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Abstract 

In this paper, the growth estimates for direction dependent random fields 
with values in Banach spaces satisfying the general Kolmogorov’s 
continuity test condition are mainly investigated. In particular, the 
estimates for Hilbert-valued Gaussian random fields which are also 
direction dependent, are investigated in detail. The main results are 
essentially established based on the application of a generalized version of 
the celebrated Garsia, Rodemich and Rumsey lemma. 

1. Introduction 

The main purpose of the paper is to investigate the growth estimates for some 
general random fields taking values in Banach spaces which are direction dependent 
and satisfy the general Kolmogorov’s continuity test condition. The regularities of 
random fields, especially, the continuity and the growth (as the parameter tends to 
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infinity) are very interesting and important in many fields, such as neurology, 
quantum field theory, population genetics and so on, we refer the reader to [1], [3], 
[5], [9], [12] and [13], and the references therein. In particular, the growth estimates 
for random fields are very important to determine an appropriate state space of 
solutions to some stochastic partial differential equations, see [10] and [11] for 
examples. 

It is well known that the classical Garsia, Rodemich and Rumsey lemma, see 
[7], [8] and [12], is an effective method to study the modulus continuity of 
trajectories of a stochastic process and weak convergence in probability theory ([1], 
[2], [4] and [12]). A generalized version of Garsia, Rodemich and Rumsey lemma 
has been obtained in [6] (see also Lemma 3.1 below), which is aimed to study the 
sharp bounds on the modulus of continuity of solutions of stochastic partial 
differential equations driven by a direction dependent random field. In this article, 
instead of bounded parameter set, we will study the growth estimates for Banach 

valued and Hilbert valued random fields indexed by dR  with direction dependent 
moment estimates, using the generalized Garsia, Rodemich and Rumsey lemma by 
appropriate choices of functions. We are going to offer an effective method to study 
of the growth for random fields which admits a direction dependent moment 
estimate. As a special case, we will also study the growth estimates for Hilbert 
valued Gaussian random fields and the estimates are more accurate than the general 
case. 

The paper is arranged as follows: In Section 2, the main results of the growth 
estimates for direction dependent random fields with values in Banach spaces and 
Gaussian direction dependent random fields with values in Hilbert spaces will be 
formulated. In Section 3, a generalized Garsia, Rodemich and Rumsey lemma 
obtained in [6] is first cited and then based on it, the proofs of main results are given. 
At the end of the paper, we provide an application of our main results to a Brownian 
sheet. 

2. Main Results 

Let ( )⋅,B  be a Banach space endowed with the Borel σ-field ( )BB  and let 

( )P,, FΩ  be a complete probability space. Then we recall that a random field =X  

{ ( ) }dxxX R∈;  with values in B is the collection of B-valued random variables (or 

elements) indexed by .dR  
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As we introduced in Section 1, our main goal in this paper is to study the growth 
for the general random fields with values in the Banach space B as the parameter 
tending to infinity. To state the main assertion precisely, let us first set 

( ) ,max: 1 iidi xxq α
≤≤α =  

where 1>αi  such that ∑ ≤≤
−− <α=α di i1

11
0 1:  and ( ) ....,,1

d
dxxx R∈=  Then 

we have the following theorem: 

Theorem 2.1. Assume that { ( ) }dxxX R∈;  is a B-valued random field which 

admits a direction dependent moment estimate as follows: there are some positive 
constants γ, K and k, such that 

[ ( ) ( ) ] ( )yxqKnyXxX k −≤− α
γE  (2.1) 

holds for every x, y in the hypercube [ ] .,, N∈− nnn d  Then the following results 

hold: 

(1) X has a locally Hölder continuous version Y. 

