Far East Journal of Mathematical Sciences (FJMS)

Volume 44, Number 1, 2010, Pages 117-132 Published Online: November 15, 2010

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2010 Pushpa Publishing House

STUDY ABOUT GRADED RINGS BY COMPLETELY REGULAR SEMIGROUP AND COMPLETELY SIMPLE SEMIGROUP

NADER ELNADER, SAMIR SAAD and ALIA HAKIM

Department of Mathematics Faculty of Science University of Aleppo Syria

Abstract

Let S be a semigroup and $R = \bigoplus_{s \in S} R_s$ be an S-graded ring with an identity

element. We study some properties of the components of the identity element of R and the support of R when S is a completely regular semigroup and when S is a completely regular semigroup with a neutral element. We also study some of these properties when R is a commutative ring and S is a completely simple semigroup, and when R is a non-commutative ring and S is a completely regular semigroup and the component R_S ($\forall S \in S$) is an ideal in R.

1. Preface

Remark 1.1. Throughout this paper the word "semigroup" refers to multiplicative semigroup if not mentioned otherwise.

Definition 1.2 [2, 10]. Let R be a ring, and S be a semigroup. Then we say that R is a graded ring by the semigroup S, or R is an S-graded ring if and only if there

2010 Mathematics Subject Classification: 13A02.

Keywords and phrases: graded ring, quasi-regular ring, completely simple semigroup, completely regular semigroup.

Submitted by A. V. Kelarev

Received May 20, 2010; Revised June 28, 2010

exist additive subgroups $\{R_s\}_{s\in S}$ of R satisfying the following:

$$(1) \ R = \bigoplus_{s \in S} R_s;$$

(2)
$$R_{g}R_{h} \subseteq R_{gh}, \forall g, h \in S.$$

Definition 1.3. Let *R* be a ring and *S* be a semigroup.

(1) [3, 11] Let o be a binary operation on R, defined as:

$$aob = a + b - ab$$
, $\forall a, b \in R$.

Then o is an associative operation on R, so (R, o) is a monoid with the zero of R as the identity element, we say that (R, o) is the monoid induced of R.

An element $a \in R$ is called *left (right) quasi-regular* if a has a left (right) inverse in the monoid (R, o) with identity, i.e., if there exists an element b of R such that

$$boa = 0 \quad (aob = 0).$$

- If R has an identity 1, then an element a of R is *left (right) quasi-regular* if 1-a has a left (right) inverse with respect to ring multiplication.
 - If a is both left and right quasi-regular, then we say that a is quasi-regular.
- (2) [3, 11] Let I be a non-empty set of R. Then we say that I is (*left*, *right*) *quasi-regular* if every element of I is (left, right) quasi-regular.
- (3) [4] Let e be an idempotent of a semigroup S. Then we say that e is a *primitive idempotent* if e is minimal in the set of non-zero idempotent. Thus, a primitive idempotent e has the following property:

$$ef = fe = f \neq 0 \Rightarrow e = f$$
,

where f is an idempotent of S.

- 4. [4] Let *S* be a semigroup without zero. Then we say that *S* is *simple* if it has no proper ideals.
- 5. [4] Let *S* be a semigroup without zero. Then we say that *S* is *completely simple* if it is simple and if it contains a primitive idempotent.
 - 6. [4] A semigroup S will be called *completely regular* if there exists a unary

operation $a \to a^{-1}$ on S with the properties:

$$(a^{-1})^{-1} = a$$
 and $aa^{-1}a = a$ and $aa^{-1} = a^{-1}a$.

- An equivalent definition:

Let *S* be a semigroup without zero. Then we say that *S* is *completely regular* if every element of *S* lies in a subgroup of *S*.

Lemma 1.4 [4]. Let S be a semigroup without zero. Then the following conditions are equivalent:

- (1) S is completely simple.
- (2) S is regular, and has "weak cancellation" property:

For all a, b, c in S,

$$ca = cb$$
 and $ac = bc \implies a = b$.

(3) S is regular, and for all a in S,

$$aba = a \Rightarrow bab = b$$
.

(4) S is regular and every idempotent is primitive.

