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Abstract

Let S be a semigroup and R = @ R be an S-graded ring with an identity

seS

element. We study some properties of the components of the identity
element of R and the support of R when S is a completely regular
semigroup and when S is a completely regular semigroup with a neutral
element. We also study some of these properties when R is a commutative
ring and S is a completely simple semigroup, and when R is a non-
commutative ring and S is a completely regular semigroup and the
component Ry (Vs e S) isan ideal in R.

1. Preface

Remark 1.1. Throughout this paper the word “semigroup” refers to
multiplicative semigroup if not mentioned otherwise.

Definition 1.2 [2, 10]. Let R be a ring, and S be a semigroup. Then we say that
R is a graded ring by the semigroup S, or R is an S-graded ring if and only if there
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exist additive subgroups {R}_¢ of R satisfying the following:

(1) R= @D Rs;

seS

(2) Rth c Rgh’ Vg, heS.

Definition 1.3. Let R be a ring and S be a semigroup.
(1) [3, 11] Let o be a binary operation on R, defined as:
aocb=a+b-ab, Va beR.

Then o is an associative operation on R, so (R, 0) is a monoid with the zero of R as

the identity element, we say that (R, o) is the monoid induced of R.

An element a € R is called left (right) quasi-regular if a has a left (right)
inverse in the monoid (R, o) with identity, i.e., if there exists an element b of R such

that
boa=0 (aoh=0).

- If R has an identity 1, then an element a of R is left (right) quasi-regular if
1-a has a left (right) inverse with respect to ring multiplication.

- If ais both left and right quasi-regular, then we say that a is quasi-regular.

(2) [3, 11] Let I be a non-empty set of R. Then we say that | is (left, right) quasi-
regular if every element of | is (left, right) quasi-regular.

(3) [4] Let e be an idempotent of a semigroup S. Then we say that e is a
primitive idempotent if e is minimal in the set of non-zero idempotent. Thus, a
primitive idempotent e has the following property:

ef =fe=f=20=e="f,
where f is an idempotent of S.

4. [4] Let S be a semigroup without zero. Then we say that S is simple if it has
no proper ideals.

5. [4] Let S be a semigroup without zero. Then we say that S is completely
simple if it is simple and if it contains a primitive idempotent.

6. [4] A semigroup S will be called completely regular if there exists a unary
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operation a — a~! on S with the properties:

1 1 -1

@ l=a and aala=a and aal=a"ta

- An equivalent definition:

Let S be a semigroup without zero. Then we say that S is completely regular if
every element of S lies in a subgroup of S.

Lemma 1.4 [4]. Let S be a semigroup without zero. Then the following
conditions are equivalent:

(1) S is completely simple.
(2) S is regular, and has “weak cancellation” property:
Foralla, b, cin§,
ca=cb and ac=bc = a=bh
(3) Sisregular, and for all a in S,
aba =a = bab =h.

(4) S is regular and every idempotent is primitive.
2. Results

Theorem 2.1. Let R be a ring and S be a completely regular semigroup.
Suppose that R = @ R; is a graduation of R by S. Then let {G;};_, be the family

seS
of all the maximal subgroups of S. So:

(1) R, (i € I) isasubring of R, and R = D Rg, -
iel
(2) If R, (Vi e 1) is an ideal in R and right quasi-regular in itself, then R is a
right quasi-regular ring.
Proof. (1) Rg, (i € 1) is a subring of R because on the one hand Rg, (i € 1) is
additive subgroup of R and on the other hand:

vg,heRg =9 = Zrt and h = Zr{;

teG;j teG;j

.

teG; teG;j
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Since G; is a subgroup of S, thus

tl'tzeGi, th,tz EGi.