(2) If there exists [ ] ,1,1~ dx −∈  such that γth moment of the random variable 

( )xX ~  exists, i.e., [ ( ) ] ,~ ∞<γxXE  then for every ,1>δ  there exists a real valued 

random variable ( )∞∈Ξδ ,0  a.s. such that 

 ( ) ( ( )) ,1 0
0 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ξ≤ γα

−α
α−

γ
α+δ+

δ xqxxxY x
k

m
M

   dx R∈    .,.sa  (2.2) 

where  

{ }idiM α=α ≤≤1max    and   { }.min1 idim α=α ≤≤  

Remark 2.1. The meaning of the word “version” appeared in the above theorem 
is that the constructed random field Y differs from X only on a set of P -measure 
zero, i.e., ( ) .1== YXP  In the proof, we will not make any distinction between 

such random fields. 

According to this theorem, we can give the growth estimates for B-valued 
random fields satisfying the classical Kolmogorov’s test condition. 



BIN XIE 184 

Corollary 2.2. Let { ( ) }dxxX R∈;  be a random field taking values in the 

Banach space B. Suppose that there are positive constants γ, K and d>σ  such that 
for each ,N∈n  

[ ( ) ( ) ] ,σγ −≤− yxKnyXxX kE    [ ]dnnyx ,, −∈  

and [ ( ) ]γxX ~E  is bounded for some [ ] .1,1~ dx −∈  Then, for each ,1>δ  there exists 

a locally Hölder continuous version Y of X satisfying 

( ) ,1 ⎟
⎠

⎞
⎜
⎝

⎛ +Ξ≤ γ
σ+δ+

δ
k

xxY    dx R∈    .,.sa  (2.3) 

where δΞ  is a random variable with [ ] .10 =∞<Ξ< δP  

In the above, we have studied the growth estimate for a general random field 
under Condition (2.1). However, we can expect that a better estimate can be 
obtained for a special random field. In the following, we investigate the growth 
corresponding to Gaussian random fields. Let us first assume that H is a separable 
Hilbert space with an inner product ⋅⋅,  and let ( )HB  denote the Borel σ-field of 

H. Let { ( ) }dxxX R∈;  be an H-valued mean zero Gaussion random field defined 

on a complete probability space ( ).,, PFΩ  

Before stating our result for Gaussian random fields, let us set 

,max:
1

iidi
x ζ

≤≤ζ =ψ    ,0>ζi    di ...,,1=  

and 

∑
=

−− ζ=ζ
d

i
i

1

11
0 .:  

Theorem 2.3. Let { ( ) }dxxX R∈;  be an H-valued mean zero Gaussian random 

field. Assume that the following direction dependent moment estimate is satisfied: 
there exist positive constants K and k such that 

[ ( ) ( ) ] ( )yxKnyXxX k −ψ≤− ζ
2E  (2.4) 
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holds for each [ ] ,,, dnnyx −∈  .N∈n  Then, for each ,1>δ  there exists a locally 

Hölder continuous version Z of X satisfying 

( ) ( ) ( ) ,1log1 2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+ψ+Θ≤ ζ

ζ−ζ+
δ xxxxZ

mMk
   dx R∈    .,.sa  

where δΘ  is a real valued random variable with [ ] ,10 =∞<Θ< δP  =ζM  

idi ζ≤≤1max  and idim ζ=ζ ≤≤1min  and ⋅  stands for the norm of the Hilbert 

space H hereafter. 

Remark 2.2. In this theorem, we do not require ;11
0 <ζ−  recalling that the 

similar condition is necessary in Theorem 2.1. 

3. Proofs and Application 

In this section, we will devote to the proofs of the main results in Section 2. 
Before doing it, we first cite a generalization of Garsia, Rodemich and Rumsey 
lemma which is obtained in [6] as below and is an effective method to study the 
Hölder continuity of a random process, see [4] and [12]. 

To do it, the following hypotheses and notations will be introduced. Let q be a 

mapping from dd RR ×  to [ )∞,0  satisfying the following conditions: 

H1. There exists a positive constant ,qM  such that for all ,,, dzyx R∈  

( ) ( ) ( )( ).,,, yzqzxqMyxq q +≤  

H2. The mapping q is symmetric, i.e., for any ,, dyx R∈  ( ) ( ).,, xyqyxq =  

H3. For any sequence { } d
nnx RN ⊂∈  and ,dx R∈  if ( ) ,0,lim =∞→ nn xxq  

then the series nx  converges to x. 