2. Results

Theorem 2.1. Let R be a ring and S be a completely regular semigroup. Suppose that $R = \bigoplus_{s \in S} R_s$ is a graduation of R by S. Then let $\{G_i\}_{i \in I}$ be the family of all the maximal subgroups of S. So:

(1)
$$R_{G_i}$$
 $(i \in I)$ is a subring of R , and $R = \bigoplus_{i \in I} R_{G_i}$.

(2) If R_{G_i} ($\forall i \in I$) is an ideal in R and right quasi-regular in itself, then R is a right quasi-regular ring.

Proof. (1) R_{G_i} $(i \in I)$ is a subring of R because on the one hand R_{G_i} $(i \in I)$ is additive subgroup of R and on the other hand:

$$\forall g, h \in R_{G_i} \Rightarrow g = \sum_{t \in G_i} r_t \text{ and } h = \sum_{t \in G_i} r'_t;$$

$$r_t, r_t' \in R_t \Rightarrow gh = \left(\sum_{t \in G_i} r_t\right) \left(\sum_{t \in G_i} r_t'\right).$$

Since G_i is a subgroup of S, thus

$$t_1 \cdot t_2 \in G_i$$
, $\forall t_1, t_2 \in G_i$.

It follows that

$$gh = \left(\sum_{t \in G_i} r_t\right) \left(\sum_{t \in G_i} r_t'\right) \in R_{G_i}.$$

Since *S* is a completely regular semigroup, so *S* is a union of groups, i.e.,

$$S = \bigcup_{\substack{H \text{ subgroup} \\ \text{of } S}} H.$$

Moreover, since every subring of S is contained in a maximal subgroup of S, so for every subgroup H of S, there exists a maximal subgroup G of S such that $H \subseteq G$. Thus

$$S = \bigcup_{\substack{G \text{ maximal} \\ \text{subgroup of } S}} G.$$

Since $\{G_i\}_{i\in I}$ is the family of all the maximal subgroup of S, so

$$G_{i_1} \cap G_{i_2} = \emptyset$$
, $\forall i_1, i_2 \in I$, $i_1 \neq i_2$ and $S = \bigcup_{i \in I} G_i$.

Remark that $R = \bigoplus_{s \in S} R_s$, we deduce

$$R = \bigoplus_{i \in I} R_{G_i}$$
.

(2) Suppose that $R_{G_i}(i \in I)$ is an ideal in R and right quasi-regular in itself. As $R_{G_i}(i \in I)$ is an ideal in R and right quasi-regular in itself and $R = \bigoplus_{i \in I} R_{G_i}$, then R is a right quasi-regular ring (see the proof of the Propositions (2-6) in [1]).

Proposition 2.2. Let R be a ring with an identity element 1 such that R does not have any divisor of zero, and let S be a completely regular semigroup. Suppose that $R = \bigoplus_{s \in S} R_s$ is a graduation of R by S. Also suppose that $R = \bigoplus_{i \in I} R_{G_i}$ such that

 $\{G_i\}_{i\in I}$ is the family of all the maximal subgroups of S. If 1 is a homogenous element in R, then $\mathrm{supp}(R,S)$ is a submonoid of S, and $1\in R_e$ such that e is neutral element in $\mathrm{supp}(R,S)$.

Proof. Suppose that 1 is a homogenous element in R. Since R does not have any divisor of zero, so supp(R, S) is a subsemigroup of S.

As 1 is a homogenous element in R, so there exists an element s of S such that $1 \in R_s$. Since $S = \bigcup_{i \in I} G_i$, so there exists $\alpha \in I$ such that $S \in G_\alpha$. Thus

$$1 \in R_s \subseteq R_{G_\alpha}$$
.

