan and Veeramani [18, 19] extended these results and obtained existence
theorems of equilibrium pairs for constrained generalized games. Kim and Lee [8, 9]
generalized the results [18, 19] and obtained existence theorems of equilibrium pairs
for free n-person games. Al-Thagafi and Shahzad [1] generalized and extended the
above results to Kakutani multimaps.

In this paper, we establish the existence theorems of best proximity pairs for
KKM  -multimaps (resp. Llf -multimaps) in Hausdorff locally convex topological

vector space £ with a continuous seminorm p. As applications, we obtain existence

theorems of equilibrium pairs for free n-person games as well as free 1-person
games. We consider A,-0 as approximately p-compact and convex for each 7 € /,

and one of Alo’s contained in some compact subset of 4 — £ instead of AlO is

compact for each i € 1,,.

Lemma 1.1. If X is a nonempty compact and convex subset of a locally convex

Hausdorff topological vector space E, then any generalized Kakutani factorizable

multifunction T : X — 2% has a fixed point.
2. Preliminaries

Throughout £ is a Hausdorff locally convex topological vector space with a

continuous seminorm p, 4 and B are nonempty subsets of E, 24 s the family of all
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subsets of 4, CyA is the convex shell of 4 in E, int 4 is the interior of 4 in
E, C(4, B) is the set of all continuous single-valued maps, d,(x, 4)=
inf{d ,(x, a):a € 4} and d,(4, B)=inf{p(a-b):aec Aand b e B}. A map
T:4- 28 is called a multimap (multifunction or correspondence) if T(x) is

nonempty for each x € 4. A multimap 7 : 4 — 24 is said to have a fixed point
a € A if a € T(a); the set of all fixed points of T is denoted by F(T). A multimap

T: 428 issaidtobe a

(a) upper semicontinuous it T™(D)={xe A:T(x)\ D # @} is closed in 4

whenever D is closed in B;
(b) compact if T(A) is compact in B;

(c) closed if its graph Gr(T)={(x, y):xe 4 and y € T(x)} is closed in
A x B; and
(d) compact valued (resp. convex) if T(x) is compact (resp. convex) in B for

every x € A

A map f:A— B is proper if f'(K) is compact in A whenever K is
compact in B. A map f:4—> E is quasi p-affine if the set Q(x)=
{ae A: p(f(a)—x)<r} is convex forevery x € E and r € [0, ).

Definition 2.1 ([4]). Given a convex subset C of a topological vector space
E with a seminorm p. A single valued function g : C — E is said to be almost

p-affine if
(v + (1=2)v) = x) < plu —x)+ (1= 24) p(v - x),
forall u,ve C and x € E.

Clearly, any almost p-affine mapping is quasi p-affine but the converse is not
true.

Example 2.2. Let £ = R? and the seminorm p on E be defined as p(x, y) =

\/x2 + y2. Let g : E —> E be defined as follows:
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2,e%), ifu=0,
g(x, y) = @) ,
0, otherwise.

Then it is clear that g is quasi p-affine but not almost p-affine.

Definition 2.3. Let 4 be a nonempty subset of a topological vector space E with
a continuous seminorm p. Then a single valued function g : 4 — E is said to be
p-continuous if p[g(x,)— g(x)]— 0 for each x in 4 and every net {x,} in 4

converging to x.

It is apparent that p-continuity is, in general, weaker than continuity.

Example 2.4. Let £ = R? with the seminorm p : E — [0, ) be defined as
p(x, y)=|x|, forall (x, y) e E. Let g : E — E be defined as

(0,1), if (x, ) = (0, 0),
(0, 0), otherwise.

glx, y) = {

Then g is p-continuous but not continuous.

Definition 2.5 ([15]). Let 4 be a nonempty subset of a Hausdorff locally convex
topological vector space £ with a continuous seminorm p. Then the set K is said to

be approximately p-compact if for each y € E and each net {x,} in 4 satisfying the
condition that p(x, — ¥) — d,(y, 4), there exists a subnet {xg} of {x,} converging

to an element in 4.
It is remarked that approximately compact subsets are closed.