Let Φ and φ be positive, strictly increasing, and continuous functions on [ )∞,0  

such that 
( ) ( ) 000 =φ=Φ     

and  
( ) .lim ∞=Φ

∞→
t

t
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Lemma 3.1. Suppose that q, φ and Φ are defined as above. Let Bf dR:  be 

a continuous function. 

Assume that 

( ) ( )
( )( )∫ ∫ ∞<⎟

⎠
⎞⎜

⎝
⎛

φ
−

Φ=
d dI I

dxdyyxq
yfxfV .,:  

Then 

( ) ( )
{ } ( )

( )
( )

∫ φ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ≤− −

∈

yxq

dzyxz
ud

IuB
Vyfxf

,

0 2
1

,
,~4max8

∩
 (3.1) 

where ( ) ( ),4~ 2uMu qφ=φ  ( ) { ( ) },,; uzxqxuB d
z ≤∈= R  [ ]ddI 1,0=  stands for the 

unit hypercube in dR  and qM  is the constant appeared in H1. 

Remark 3.1. We have that ( ) iiidi yxyxq α
≤≤ −= 1max:,  satisfies the 

conditions H1-H3 in the above with { },1,2maxmax 1
1

−α
≤≤= idiqM  for every ,0>αi  

....,,1 di =  In addition, it is obvious that if q is metric on ,dR  then Conditions 

H1-H3 above are satisfied. 

Although Lemma 3.1 is a purely deterministic result, it can often be applied to 
the random case, as below. In fact, everything hinges on the choices of the functions 
Φ and φ as we do below. 

In the proofs, for brevity, we allow the positive constant denoted by C to vary 
from one appearance into another even within the same proof if there is no 
confusion. 

Proof of Theorem 2.1. The Hölder continuity of the B-valued random field 
satisfying the generalized Kolmogorov test condition (2.1) can be verified by the 
standard arguments with some modification, we refer the reader to [9, p. 31]. 

In the following, we will prove that the estimate (2.2) for the random field X 

holds. At first, if there exists ,~
dIx ∈  such that the expectation of ( ) γxX ~  exists, 

then by Theorem 3.2 in [6], we know that 

( ) ( ) ,~ Θ+≤ CxXxX    [ ]dx 1,1−∈    .,.sa  



… DIRECTION DEPENDENT RANDOM FIELDS 187 

where Θ is a positive random variable with the existence of γth moment, i.e., 

[ ] .∞<ΘγE  

Hence, 

[ ]
( ) ∞<

−∈
xX

dx 1,1
sup    a.s. (3.2) 

Assume that dx R∈0  is the center of the unit hypercube dI  and 2≥n  is an 

integer in the following. 

Define the random field { ( ) }d
n IxxX ∈;  for each n by 

( ) ( )( ).2 0xxnXxX n −=  

From the key Condition (2.1) and recalling the definition of ,αq  we see that 

[ ( ) ( ) ] [ ( )( ) ( )( ) ]γγ −−−=− 00 22 xynXxxnXyXxXE nn E  

( )( )yxnqKnk −≤ α 2  

( ).yxqCn Mk −≤ α
α+  (3.3) 

For simplicity, we introduce the following notations: 

( ) ,: γ=Φ tt  

( ) ,,,1;: 1

0
0 ⎟

⎠
⎞⎜

⎝
⎛ βγ

γα
−α′=φ −trt NL    ,N∈N  

( ) ( )
( )( )∫ ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−φ

−
Φ=

αd dI I

nn
n dxdyyxq

yXxXV ,:    ,N∈n  

where 

( )

⎪
⎪
⎩

⎪⎪
⎨

⎧

=⎟
⎠
⎞⎜

⎝
⎛

≥⎟
⎠
⎞⎜

⎝
⎛ 1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛

=
∏ −

=

,1,1log

,2,log1log
:,,;

1

1

Ntt

Nttt
cbat

c
a

N

n

c
N

b
na

NL  

for all strict positive t, and r′  is taken such that φ is increasing in [ ].4,0 2
qM  
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By Fubini’s theorem and (3.3), we can easily see that 