Since $R_{G_{\alpha}}$ is a ring and $R_{G_{\alpha}}=\bigoplus_{g_{\alpha}\in G_{\alpha}}R_{g_{\alpha}}$, so $R_{G_{\alpha}}$ is a graded ring by the group G_{α} , and since $1\in R_{G_{\alpha}}$, $1\in R_e$ such that e is the neutral element in G_{α} . Since $1\in R_e$, so $R_e\neq\{0\}$, thus $e\in \mathrm{supp}(R,\,S)$. Furthermore, if s_1 is an element of $\mathrm{supp}(R,\,S)$, and a is an element of $R_{s_1}-\{0\}$, then

$$0 \neq a = 1 \cdot a \in R_e R_{s_1} \subseteq R_{es_1}$$

and

$$a=1\cdot a\in R_{s_1}\Rightarrow R_{es_1}=R_{s_1}\Rightarrow es_1=s_1.$$

Similarly, with observation that $a \cdot 1 = a$, we find that

$$s_1e = s_1, \quad \forall s_1 \in \text{supp}(R, S).$$

So

$$es_1 = s_1 e = s_1, \quad \forall s_1 \in \operatorname{supp}(R, S).$$

Thus e is neutral element in $\operatorname{supp}(R, S)$. Therefore, $\operatorname{supp}(R, S)$ is a submonoid of S with a neutral element e, and $1 \in R_e$.

* - In the special case when S = supp(R, S), S is monoid and $1 \in R_e$ such that e is the neutral element in S whether R has divisors of zero or not.

Theorem 2.3. Let R be a ring with an identity element 1 and let S be a completely regular semigroup with a neutral element e. Suppose that $R = \bigoplus_{s \in S} R_s$ is

a graduation of R by S, and also $R = \bigoplus_{i \in I} R_{G_i}$ such that $\{G_i\}_{i \in I}$ is the family of all the maximal subgroups of S. Since $1 \in R = \bigoplus_{s \in S} R_s$, so 1 can be written with an only way, by the form

$$1 = \sum_{i=1}^{n} a_{s_i}; \quad a_{s_i} \in R_{s_i} - \{0\},$$

such that $s_1, s_2, ..., s_n$ are distinct elements of S. If $R_e \neq \{0\}$, then $e \in \{s_1, s_2, ..., s_n\}$, and if we suppose, for example, that $e = s_1$ and G_β $(\beta \in I)$ is the maximal subgroup of S which e belongs to, then $a_{s_1} = a_e$ is the identity element of the ring R_{G_β} .

Proof. Suppose that $R_e \neq \{0\}$, $e \in \{s_1, s_2, ..., s_n\}$ because if it is not and if b is an element of $R_e \neq \{0\}$, then

$$b = b \cdot 1 = b \left(\sum_{i=1}^{n} a_{s_i} \right) = \sum_{i=1}^{n} b a_{s_i}.$$

Since

$$e \notin \{s_1, s_2, ..., s_n\}$$
 and $ba_{s_i} \in R_{es_i} = R_{s_i}, \quad \forall i = 1, 2, ..., n \text{ and } b \in R_e,$

so

$$b=0$$
,

which is a contradiction.

Suppose, for example, that $e = s_1$. Then

$$a_e = a_e \cdot 1 = a_e (a_e + a_{s_2} + \dots + a_{s_n}) = a_e a_e + a_e a_{s_2} + \dots + a_e a_{s_n}.$$

Since $a_e a_{s_i} \in R_{es_i} = R_{s_i}$, $\forall i = 2, 3, ..., n$ and $e, s_2, s_3, ..., s_n$ are distinct elements of S, so

$$a_e a_{si} = 0, \quad \forall i = 2, 3, ..., n.$$

If we suppose, for instance, that G_{β} ($\beta \in I$) is the maximal subgroup of S which e

belongs to, then

$$s_i \notin G_{\beta}, \quad \forall i = 2, 3, ..., n,$$

because, if any element of the set $\{s_2, s_3, ..., s_n\}$, for example, s_2 belongs to G_{β} , then

$$a_{s_2} = 1 \cdot a_{s_2} = a_e a_{s_2} + a_{s_2} a_{s_2} + \dots + a_{s_n} a_{s_2},$$

so if j is an element of the set $\{3, 4, ..., n\}$, such that $a_{s_j}a_{s_2} \neq 0$, then $a_{s_j}a_{s_2} \notin R_{s_2}$, because if $a_{s_j}a_{s_2} \in R_{s_2}$ it follows that

$$a_{s_i}a_{s_2} \in R_{s_2}$$
 and

$$a_{s_{j}}a_{s_{2}} \in R_{s_{j}s_{2}} \Rightarrow 0 \neq a_{s_{j}}a_{s_{2}} \in R_{s_{2}} \cap R_{s_{j}s_{2}} \Rightarrow s_{2} = s_{j}s_{2} \Rightarrow s_{2}s_{2}^{-1} = s_{j}s_{2}s_{2}^{-1};$$