Evidently, any compact subset of a Hausdorff locally convex topological vector
space with a continuous seminorm p is approximately p-compact. However,
approximately compact sets, which are not compact, are available in great profusion.
Indeed, any nonempty closed and convex subset of a uniformly convex Banach

space is approximately compact.

The set Py(x)={a e 4: p(a—x)=d,(x, A)} is called the set of p-best

approximation in 4 to x € E. Let A and B be nonempty subsets of E£. Then a
polytope P in A4 is any convex hull of a nonempty finite subset D of 4. Whenever X

is a class of maps, denote the set of all finite compositions of maps in X by X_. and
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denote the set of all multimaps T : 4 — 2% in X by X(4, B). Let & be an
abstract class of maps [14] satisfying the following properties:

1. U contains the class C of continuous single valued maps.

2.Each T e 4, is upper semicontinuous with compact values.

3. For any polytope P, each T e {.(P, P) has a fixed point.

Definition 2.6. Let 7 : 4 — 25 Then we say that (a) T is an ilcﬁ -multimap

[14] if for every compact set K in A, there exists an i, -multimap f : K — 28
such that f(x) < T(x) for each x € K, (b) T is a K-multimap (or Kakutani
multimap) [10] if T is upper semicontinuous with compact and convex values (c)
S:A4— 28 is a generalized KKM-multimap with respect to T [5] if T(CoD)
S(D) for each finite subset D of 4 (d) T has the KKM property [5] if whenever

S:A4— 2% is a generalized KKM multimap w.r.t. T, the family {S(x):x e 4}
has the finite intersection property (e) 7' is a PK-multimap [13] if there exists a
multimap g : 4 — 25 satisfying 4 = U{intg™!(y): y € 4} and Cy(g(x)) < T(x)
for every x € 4. Note that each 11?{ -multimap has the KKM property and each
K-multimap (resp. H, -multimap has the KKM property and each K-multimap (resp.

. -multimap, PK-multimap) is an u?‘ -multimap (see [11, 12, 14]).

Let 4 and B; be nonempty subsets of a topological vector space with a

seminorm p for each i € I, = {1, 2, 3, ..., n}. Define
d,(4, B) = inf{p(a—b):a e Aand b € B},
Prox(4, B;) = {(a, b) € Ax B; : p(a —b) = d (4, B;)},
A ={aed:pla-b)= d, (4, B;) for some b € B;,
B ={beB;:pla—b)= d (4, B;) for some a € A}.

A = Nier, A% Forn=1, let 4y = AY = 4° and By = B (see [16]). Notice

that foreach i € /,,, Aio is nonempty if and only if BlQ is nonempty.
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The following are essential in proving our results in this sequel.

Lemma 2.7. Let A and for each i € I,,, B; be nonempty subset of E. Then the
following statements hold for each i € I,:

@ If Al-0 (resp. A) and B; are convex, then B; is (resp. Aio and BZ-O) convex.

(b) If A4 (resp. A) and B; are compact, then B is (resp. A and BY)

compact.

(© PA(BiO) = PAO(BI'O) = Aio'

@1 Ai0 is nonempty, compact and convex and BlO is convex, then P 40 / B? is
a K-multimap.