Since S is a completely regular semigroup, so S is a union of groups, i.e.,

It follows that

s= |J n

H subgroup
of S

Moreover, since every subring of S is contained in a maximal subgroup of S, so for
every subgroup H of S, there exists a maximal subgroup G of S such that H < G.
Thus

s= |J e

G maximal
subgroup of S

Since {G; };_, is the family of all the maximal subgroup of S, so

G, NG, =@, Vi ipel, iy #iy and S:UGi.

iel

Remark that R = @ Ry, we deduce

seS

(2) Suppose that R, (i € 1) is an ideal in R and right quasi-regular in itself. As
Rg, (i € 1) is an ideal in R and right quasi-regular in itself and R = |(—€B| Rg;, thenR
is a right quasi-regular ring (see the proof of the Propositions (2-6) in [1]).

Proposition 2.2. Let R be a ring with an identity element 1 such that R does not
have any divisor of zero, and let S be a completely regular semigroup. Suppose that

R =@ R is a graduation of R by S. Also suppose that R = @ Rg, such that

seS iel
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{Gj}i., Iis the family of all the maximal subgroups of S. If 1 is a homogenous
element in R, then supp(R, S) is a submonoid of S, and 1€ R, such that e is

neutral element in supp(R, S).

Proof. Suppose that 1 is a homogenous element in R. Since R does not have any
divisor of zero, so supp(R, S) is a subsemigroup of S.

As 1 is a homogenous element in R, so there exists an element s of S such that
1eRs. Since S = | JG;, so there exists o e | suchthat S e G,,. Thus

iel

leRg c RGa-

Since R, is a ring and Re, = @ Rg,» 0 Rg, is a graded ring by the group
90, €Gq,

G, and since 1€ Rg , 1€ Re such that e is the neutral element in G,. Since
le Ry, so Ry # {0}, thus e e supp(R, S). Furthermore, if s; is an element of
supp(R, S), and a is an element of Ry, —{0}, then

O=a=1-aeReRy < Reg
and

a=l-aeRy = Resl =Ry = es; = 5.

Similarly, with observation that a -1 = a, we find that

sile =9, VS €supp(R,S).
So

es; =se =9, VS €supp(R,S).

Thus e is neutral element in supp(R, S). Therefore, supp(R, S) is a submonoid of S
with a neutral element e, and 1 € R,.

* - In the special case when S = supp(R, S), S is monoid and 1 € R, such that

e is the neutral element in S whether R has divisors of zero or not.

Theorem 2.3. Let R be a ring with an identity element 1 and let S be a

completely regular semigroup with a neutral element e. Suppose that R = @ Ry is
seS
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a graduation of R by S, and also R = @ Rg, such that {G;};_, is the family of all

iel

the maximal subgroups of S. Since 1€ R = @ Ry, so 1 can be written with an only
seS

way, by the form
n
1= ag; ag Ry - {0}
i=1

such that s, Sy, .., s, are distinct elements of S. If R, = {0}, then e«

{s1, 82, - s}, and if we suppose, for example, that e =s; and Gg (B € I) is the
maximal subgroup of S which e belongs to, then as = ap is the identity element of

the ring RGH'

Proof. Suppose that R, = {0}, e e {s, Sy, ..., Sy} because if it is not and if b is

an element of R, = {0}, then

b =b~1=b(zn:asiJ= Zn:basi.
i=1

i=1
Since
ee{s;, o, .., sprand bag € Res, =Ry, Vi=12..,nandbeR,
o)
b=0,
which is a contradiction.