 s_2^{-1} is the inverse of s_2 in $G_{\beta} \Rightarrow e = s_i e \Rightarrow s_i = e$,

and this contradicts $s_j \neq e$. Since $a_e a_{s_2} = 0$, so

$$a_{s_2} = a_{s_2} a_{s_2}.$$

Thus

$$0 \neq a_{s_2} \in R_{s_2} \cap R_{s_2s_2}$$
.

Hence

$$s_2 = s_2 s_2.$$

But $s_2 \in G_{\beta}$ and G_{β} is a group in which its identity is the only idempotent, so $e = s_2$, and this contradicts $e \neq s_2$. Since

$$s_i \notin G_{\beta}, \quad \forall i = 2, 3, ..., n,$$
 (*)

so a_e is the identity element in $R_{G_{\beta}}$, because on the one hand a_e belongs to $R_{G_{\beta}}$, and on the other hand

$$\forall b \in R_{G_{\beta}} \Rightarrow b = \sum_{g \in G_{\beta}} b_g;$$

$$b_g \in R_g \Rightarrow b = b1 = \left(\sum_{g \in G_B} b_g\right) (a_e + a_{s_2} + \dots + a_{s_n})$$

$$\Rightarrow b = \sum_{g \in G_{\mathbb{B}}} b_g a_e + \sum_{i=2}^n \left(\sum_{g \in G_{\mathbb{B}}} b_g a_{s_i} \right).$$

Let t be an element of the set $\{2, 3, ..., n\}$ and y be an element of G_{β} such that $b_y a_{s_t} \neq 0$. Then $b_y a_{s_t} \notin R_{G_{\beta}}$ because if it is not so, we have

$$0 \neq b_{y}a_{s_{t}} \in R_{ys_{t}}$$

and

$$0\neq b_ya_{s_t}\in R_{G_{\beta}} \Rightarrow g'\in G_{\beta}; \quad ys_t=g'.$$

Suppose that y^{-1} is the inverse of y in G_{β} , it follows that

$$ys_t = g' \Rightarrow y^{-1}ys_t = y^{-1}g' \Rightarrow s_t = y^{-1}g'.$$

Since G_{β} is a group and y^{-1} , g' are two elements of G_{β} , we have

$$s_t \in G_{\beta}$$
,

and this contradicts (*).

Thus

$$b = \sum_{g \in G_{\mathcal{B}}} b_g a_e = b a_e.$$

In the same way, we can prove that

$$b = a_{\rho}b$$
.

So

$$b = a_e b = b a_e, \quad \forall b \in R_{G_{\mathbb{R}}}.$$

Thus $a_{s_1} = a_e$ is the identity element in $R_{G_{\beta}}$.

Theorem 2.4. Let R be a commutative ring with an identity element 1, and S be a completely simple semigroup (S without zero). Suppose that $R = \bigoplus_{s \in S} R_s$ is a graduation of R by S, and also $R = \bigoplus_{i \in I} R_{G_i}$ such that $\{G_i\}_{i \in I}$ is the family of all the maximal subgroups of S. So we can write 1 in the form

$$1 = \sum_{t=1}^{m} (a_{s_{t0}} + a_{s_{t1}} + ... + a_{s_{tn_t}}); \quad a_{s_{tj}} \in R_{s_{tj}} - \{0\}, \quad \forall j = 0, 1, ..., n_t; \ m \in Z^+,$$

such that s_{t0} , s_{t1} , ..., s_{tn_t} (t = 1, 2, ..., m) are distinct elements of G_{r_t} $(r_t \in I)$, then G_{r_t} , G_{r_2} , ..., G_{r_m} are the all maximal subgroups of S, where

$$R_{G_{r_1}} \neq \{0\} \ \ and \ \ R_{G_{r_2}} \neq \{0\} \ \ and \ \dots \ and \ \ R_{G_{r_m}} \neq \{0\},$$

and if we suppose that e_t (t = 1, 2, ..., m) is the neutral of G_{r_t} , then $\{e_1, e_2, ..., e_m\}$ $\subseteq \{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\}$ and a_{e_t} (t = 1, 2, ..., m) is the identity element of the subring $R_{G_{r_t}}$ and $e_1, e_2, ..., e_m$ are the all idempotents in $\sup(R, S)$.