Proof. (a) Let b, b, € B;. Then there exist a, ay € 4; such that p(ag — bg)
=d, (4, B;) for K=1,2. Let L €(0,1), x=%a +(1-A)a, and y =2Ab +

(1=2)b,. If A and B; are convex, then it follows that x € 4, y € B; and
p(x =) = p((hay + (1= 1)az) = (Aby + (1= 1)by))

= p(May = by) + (1= 1) (az = by))

< p(May = b)) + p((1 = 1) (az = by))
=Ap(ay = b))+ (1 =2) p(ay — by)

ooplx=y)=Ad, (4, B;)+(1-21)d (4, B;)
=d,(4, B).
(b) Suppose 4 and B; are compact. Let {b,} be a sequence in B such that

b, — b € B;. Then there exists a sequence {a,} in A4 such that p(a, —b,) =

d,(4, B;). Since A? is compact, we may assume that a, — a € 4°. It follows

from
d(4, B;) < pla-1b)

=pla-a,+a,-b,+b,-b)
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< p(a - an) + dp(A’ Bi) + p(bn - b)

— d,(4, B;).

Therefore, d,(4, B;)= pla—-b)=be BY. Therefore, B is closed and hence

compact. The rest follows similarly.

(c) To show that P,(BY) = A°, let a € P,(BY). Then there exists b € B and
y € A suchthat a € Py(b) and p(y —b) = d (4, B;). Since

dp(Aa Bi) < p(a - b) = dp(ba A) < p(y - b) = dp(Aa Bi)a
hence d,(4, B;) = p(a —b) and a € AY. Therefore, P,(BY) < 4.

To show that 40 < P,(B), let a' € A°. Then there exists 5" € B; such that
pla' = b")=d,(4, B)) <d,(b, A). Therefore, a’ € Py(b') < Py(B;).

.40 0
- A7 < Py(B).

. P,;(BY) = A°. By a similar argument, we can show that P 0 (BY) = 4.

0
(d) Since AlO is nonempty, compact and convex, P 0 (E 2% isa K-
1
multimap. Since Bl-0 is convex and from part (c), B,-O is compact.

P 40750 is a K-multimap. |

Remark 2.8. We note from part (c) of the above theorem and the definitions of

A°, A,-0 and B,-O that
(cl) AlO is nonempty if and only if B’lO is nonempty.

(c2) A° = @ is equivalent to N Py(b;) =@ for some (b, by, ..., b,) €

[T-.5"
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(c3) P4(BY) = 4? ifand only if 4° = 4°; so by Kim and Lee [8, 9, Theorems

1, 2 and 4] are valid only whenever A,o = A
(c4) Ny P4(BY) = NPy (BY) = Ny 4) = 4°. So 4° # @ if and only if
n 0
’l'l=1 PAZO(yl) # (& for some (yla Y25 s yn) € Hi:lBi :

Lemma 2.9 ([15]). Let A be a nonempty, approximately p-compact and convex
subset of a Hausdorff locally convex topological vector space E with a continuous

seminorm p.

For every element y € E, let Py(y)=1{xe A: p(x—y)=d,(y, 4)}. Then

the following statements hold good:

(a) The set P4(y) is a nonempty, compact and convex subset of A.

(Every element of P(y) is called a p-best approximationin Ato y € E.)

b) The multifunctions P, : E — 27 is upper semicontinuous.
( A pp

(The multifunction P, is called a projection map.)

Definition 2.10 ([2]). Let 7 : 4 —> 28 be a multimap. Then we say that T is a
KKM y -multimap if Tandso T : 4 - 24 are closed and have the KKM property
for each K-multimap S : B — 24,

Lemma 2.11 ([17]). Let A and B be nonempty subsets of a normed space E. If

A28 isan upper semicontinuous multimap with compact values, then T is

closed.

Lemma 2.12 ([5, 12]). Let A be nonempty convex subset of a normed space E. If

T: A4 2% is closed and compact multimap having the KKM property, then T has
a fixed point.

Lemma 2.13 ([6]). For each i € I,,, let B; be a nonempty, compact and convex

subset of a normed space E and P, : H7:1 B; > 25 bea map such that
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n
(@) x; & CoB(x) for each u = (x1, x5, ..., x,) € B = Hj:l B;.

(b) E-_l (v) is open in B for each y € B;.
Then there exists b € B such that P(b) = & foreach i € I,,.