[ ] ( )
( )( )∫ ∫ γ−φ

−
≤

α

α
α+

d d

M

I I

k
n dxdyyxq

yxqKnVE  

( )

∫ α
≤

−α
α+

−1

0 0

11
2 dttKn

d
k M  

( )∫ βγ−−−≤ α+
1

0
,1,1, dttKn N

k M L  

.MkCn α+≤  (3.4) 

For each ,1>δ  let us now consider the random variable 

∑
∞

=
α+δ+δ =

1
.:

n
k

n

Mn
VV  

Then, from (3.4), it is obvious that 

[ ] ∑
∞

=

δ−
δ ∞<≤

1

,
n

nCVE  

which implies that there is a subset δΩ  of Ω with ( ) ,1=ΩδP  such that ( )ωδV  is 

finite and 

( ) ( ) ,∞<ω≤ω δ
α+δ+ VnV Mkn    for all   .δΩ∈ω  (3.5) 

Note that 

( ) ( ) .
1

00
−α=≥ uIuBIuB ddz ∩∩  

Applying Lemma 3.1 to nX  and by (3.1), we come to 

( ) ( ) ( )
( )

∫
−

α
−α

− ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Φ≤−

yxq n
nn upd

u

VyXxX
0

1 ~48 2
0

 

( )
( )

∫
−

−γ α
⎟
⎠
⎞⎜

⎝
⎛ βγ−

α
−α

≤
yxq

N
n dtrtVC

0

1

0
01 ,,11;L    a.s., (3.6) 

where .4 2rMr q ′=  



… DIRECTION DEPENDENT RANDOM FIELDS 189 

Note that for any ,0>a  R∈cb,  and each N, 

( )

( ) .,,;

,,1;
lim 10

0
−

ε

→ε
=

ε

−∫
acba

cbat

N

N

L

L
 

Then, by (3.5), we obtain that there exists a constant C, such that for all ,, dIyx ∈  

(3.6) is bounded above by 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ βγ

γα
−α

− −
αγ ,,1; 1

0
0

1
yxrqVC N

n L  

( ) ⎟
⎠
⎞⎜

⎝
⎛ βγ

γα
−α

−≤ −
α

γ
δ

γ
α+δ+

,,1; 1

0
0

1

yxrqVCn N

k M

L    a.s. (3.7) 

Therefore, for each [ ] ,,, dnnyx −∈  we get that 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +−⎟

⎠
⎞⎜

⎝
⎛ +≤− 00 22 xn

yXxn
xXyXxX nn  

⎟
⎠
⎞⎜

⎝
⎛ βγ

γα
−α

⎟
⎠
⎞⎜

⎝
⎛ −≤ −

α
γ
δ

γ
α+δ+

,,1;2
1

0
0

1

n
yxrqVCn N

k M

L    a.s. 

From the above inequality, we see that, for each ,1>n  

( )xX  

( ) ,,,1;20 1

0
0

1

⎟
⎠
⎞⎜

⎝
⎛ βγ

γα
−α

⎟
⎠
⎞⎜

⎝
⎛+≤ −

α
γ
δ

γ
α+δ+

n
xrqVCnX N

k M

L    [ ]dnnx ,−∈    a.s. (3.8) 

Since, for each [ ] ,1,1\ ddx −∈ R  there exists N∈n  such that 

[ ] [ ] ,1,1\, dd nnnnx −+−−∈  

we have that ndxn ≤≤− 1  and .2 xn ≤  

Hence, from (3.8), for [ ] ,, dnnx −∈  

( ) ( ) ,,,1;20 1

0
0

1

⎟
⎠
⎞⎜

⎝
⎛ βγ

γα
−α

⎟
⎠
⎞⎜

⎝
⎛+≤ −

α
γ
δγ

α+δ+

n
xrqVxCXxX N

k M
L    a.s. (3.9) 
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Noticing that 
ii

didi n
xqn

n α

≤≤α

α

≤≤ ⎟
⎠
⎞⎜

⎝
⎛≤⎟

⎠
⎞⎜

⎝
⎛≤⎟

⎠
⎞⎜

⎝
⎛ −

2
1max22

1max 11  and by the property 

of ,NL  we see that, there is a constant C, such that 

( ( )) .,,1;2 0
0 11

0
0 γα

−α
α

α−−
α ≤⎟

⎠
⎞⎜

⎝
⎛ βγ

γα
−α

⎟
⎠
⎞⎜

⎝
⎛ xqnCn

xrq mNL  (3.10) 