Proof. Since $1 \in R = \bigoplus_{s \in S} R_s = \bigoplus_{i \in I} R_{G_i}$, so we can write 1 in only way in the form

$$1 = \sum_{t=1}^{m} b_{G_{r_t}}; \quad [b_{G_{r_t}} \in R_{G_{r_t}} - \{0\} \text{ and } r_t \in I, \ \forall t = 1, 2, ..., m].$$

Thus

$$\begin{split} b_{G_{r_t}} &\in R_{G_{r_t}} \,, \ \, \forall t=1,\,2,\,...,\,m \\ \\ \Rightarrow b_{G_{r_t}} &= a_{s_{t0}} + ... + a_{s_{tn_t}} \,, \ \, \forall t=1,\,2,\,...,\,m, \end{split}$$

such that

$$a_{s_{tj}} \in R_{s_{tj}} - \{0\}, ~~ \forall j = 0, \, 1, \, ..., \, n_t, ~~ \forall t = 1, \, 2, \, ..., \, m,$$

and

$$s_{t0}$$
, s_{t1} , ..., s_{tn_t} $(t = 1, 2, ..., m)$ are different elements of G_{r_t} .

It follows that

$$1 = \sum_{t=1}^{m} (a_{s_{t0}} + a_{s_{t1}} + \dots + a_{s_{m_t}}).$$

Since

$$a_{s_{t0}} \in R_{s_{t0}} - \{0\}, \quad \forall t = 1, 2, ..., m \text{ and } s_{t0} \in G_{r_t}, \ \forall t = 1, 2, ..., m,$$

so

$$0 \neq a_{s_{t0}} \in R_{G_{r_t}}, \quad \forall t = 1, 2, ..., m.$$

Thus

$$R_{G_{r_t}} \neq \{0\}, \quad \forall t = 1, 2, ..., m.$$

If k is an element of I such that $R_{G_{\eta_k}} \neq \{0\}$, then there exists in G_k an element y such that $R_y \neq \{0\}$, so if b_y is an element of $R_y - \{0\}$ and e is the neutral of G_k , we have

$$b_y = b_y \cdot 1 = \sum_{t=1}^{m} (b_y a_{s_{t0}} + b_y a_{st_1} + \dots + b_y a_{st_{n_t}}).$$

Let s_{β} be an element of the set

$${s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}}\backslash G_k$$

such that $b_y a_{s_{\beta}} \neq 0$. Then $b_y a_{s_{\beta}} \notin R_y$, because if $b_y a_{s_{\beta}} \in R_y$, then

$$0 \neq b_y a_{s_{\beta}} = a_{s_{\beta}} b_y \in R_y \implies y s_{\beta} = y \text{ and } s_{\beta} y = y$$

$$(y^{-1} \text{ is the inverse of } y \text{ in } G_k)$$

$$\Rightarrow es_{\beta} = e$$
 and $s_{\beta}e = e$.

If we suppose that f is the neutral element of the maximal subgroup which s_{β}

belongs to, then

$$ef = (es_{\beta})f = e(s_{\beta}f) = es_{\beta} = e$$
and
$$fe = f(s_{\beta}e) = (fs_{\beta})e = s_{\beta}e = e$$

$$(*)$$

Since S is completely simple semigroup, so by Lemma 1.4, we find that

$$e = f$$
,

and this is a contradiction.

Since $b_y \neq \{0\}$, so there exists an element s_α in $\{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\} \cap G_k$ such that $b_y a_{s_\alpha} \in R_y - \{0\}$. Hence $ys_\alpha = y$. Thus

$$ys_{\alpha} = y \Rightarrow y^{-1}ys_{\alpha} = y^{-1}y \Rightarrow es_{\alpha} = e \Rightarrow s_{\alpha} = e.$$

It follows that the neutral element of G_k is an element of the set

$$\{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\} \cap G_k.$$

Thus G_k is one of the maximal subgroups

$$G_{r_1}, G_{r_2}, ..., G_{r_m},$$

so $G_{r_1},\,G_{r_2},\,...,\,G_{r_m}$ are the all maximal subgroups of S, where

$$R_{G_{r_1}} \neq \{0\}$$
 and $R_{G_{r_2}} \neq \{0\}$ and ... and $R_{G_{r_m}} \neq \{0\}$.