Lemma 2.14 ([3, 6, 8, 9]). Let B be a nonempty, compact and convex subset of

a normed space E and P : B — 28 bea map such that

(a) x ¢ CyP(x) for each x € B.
(b1)If z € P~N(y), then there exists some y' € B such that z < int P~ (3").
(b2) P~'(y') is open in B for each y € B.

Then there exists b € B such that P(b) = .

3. Best Proximity Results for KKM , -multimaps (resp. uf -multimaps)

Lemma 3.1. Let 4 and B; be subsets of a Hausdorff locally convex topological

vector space E with a continuous seminorm p such that A,Q (resp. BI-O ) are nonempty

approximately p-compact (resp. closed) and convex for each i € I,. Assume that

one of Alo’s is contained in some compact subset of A. Let f : A > 4° bea p-

0
continuous, proper, quasi p-affine and surjective self-map, and P :Y — 24" bea

multimap defined by P(y|, Y3, s ¥p) = ﬂ’lePAQ (v;) for each (y1, ¥3, ., yp) €Y
no0 A0 . .
= Hi:l B;'. Then P:Y — 27 is a K-multimap.
Proof. Fix i € I,,. As AZQ is an approximately p-compact and convex subset of
0
E, by Lemma 2.9, it is known that the projection map P 0 DE 2% s upper

0
semicontinuous with compact and convex values. Therefore, P 0 E—>2% isa
;

K-multimap. In order to show B,-O is convex, let xj, xp € Bio be arbitrary. Then
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there exist y;, ¥, € A,-O such that
dp(ni, y1) = dp(4, B),  dp(xa, y2) = d (4, By).
Let L e(0,1), y=2ay +(1=A)yy, x=2ax +(1-1)x,. Since 4’ is convex,
y e Al-o, we have
plx =) = pOxy + (1= 1) xz) = (o + (1 = A) 32)
S Ap(x = y1)+ (1 =21)p(xa = »2)

= dp(A, Bl)

Therefore, x € Blp and hence BlQ is convex. Since Alp is approximately p-compact,
A,-O is closed for each i € [, and hence A% is closed. Since one Aio ’s is contained

in some compact subset of A4, A,Q is compact and convex. Therefore, A,Q is

nonempty, compact and convex, and B,-0 is convex. By Lemma 2.7(d), P 40750 isa
i’/ Bi

0
K-multimap and hence P:Y — 24" isa K-multimap. Let S = f “1p. Since fis

0
surjective and S(Y) = f'P(Y) < f71(4%) = 4%, S:¥ — 24 is a multimap. To
show that S is a convex valued function, it is enough to prove that S(y) is convex

for y e Y. For a1, ay € S(y), we have f(a;), f(ay) € P o (;)- This implies that
i

p(f(@) = y;) = dy(yi A7) = p(f(ar) = 7).
Since fis quasi p-affine, the set

O(y;) = {a e A/p(f(a) - y;) < dp(yi 4))}
is convex.

Therefore, aj, a, € Q(y;) which is convex. = Aa; + (1-X)ay; € O(y;), for
all A €0, 1].

Let = Kal + (1 — 7\.)612. Then
yy. € O»).

= p(f(n) - ») =d, (v, 4)
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= fn) e P o)
= fn) e P(y)

= f()e f_lP(y) = S(y) hence S(y) is convex.

To show that S is upper semicontinuous, let D be a closed subset of A° and

{y} be any netin S™'(D) such that y, — y = (3, ..., ¥, ). Then by definition of

S7Y(D) for each a, S(y,)N D # @. Choose a net {x,} in (D) such that x, e
S(,)N D so that

. 0
dp(f(xa)o ya) = dp(y(xo 4; )
=> x4 €f _1P(ya) which is compact
= {x,} has a convergent subnet.

Since D is closed subset of AO, without loss of generality, we may assume that

{x,} = x € D. Since fis p-continuous, p(f(x,)— f(x)) — 0.