Suppose, for example, that e = s;. Then
8¢ = 8 -1=ag(ag + 85, + -+ + a5 ) = eBp + Beds, +* + B, -

Since agas, € Res; = Ry, Vi=2,3,..,nand e, sy, s3, ..., S are distinct elements
of §, so

aag, =0, Vi=23 ..,n

If we suppose, for instance, that Gg (B € I) is the maximal subgroup of S which e
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belongs to, then

si¢Gg, Vi=23..,n,

because, if any element of the set {s,, s3, ..., S,}, for example, s, belongs to Gg,
then

as, =1-ag, = 88;, + as a5, + -+ Ag, g,
so if j is an element of the set {3, 4, ..., n}, such that 3s;as, # 0, then ag a;,

¢ R , because if as;8s, € R, it follows that

So !
as;8;, € Rs, and

-1 1.
8,8, € stsz =0= 8,8, € Rs, N stsz = S) =8jSp = S5 =5[SS7;

s; is the inverse of s, in Gg=>e=sje=>sj=¢
and this contradicts s; = e. Since a,as, =0, so
a5, = as,ds,-

Thus

0# as, € Rg, MNRy,s,-

Hence

Sy = 5,5.
But s, e Gg and Gg is a group in which its identity is the only idempotent, so
e = S,, and this contradicts e = s,. Since

sieGg, Vi=23..,n, (*)

SO a, is the identity element in RGB’ because on the one hand a, belongs to RGB'

and on the other hand

¥heRg, =b= > by;
geGﬁ
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by €Rg =b=bl=| > by (@ +ag, +..+ a)
gEGﬁ
n
=b= ) byag+ | > bgag |

geGB i=2 geGB

Let t be an element of the set {2, 3, ..., n} and y be an element of Gp such that

byas, # 0. Then byag ¢ RGB because if it is not so, we have
0= byas € Ry

and

0= byaSt € RGB =0'eGg Yy =9¢"
Suppose that y_1 is the inverse of y in Gg, it follows that

yse =9 =y Y =y g = s =y g
Since Gg is a group and y‘l, g’ are two elements of Gg, we have

St € Gﬁ'

and this contradicts (*).

Thus

b= ) bya, = ba,.

QEGB

In the same way, we can prove that
b = agh.
So

b=ab=ba,, Vbe RGﬁ.

Thus ag = ae is the identity element in RGB'



STUDY ABOUT GRADED RINGS BY COMPLETELY REGULAR ... 125

Theorem 2.4. Let R be a commutative ring with an identity element 1, and S be

a completely simple semigroup (S without zero). Suppose that R = @ Rg is a
seS

graduation of R by S, and also R = @ Rg, such that {G;};_, is the family of all the
iel

maximal subgroups of S. So we can write 1 in the form

m
1= Z:(aSto gy ot Ay ) ag; € R —{0}, Vj=0,1..n; me z*,
t=1

such that sig, 1, ..., Stn, (t =1, 2, ..., m) are distinct elements of G, (r; ),

then G, , G

n+ Gr,s - Gy~ are the all maximal subgroups of S, where

RGrl # {0} and RGr2 # {0} and ... and RGrm = {0},

and if we suppose that e; (t =1, 2, ..., m) is the neutral of G, then {ey, €, ..., en}
< {510, -1 Sings 5201 1 S2np s -+ S0y s Sy, s ANA @g (t=12,.., m) is the

identity element of the subring RGrt and ¢, e,, ..., e, are the all idempotents in

supp(R, S).
Proof. Since 1€ R = @ Rs = @ Rg;, so we can write 1 in only way in the
seS iel
form
m
1= be. ; bg €Rg —-{0jandr el,Vvt=1 2 .., m|
Z=1: Gy, [(3rt Gy, {0} and r ]
Thus
bGr € RGI’ , Vt=12, ... m
t t
=>bs =a, +..+a, , Vt=12 .. m,
Grt Sto StnI
such that

ag € Ry —10h  Vi=01..n, vt=12,..,m,
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and

Stor St1, - Stn, (t =1 2, ..., m) are different elements of Gy, .