We also deduce that if s_{δ} is an element of $\{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\} \cap G_k$ such that $b_y a_{s_{\delta}} \in R_y - \{0\}$, then $s_{\delta} = e$, and since the elements of the set $\{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\} \cap G_k$ are all different, so

$$b_{y} = b_{y} a_{e}. \tag{**}$$

Let us refer to the neutral element in G_{r_t} as e_t (t = 1, 2, ..., m).

We see that a_{e_t} (t = 1, 2, ..., m) is the identity of $R_{G_{r_t}}$, because on the one

hand a_{e_t} is an element of $R_{G_{p_t}}$ and on the other hand

$$\begin{split} \forall b \in R_{G_{r_t}} & \Rightarrow b = \sum_{g \in G_{r_t}} b_g \Rightarrow b = \sum_{g \in G_{r_t}} b_g a_{e_t} \quad \text{(that is from (**))} \\ & \Rightarrow b = \left(\sum_{g \in G_{r_t}} b_g\right) a_{e_t} = b a_{e_t}. \end{split}$$

Since e_t (t=1, 2, ..., m) is the neutral element in G_{r_t} , so $\{e_1, e_2, ..., e_m\} \subseteq \{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\}$, and since S is a completely regular semigroup so any idempotent of S is the neutral of a maximal subgroup of S, thus if e is an idempotent of supp(R, S), then $R_G \neq \{0\}$ such that G is the maximal subgroup that e belongs to, hence $e \in \{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\}$, and since $e_1, e_2, ..., e_m$ are all the idempotents in the set $\{s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}\}$ as well as also each one of them belongs to supp(R, S), so $e_1, e_2, ..., e_m$ are the all idempotents in supp(R, S).

Proposition 2.5. Let R be a ring with an identity element 1, and S be a completely regular semigroup. Suppose that $R = \bigoplus_{s \in S} R_s$ is a graduation of R by S, and also $R = \bigoplus_{i \in I} R_{G_i}$ such that $\{G_i\}_{i \in I}$ is the family of all the maximal subgroups of S. If $R_{G_i}(i \in I)$ is an ideal in R, then we can find a subset $\{r_1, r_2, ..., r_m\}$ of I (m is a positive integer) such that $G_{r_1}, G_{r_2}, ..., G_{r_m}$ are the all maximal subgroups of S, where

$$R_{G_{r_1}} \neq \{0\} \ \ and \ \ R_{G_{r_2}} \neq \{0\} \ \ and \ \dots \ and \ \ R_{G_{r_m}} \neq \{0\},$$

and then we can write 1 in the form

$$1 = \sum_{t=1}^{m} a_{e_t}; \quad a_{e_t} \in R_{e_t} - \{0\}, \quad \forall t = 1, 2, ..., m,$$

such that e_t (t=1, 2, ..., m) is the neutral of G_{r_t} . We also find that $e_1, e_2, ..., e_m$ are the all idempotents in $\mathrm{supp}(R, S)$ and a_{e_t} (t=1, 2, ..., m) is the identity element of the subring $R_{G_{r_t}}$.

Proof. Since $1 \in R = \bigoplus_{s \in S} R_s = \bigoplus_{i \in I} R_{G_i}$, so we can write 1 in only way in the form

$$1 = \sum_{t=1}^{m} (a_{s_{t0}} + a_{s_{t1}} + ... + a_{s_{tn_t}}); \quad a_{s_{tj}} \in R_{s_{tj}} - \{0\}, \quad \forall j = 0, 1, ..., n_t$$

such that s_{t0} , s_{t1} , ..., s_{tn_t} (t = 1, 2, ..., m) are different elements of G_{r_t} $(r_t \in I)$ (see the proof of the last proposition).