Now
p(f(xg) = f(x) < p(f(x) = f(x)) + P(f (xa) = Yo ) + P(Ye = ¥)

= p(f(x) =) < p(f(xq) = ya) + P(Ya = ¥)
=d, (v, A)+ P(re = ¥) (= p(f(xg) = Yo) = d (v 4)):

Also, d (v, 4) = d (. 4). So

p(f(x) - y) = dp(ya Azo)
= /()< P ()
and hence f(x) € P(»). Therefore, x € f~'P(y) = S(»). So
xeS(y)ND

= y e S(D).
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Therefore,
S7Y(D) is closed

= § is upper semicontinuous.

Notice,as P:Y — 2AO is K-multimap, P is compact valued map and P(y) is
compact in 4° for each y € Y. Since f: 4° — 4° is proper, f~(P(y)) is compact
in 4°, that is, S(») is compact in A°. Therefore, S = f7'P: Y — 2‘4"0 is upper
semicontinuous with compact and convex valued map.

= fflP Y > 2A"0 is a K-multimap. g

Definition 3.2. Let 4 and B; be nonempty subsets of a topological space £ with

a continuous seminorm p. Let T; : 4 — 2% be a multimap for each i e I n- Then

f: A — A isaself-map of a nonempty subset 4" of 4 and a € 4.
If d,(f(a), T;(a)) = d (4, B;), then we can say that (f(a), T;(a)) is a best
proximity pair. The best proximity set for the pair (f(a), T;(a)) is given by
Ta(f) = b € Ti(a) : d,(f(a), Ti(a) = p(f(a) - b) = d,(4, B;)}.
For n=1, let T,(f)=T,(f). Whenever fis the identity map, we write 7, instead
of SL(f).
Theorem 3.3. Let A and B; be subsets of a Hausdorff locally convex

topological vector space E with a continuous seminorm p such that A,-0 (resp.
closed) and nonempty approximately p-compact (resp. closed) and convex for each

i € I,. Assume that one of Al-o’s is contained in some compact subset of A. Suppose
n . n 0

that N PA,Q(yi) is nonempty for each (|, y3, ., Yy) €Y = Hile,- and

7:4° 52 isa KK -multimap (resp. ilf‘ -multimap) where T(x) = H:_l:l T;(x)

for each x € A°. Then for each p-continuous, proper, quasi p-affine and surjective

self-map f : A > AO, there exists a € A° such that the best proximity set 3; (f)

is nonempty and closed.
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0
Proof. Fix i € /,. Define P:Y — 2% by P(y1, v, ., ) = (Vi P o (37)
1

for each (y, y9, ., y,) €Y = HLBI'O' Let f:A4° > 4° be a self-map. As

N, PAP (»;) is nonempty for each (yy, y3, ..., ¥,) € ¥, it follows from Lemma 3.1
1 49 . .
that f~ P:Y — 2% isa K-multimap.

Now assume that 7: A% - 27 isa KKM ) -multimap. It follows from the

0
definition of KKM , -multimap that f 1Po7: 4% 524" and Tare closed multimap
and have the KKM-property. Since Al-0 is approximately p-compact for each i € /,,,

AlO is closed for each i € /,,. But A = ﬂ?’zlAlO and one of Alo’s is contained in

some compact subset of 4. Therefore, AlO is compact and hence A s compact.
Therefore, f PoT isa compact multimap. By Lemma 2.12, there exists a € A°

such that a e (f'PoT)(a) and hence f(a)e P(T(a)). Thus there exists
(b, by s by) € T(a) = [ |7 Ti(a) such that f(a)e P(by, by, ..., b,) = n;.;lPAIQ (b))
c A% Hence f(a)e P 0 (b)) < A and b; € T.(a) = BY. This implies that there
exists a) € A° such that p(a’ - b;) = d »(4, B;) and hence

4, (4. B) < dy(f(a). T@) < p(f(a) - b) = d by 40) < plaf ~ ) = d(4, By)
Thus d,(f(a), T;(a)) = p(f(a) - b;) = d (4, B;). Therefore, b; € Ta(f).