Therefore, form (3.9) and (3.10), 

( ) ( ) ( ( )) ,0 0
0 11

γα
−α

α
α−γ

δγ
α+δ+

+≤ xqxVxCXxX m
Mk

   [ ]dnnx ,−∈    a.s. 

Combining the above estimate with (3.2), we can conclude that there exists a strict 
positive real valued random variable ,δΞ  i.e., ∞<Ξ< δ0  a.s., such that 

( ) ( ( ))
γα
−α

α
α−

γ
α+

δ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Ξ≤ 0

0 1

1 xqxxxX m
Mk

   a.s. 

Thus, the proof is completed. 

Now let us give the proof of Corollary 2.2 which can be considered as a simple 
application of Theorem 2.1. 

Proof of Corollary 2.2. Let ,σ=αi  for di ...,,1=  in Theorem 2.1. Noticing 

that 

( ) ( ),2 xqdxxq σ
σσ

σ ≤≤    dx R∈  

and by (2.3), we have that there exists a constant C such that 

[ ( ) ( ) ] ( ),yxqCnyXxX k −<− σ
γE  

which is just the Kolmogorov’s continuity test condition (2.1). Therefore, the result 
follows from Theorem 2.1 immediately.  

Now we are in the position to show Theorem 2.3. Recalling that X is an H-
valued Gaussian random field, from the celebrated Fernique’s theorem, we have that 

[ ( ) ] ,∞<ιxXE  ,1≥ι  .dx R∈  More accurately, we have the following assertion: 

Lemma 3.2. Let X be an H-valued Gaussian random variable with mean zero. 
Then, for arbitrary ,N∈m  there exists a constant mC  such that 

[ ] [ ] .22 m
m

m XCX EE ≤  
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Proof. The claim follows immediately from Corollary 2.17 in [4]. Here the 
concrete proof will be omitted.  

Proof of Theorem 2.3. From Lemma 3.2, it follows obviously that for every 
,N∈m  

[ ( ) ( ) ] ( ).2 yxCnyXxX mkmm −ψ≤− ζE  

Thus the claim of the existence of a locally Hölder continuous version follows 
immediately as in Theorem 2.1. 

For simplicity, we will still denote this version by X hereafter. Let { ( );xX n  

} N∈∈ ndIx  be the random fields defined as in the proof of Theorem 2.1. From (2.4) 

and the relation 

( ) ( ) ( ),22 xnnx M
ζ

ζ
ζ ψ≤ψ  

we see that 

 [ ( ) ( ) ] ( ) ,0
2 yxnCyXxX Mknn −ψ≤− ζ

ζ+E  (3.11) 

where 0C  is a positive constant. 

Define 

( ) ( ) ( )
( )

,:,
0 yxnC

yXxXyxZ
Mk

nn
n

−ψ

−=
ζ

ζ+
   ,, dIyx ∈    .N∈n  

Then we have that ( )yxZ n ,  is an H-valued Gaussian random variable with mean 

zero and covariance matrix ( ),, yxnΓ  which is a trace class operator. By (3.11), we 

obtain that 

( ( )) [ ( ) ]2,,Tr yxZyx nn E=Γ  

is uniformly bounded above by one, where Tr denotes the trace of ( )., yxnΓ  Hence, 

from Proposition 2.16 [4], it follows that for each ,2>s  

( ) .2exp,exp
1

12
∞<

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
≤⎥

⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∑
∞

=

−

j
j

jn

jss
yxZE  (3.12) 
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In order to apply Lemma 3.1, we put 