It follows that

m
1= Z:(aSto Ayt Ag, ).
=1

Since
sy € Rgo — 10}, Vt=12..m and speGy, Vt=12..,m,
so
0=ag, € RGrt’ vt=12 .., m
Thus

Ro, # {0} Vt=12..m

If k is an element of | such that RGrk # {0}, then there exists in Gy an elementy

such that R, = {0}, so if by is an element of Ry — {0} and e is the neutral of Gy,

we have

m
by =by 1= D" (byag, +byag, +-+byag )
t=1

Let sg be an element of the set
{810+ ++r Stngs S205 s S2n, s+ S0y s Smny, S \Ck
such that byaSB # 0. Then byaSB ¢ Ry, because if byaSB € Ry, then
0= byaSB = asﬁby eRy = ysg=y and sgy =y
(y~!is the inverse of y in Gy)
= esg =eand sge =e.

If we suppose that f is the neutral element of the maximal subgroup which sg
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belongs to, then
ef =(esg)f =e(sgf)=esg =¢
and = ef = fe=e (*)
fe = f(sge) = (fsg)e =sge =e
Since S is completely simple semigroup, so by Lemma 1.4, we find that
e=f,
and this is a contradiction.

Since by = {0}, so there exists an element s, in {sig, ..., Sin,s S20, s S2ny»
wr S0y ++» Smnm } (1 Gk such that byas e Ry —{0}. Hence ys, =y. Thus
-1 -1
YSq =Y =Y YSq =Y Yy => €S, =€ =5, =€
It follows that the neutral element of G is an element of the set
{Slo, veny Slnl1 S201 +om Sznz, vy SOy eees Smnm}m Gk'
Thus Gy is one of the maximal subgroups
G

G Gy ,

R rp e Py

0 Gy, Gy,, ..., Gy, are the all maximal subgroups of S, where
Rg, #1{0} and Rg = {0} and..and Rg = {0}
I’l 1‘2 'm

We also deduce that if sg is an element of {s, ..., Sinys 5201 =+ S2ny s -1 SmO -+
SmnmJ M Gk such that byas, € Ry —1{0}, then s5 = e, and since the elements of

the set {S10, ., Siny» S20, -+ S2ny s s SmOs -+ Smnp S (1 Gk are all different, so
by = byae. ()
Let us refer to the neutral elementin G, as e (t=1 2, .., m).

We see that ag (t =1, 2, .., m) is the identity of RGrt , because on the one
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hand ae, is an element of RGrt and on the other hand

vbeRg =b= Z by = b= Zbgaet (that is from (¥x))
QEGH QEGQ

=b=| > by |ag =bag.
QGGQ

Since e (t=1 2, .., m) is the neutral element in G, so {e, e, .., en}C
{510+ s Stng» 5201 =1 S2ny 1 w1 SmOs smnm}, and since S is a completely regular

semigroup so any idempotent of S is the neutral of a maximal subgroup of S, thus if
e is an idempotent of supp(R, S), then Rg # {0} such that G is the maximal

subgroup that e belongs to, hence e € {s, ..., Sing s $201 -+ S2np s -+ SMO» Sy
and since e, e, ..., ey, are all the idempotents in the set {s, ..., Siny» 5201 o
S2ny+ s Sm0s -+ Smn,, § as Well as also each one of them belongs to supp(R, S), so

€1, €y, ..., &y are the all idempotents in supp(R, S).

Proposition 2.5. Let R be a ring with an identity element 1, and S be a

completely regular semigroup. Suppose that R = @ Ry is a graduation of R by S,
seS

and also R = @I Rg, such that {G;};c, is the family of all the maximal subgroups
le
of S. If R, (i € 1) is anideal in R, then we can find a subset {r;, 1o, ..., fy} of I (m
is a positive integer) such that Gy, Gy, -y Gy, are the all maximal subgroups of
S, where
RGrl = {0} and RGr2 # {0} and ... and RGrm = {0},

and then we can write 1 in the form
m
1=) a; 8 €Rg —{0} Vt=12,..,m,
t=1

such that e; (t =1 2, .., m) is the neutral of G, . We also find that ey, e,, ..., ey,
are the all idempotents in supp(R, S) and ag, (t=1, 2, ..., m) is the identity element