Suppose T : A 527 s an ilf -multimap. Then by definition, there exists

ilcﬁ -multimap 7" : A% > 2% such that T is upper semicontinuous with compact
' n l 0 -1 :
values and T(x)=Hi:1Tl-(x)gT(x) for each xe 4. Now f P is a K-

multimap implies f P isa ilf -multimap. Also, 7" is a uf -multimap and hence

T' is a multimap having the KKM property.

Therefore, f “lpoT’ and T’ are closed and having the KKM property. This
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implies that f”: A 52" isa KKM -multimap. It follows from the previous
paragraph that there exists (a, b) € A° xY such that b = (b, by, ..., b,), b; € T}(a)
and d,(f(a), T{(a)) = p(f(a) - b;) = d (4, B;). As d (4, B;) < d,(f(a), Ti(a))
<d,(f(a), T(a)), we conclude that

d,(f(a), Ti(a)) = p(f(a) - b;) = d ,(4, B;).
This means that b; € E& (f). Therefore, in both cases, the best proximity set Tg f)

is nonempty and its closedness follows from the continuity of the seminorm. O

Corollary 3.4. Let A and B; be subsets of a Hausdorff locally convex

topological vector space E with a continuous seminorm p such that Aio (resp. BZ-O)

are nonempty approximately p-compact (rvesp. closed) and convex for each i € I,,.

Assume that one of A,-O ’s is contained in some compact subset of A. Suppose that
0
N Po (v;) is nonempty for each (y{, 3, ..., v,) €Y :H;_IB[O and T, : A° — 25
( =
is an ilcﬁ -multimap for each i € I,,. Then for each continuous, proper, quasi p-

affine and surjective self-map f : 4 - AO, there exists a € A such that the best

proximity set ‘Zcil (f) is nonempty and closed.
Proof. Define 7 : 4° - 27 by T(x) = H:llei(x) for each x e A°. Since

0
T : A% 5 28 isan ilf -multimap for each i € /, for every compact set K in A,

(that is, K may be treated as 4°) there exists an U, -multimap f : K(= 4°) - 27 ;
such that f(x) < T;(x) for each x e A° and for each i e /,. This implies that
f(x)c H?ZlTl-(x) = T(x) for each x e A°. Therefore, T : A° - 27 isan uf-
multimap. The result follows from Theorem 3.3. O

Theorem 3.5. Let A and B; be subsets of a Hausdorff locally convex
topological vector space E with a continuous seminorm p, Aio (resp. BZ-O) be

nonempty, approximately p-compact (resp. closed) and convex, T; : A° > 28 pean
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upper semicontinuous multimap with compact values and T,(x) BlQ be nonempty

for each x € AO, for each i € I,,. Suppose that (\_; PAIQ (v;) is nonempty for each

(V1> Y25 s Yp) €Y = H7:1 BIQ. Assume that one of Alp’s is contained in some

compact subset of A. Then for each continuous, proper, quasi p-affine and surjective
self-map f : A > AO, there exists a € A° such that the best proximity set S; (f)

is nonempty and closed.

0
Proof. Fix i e I,. Define T/: 4° > 25 by T/(x)=T:(x) N B? for each
0

x e A°. Thus T : A > 28 s an upper semicontinuous multimap with compact
values. Define T:4° > 27 by T(x)= H?zl T/(x) for each xe A°. As in
Theorem 3.3, 4° is compact. Therefore, T : A 527 isan upper semicontinuous
multimap with compact values. This implies that 7" is K-multimap and hence ilf‘ -
multimap. Then the result follows from the second half of Theorem 3.3. g