( ) ,2
1

tt =φ  

( ) ,exp
0

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ ζ+ Mkn

nsC
tt  

( ) ( )
( ( ))∫ ∫ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−ψφ

−
Φ=

ζd dI I

nn

n
n dxdyyx

yXxXQ ,  

where ,0≥t 2>s  and 0C  is the constant in (3.11). Then the inverse function 1−Φn  

of nΦ  equals to 

( ) .log 2
1

0 tsnC Mk ζ+  

By (3.12) and Fubini’s theorem, [ ]nQE  is uniformly bounded, i.e., 

[ ] .sup ∞<
∈

n

n
QE

N
 

Define 

∑
∞

=

δ−
δ =

1

,:
n

nQnQ    .1>δ  

It is obvious that the expectation of δQ  is bounded and 

δ
δ≤ QnQn    a.s. 

Thus we can apply Lemma 3.1 for ,nΦ  φ  and .nQ  Notice that 

( ) ( ) 0

1

0
ζ=≥ uIuBIuB ddz ∩∩  

and    

( ) .212121 baba +≤+  
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Lemma 3.1 now states that for any [ ] ,1,1, dyx −∈  

( ) ( )
{ } ( )

( )

∫
−ψ −−

∈

ζ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ≤−

yx

dz

n

yxz
nn duu

IuB
QCyXxX

0
2
1

2
1

,

4max
∩

 

( )

∫
−ψ −

ζ

ζ+
ζ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

yx nk
duu

u
QCn

M

0
2
12

1

2
2

0

4log  

( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ δ+−ψ≤ δζ

ζ+

2
1

2
1

2
1

2 log4log nQyxCn
Mk

 

( )

∫
−ψ −ζ

⎟
⎠
⎞⎜

⎝
⎛
ζ

+
yx

duuu0
2
1

2
1

0

1log2    a.s. 

On the other hand, it is easy to know that the integral of the right hand side of the 
above the inequality is bounded by 

( ( ) ( ) ) .1log 2
1

⎟
⎠

⎞
⎜
⎝

⎛ +−ψ−ψ ζζ yxyxC  

Therefore, we conclude that 

( ) ( )yXxX nn −  

( ) ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −ψ+δ+−ψ+≤ ζδζ

ζ+

2
1

2
1

2
1

2
1

2 loglog4log1 yxnQyxCn
Mk

   a.s. 

Then the desired estimate can be verified by similar arguments as in the proof of 
Theorem 2.1. We omit the detail here.  

In the following, a simple example is given to illustrate the subtle difference 
between Theorem 2.1 and Theorem 2.3. 

Example. Let { ( ) }dxxWW R∈= ,:  be a real valued and centered Gaussian 

random field with covariance function given by 

( ) ( )[ ]yWxWE  

( ) ( )

⎪⎩

⎪
⎨
⎧

∧

==+∃
= ∏ =

,otherwise,

,...,,1for,0sgnsgn.t.s,if,0

1

d

i ii

iiii

yx

diyxyx
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where sgn is the signal function. In other words, W is in fact composed of 
independent Brownian sheets, see [12] or [13] for the detailed definition of 

Brownian sheets. Then, for each ,N∈n  and [ ] ,,, dnnyx −∈  we have 

[ ( ) ( ) ] .max
1

2
iidi

yxdnyWxW −≤−
≤≤

E  

From Theorem 2.1, it follows that for each ,
2
1>δ  there is an almost surely bounded 

and positive random variable δΞ  such that 

( ) ( )δδ +Ξ≤ xxW 1    a.s. (3.13) 

However, Theorem 2.3 leads to 

( ) ( )( ) ⎟
⎠

⎞
⎜
⎝

⎛
++Θ≤ 2

1
1log1 xxxW    a.s., (3.14) 

which is very close to the exactly asymptotic behavior comparing with the law of the 
iterated logarithm (see Theorem 1.5 in [12], for example). In addition, it is obvious 
that the estimate (3.14) is more accurate than the estimate (3.13). 
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