of the subring RGrt .
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Proof. Since 1€ R = @ Rs = @D Rg;, so0 we can write 1 in only way in the
seS iel

form
m
1= Z:(aSto +agy ot ag, ); ag; € Rg; - {0}, vi=0,1, .., n
t=1

such that sy, S, - Stn, (t =1, 2, ..., m) are different elements of G (r € 1)
(see the proof of the last proposition).
Since

as, €Rs, — 10} and s e Gy, Vt=12 .., m,

Sto
S0

0= ag, € RGrt' vi=12 .., m

Hence

Ro, {0} Vt=12..m

If k is an element of | such that RGrk # {0}, then there exists in Gy an element

y such that Ry = {0}, so if b, is an element of Ry — {0} and e is the neutral of

Gy, then
m
by =by 1= Z(byasto +byag, +- + byaStnt ).
t=1
Since
R=@Rs and Rg (Viel)isanideal inR,
iel
therefore
RGi RGi2 = {0}, Vil, i2 € |, il * i2.
1
Hence

byaSB =0, VSB S {510, ey Slnl, S201 -y San, cr SOy eees Smnm }\Gk
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Since by # {0}, so there exists an element s, in {syg, ..., Sy, s $20+ s S2n+ -+++ Smo
o Smn, + (1 Gk such that byas, e Ry —{0}. Hence ys, =y, thus s, =e, so the
neutral element of Gy is an element of the set

{810+ ++» Stnys S205 1 20+ s Smoy s Smny, (1 G-
It follows that G, is one of the maximal subgroups

Gy, G G, ,

It R (1

0 Gy, Gy, ..., Gy are the all maximal subgroups of S, where
Rz, #1{0} and Rg =#{0} and..and Rg = {0}.
I’:L l’2 m

Also if s5 is an element of {sjg, ..., Sy, S20, s S2ny+ s SmOs =+ Smny, (1 Gk
such that byas; € Ry — {0}, then ss =¢, and since the elements of the set
{810+ ++r Sings S20+ 1 S2n, s =+ S0y s Smny, 1 (1 G are all different, so by = bya,.

By a similar argument, since by, =1by, we can prove that

It follows that

by = agby =bya,. ()
Denote the neutral elementin G by e (t=1 2, .., m). Then

{er, €2, -y B} < {810 s S1nys S200 -+ S2ny+ s SmOs ++ Sny I+
Suppose, for example, that
& =Sg,, Vt=12.,m d {01 .., n}
Then

Qg = By 1= g 8g, + o F aetaSlnl +t8gag +~-+aetasmnm

t

for all tin the set {1, 2, ..., m}.
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Since RGil Re,, = {0}, Wiy, iy € I, iy # iy, SO
Nt
g = g g, T Ay t ot g astnt = Zaet Ay,
r=0

N

= aetaStdt + Zaetastr, vt=12 .., m
r=0
ridt

And since
A a5, € Ry Rg S Res. =Rs, V=12 ..m vr=01..,n

and

Stor St1s -+ Stn, (t =1, 2, ..., m) are different elements of G,
we deduce that

agas, =0, vVt=12.,m and Vvre{0,1, .., n\{d}.
Thus by (*) we find that

ag, =0, Vt=12.,m and Vre{0 1 .., n\{di}.

It follows that

m
1= Z:(astO +ag, tootag, ),
t=1

m
ag, =0, vt=12.,m and vre{01 .., nj\d}r=>1= Zaet.
t=1

{

et = Stdt7 ‘v’t = 1, 2, ey m

The proof that e, ey, ..., e, are all the idempotents in supp(R, S) is similar to
the proof that in the last proposition.

ae, (t=1 2, ..., m) is the identity of RGrt , because on the one hand ag, is an
element of RGrt and on the other hand

b= byag = bag,

gEGI‘t
WbeRg, =b= D by =

geGy b= Zaet by = agb.
gEGI‘t
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