Remark 3.6. Lemma 3.1, Theorem 3.3, Corollary 3.4 and Theorem 3.5
generalize Lemma 3.1, Theorem 3.4, Corollary 3.5 and Theorem 3.8 of Al-Thagafi

and Shahzad [2] by relaxing the condition A,-0 is compact for each i € /,, into the
weaker condition A? is approximately p-compact for each i € /,, in the setting of
Hausdorff locally convex topological vector space with a continuous seminorm p.
Also, we relaxed the condition “A,-O is compact for each i € I, by the weaker

condition” one of A,Q’s is contained in some compact subset of 4 ¢ £ (Hausdorff

locally convex topological vector space with a continuous seminorm p).
4. Equilibrium Pair Results for Free n-person Games

A free n-person game is a family of ordered quadruples (4, B;, T;, P) such

iel,

that 4 and B; are nonempty subsets of a normed space E, T;: 4 — 28 s a

constraint multimap, and P : B — 28 s a preference map where B = Hj—l B;
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(see [9]). An equilibrium pair for (4, B;, T;, P.) is a point (a, b) € Ax B such

iel,
that T;(a) N B(b) = &. For details on economic terminology, see [8, 9].

Theorem 4.1. Let (A4, B;, T;, ) be a free n-person game such that A and

iel,
B; are nonempty subsets of a Hausdorff locally convex topological vector space E

with a continuous seminorm p. Then T, : A — 28 is a constraint multimap, and

P:B— 2B s a preference map where B = Hj’:le' Assume that A° is
nonempty, T(x) = H?:] T,(x) for each x e A°, Y = H; BY, and for each ie1,,

(a) A,-0 is approximately p-compact and convex for each i € I,,, B; is compact
and convex for each i € I,. Also, one of the A;’s is contained in some compact

subset of 4;

(b) N7, PAiO (v;) is nonempty for each (yy, v, --r V) € H?:l BY;

() T: A 52V isa KKM y -multimap (resp. ilf -multimap);

(d) x; & coB(x) for each x = (xy, xy, ..., X,) € B;

(e) P\(y) is open for each y e B;.
Then there exists b € B such that P.(b) = and, for each continuous, proper,
quasiaffine, and surjective self-map f : 4 - AO, there exists a € A° such that
the best proximity set T:(f) is nonempty and compact. If, in addition, P{(z) is

nonempty for each z & H; ‘I;(f), then (a, b) is an equilibrium pair in A° x

0
[T %)

Proof. Fix i € I,,. Since A,O is approximately p-compact, AlQ is closed for each
i € I, and hence A% is closed. Since one of Aio ’s is contained in some compact
subset of 4, A,~0 is compact. As A? and B; are compact and convex, it follows from
Lemma 2.7(b) that B,-0 is compact and convex. By Theorem 3.3, there exists a € A°

such that the best proximity set E; (f) is nonempty and closed. By Lemma 2.14,
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there exists b = (by, by, ..., b,) € Y such that P(b) = &. As P(z) is nonempty for
each z H?zli{;(f), we conclude that b = (b, by, ..., b,) € H?:l T;(f). Thus
(aa b) e A" x Y, b= (bb by, ..., bn)e H:’:ITi(a)a Tl(a)m Pl(b) = and d(f(a)a Tl(a))
= p(f(a)—b;) = d(4, B;). Thus (a, b) is an equilibrium pair in 4 x H:lzl ).

O

Theorem 4.2. Let (4, B;, T;, P) be a free n-person game such that A and

iel,

B; are subsets of a Hausdorff locally convex topological vector space E with

continuous seminorm p. Then T;: A4 — 28 is a constraint multimap, and
. B; . W n 0 .
P. 1B —> 2% s a preference map where B = 1_[],7l B;. Assume that A" is
nonempty, Y = H?—1Bi0’ and for each i € 1,,,
(a) A,Q is approximately p-compact and convex for each i € I, B; is compact

and convex for each i € I,. Also, one of the A;’s is contained in some compact

subset of 4;

. n 0
(b) N7y P (v7) is nonempty for each (1, v2, ., vu) € [ T B

(©) T[|AO is an upper semicontinuous multimap with compact values and

T,(x) N BY is nonempty for each x e A°;

(d) x; & coB(x) foreach x = (xy, xy, ..., X,) € B;

(e) Pi_l(y) is open for each y € B,.
Then, there exists b € B such that P(b) =D and, for each continuous, proper,
quasiaffine and surjective self-map f : A > AO, there exists a € A° such that the
best proximity set ‘Z&( f) is nonempty and compact. If, in addition, P(z) is

nonempty for each z & H?zl TH(f), then (a, b) is an equilibrium pair in A% %

[T %)
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Proof. Use Theorem 3.5 instead of Theorem 3.3 in the proof of Theorem 4.1. U

Theorem 4.3. Let (A4, B, T, P) be a free 1-person game such that A and B are

subsets of a Hausdorff locally convex topological vector space E. Then T : A — 28

is a constraint multimap, and P : B — 28 isa preference map. Assume that

(a) A,~0 is approximately p-compact and convex for each i € I,, B is compact

and convex and one of A,-O’s is contained in some compact subset of A,
(b) T: A 5280 s q KKM y -multimap (resp. ilfi -multimap);
(¢) x; & coP(x) for each x € B;
(d) one of the following conditions is satisfied,

dl) if z e p! for some y € B, then there exists some y' € B such that

z eint P7I(y");
(d2) for each y € B, P™\(y) is open in B.

Then, there exists b € B such that P(b) =& and, for each continuous, proper,

quasiaffine and surjective self-map f : Ay — Ay, there exists a € Ay such that the
best proximity set T; (f) is nonempty and compact. If, in addition, P(z) is nonempty

for each z ¢ TL(f), then (a, b) is an equilibrium pair in Ay x To(f).

Proof. Since A? is approximately p-compact for each i € /,, A,~0 is closed for

each i € /,,. Hence A = N, Aio is closed. But 4° = AZ-O. Therefore, A° is compact,

that is, 4, is compact.

Since 4, and B, are nonempty, compact and convex, it follows from Theorem
3.3 that there exists (a, ¢) € 4y x By such that ¢ € T(a) and d(f(a), T(a)) =
p(f(a)—c)=d(4, B) and so ,(f) is nonempty. By Theorem 3.5, there exists
b € By such that P(b) = J. As P(z) is nonempty whenever z € B\T,(f), we
conclude that b e T,(f). So (a,b)e Ayxby, beT(a) and d(f(a), T(a)) =
p(f(a)—b) =d(4, B). Thus (a, b) is an equilibrium pair in 4y x T,(f). O
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Theorem 4.4. Let (A, B, T, P) be a free 1-person game such that A and B are

subsets of a Hausdorff locally convex topological vector space E. Then T : A — 28

is a constraint multimap, and P : B — 28 isa preference map. Assume that

(a) A,Q is approximately p-compact and convex for each i € I, B is compact
and convex and one of Aio ’s is contained in some compact subset of A,

(b) T|4y is an upper semicontinuous multimap with compact values and

T(x) N By is nonempty for each x € Ay;
(¢) x; ¢ coP(x) for each x € B,
(d) one of the following conditions is satisfied,

dn if z e p! for some y € B, then there exists some y' € B such that

zeint P7(y");
(d2) for each y € B, P~\(y) is open in B.

Then, there exists b € B such that P(b) = and, for each continuous, proper,
quasiaffine and surjective self-map f : Ay — Ay, there exists a € Ay such that the
best proximity set %,(f) is nonempty and compact. If, in addition, P(z) is
nonempty for each z & S,(f), then (a, b) is an equilibrium pair in Ay x T,(f).

Proof. Use Theorem 3.5 instead of Theorem 3.3 in the proof of Theorem 4.2. [J
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