Since

$$a_{s_{t0}} \in R_{s_{t0}} - \{0\}$$
 and $s_{t0} \in G_{r_t}$, $\forall t = 1, 2, ..., m$,

so

$$0 \neq a_{s_{t0}} \in R_{G_{r_t}}, \ \forall t = 1, 2, ..., m.$$

Hence

$$R_{G_{r_t}} \neq \{0\}, \quad \forall t = 1, 2, ..., m.$$

If k is an element of I such that $R_{G_{r_k}} \neq \{0\}$, then there exists in G_k an element y such that $R_y \neq \{0\}$, so if b_y is an element of $R_y - \{0\}$ and e is the neutral of G_k , then

$$b_y = b_y \cdot 1 = \sum_{t=1}^m (b_y a_{s_{t0}} + b_y a_{s_{t1}} + \dots + b_y a_{s_{tn_t}}).$$

Since

$$R = \bigoplus_{i \in I} R_{G_i}$$
 and R_{G_i} $(\forall i \in I)$ is an ideal in R ,

therefore

$$R_{G_{i_1}}R_{G_{i_2}} = \{0\}, \quad \forall i_1, i_2 \in I, i_1 \neq i_2.$$

Hence

$$b_y a_{s_\beta} = 0, \quad \forall s_\beta \in \{s_{10}, \, ..., \, s_{1n_1}, \, s_{20}, \, ..., \, s_{2n_2}, \, ..., \, s_{m0}, \, ..., \, s_{mn_m}\} \backslash G_k.$$

Since $b_y \neq \{0\}$, so there exists an element s_α in $\{s_{10},...,s_{1n_1},s_{20},...,s_{2n_2},...,s_{m0},...,s_{mn_m}\} \cap G_k$ such that $b_y a_{s_\alpha} \in R_y - \{0\}$. Hence $y s_\alpha = y$, thus $s_\alpha = e$, so the neutral element of G_k is an element of the set

$${s_{10}, ..., s_{1n_1}, s_{20}, ..., s_{2n_2}, ..., s_{m0}, ..., s_{mn_m}} \cap G_k$$

It follows that G_k is one of the maximal subgroups

$$G_{r_1}, G_{r_2}, ..., G_{r_m},$$

so G_{r_1} , G_{r_2} , ..., G_{r_m} are the all maximal subgroups of S, where

$$R_{G_{r_1}} \ \neq \{0\} \ \ \text{and} \ \ R_{G_{r_2}} \ \neq \{0\} \ \ \text{and} \ \dots \text{and} \ \ R_{G_{r_m}} \ \neq \{0\}.$$

Also if s_{δ} is an element of $\{s_{10},...,s_{1n_1},s_{20},...,s_{2n_2},...,s_{m0},...,s_{mn_m}\}\cap G_k$ such that $b_ya_{s_{\delta}}\in R_y-\{0\}$, then $s_{\delta}=e$, and since the elements of the set $\{s_{10},...,s_{1n_1},s_{20},...,s_{2n_2},...,s_{m0},...,s_{mn_m}\}\cap G_k$ are all different, so $b_y=b_ya_e$. By a similar argument, since $b_y=1.b_y$, we can prove that

$$b_{y} = a_{e}b_{y}$$
.

It follows that

$$b_{v} = a_{e}b_{v} = b_{v}a_{e}. \tag{*}$$

Denote the neutral element in G_{r_t} by e_t (t = 1, 2, ..., m). Then

$$\{e_1,\,e_2,\,...,\,e_m\}\subseteq\{s_{10},\,...,\,s_{1n_1},\,s_{20},\,...,\,s_{2n_2},\,...,\,s_{m0},\,...,\,s_{mn_m}\}.$$

Suppose, for example, that

$$e_t = s_{td}$$
, $\forall t = 1, 2, ..., m$, $d_t \in \{0, 1, ..., n_t\}$.

Then

$$a_{e_t} = a_{e_t} \cdot 1 = a_{e_t} a_{s_{10}} + \dots + a_{e_t} a_{s_{1n_1}} + \dots + a_{e_t} a_{s_{m0}} + \dots + a_{e_t} a_{s_{mn_m}}$$

for all t in the set $\{1, 2, ..., m\}$.

Since
$$R_{G_{i_1}}R_{G_{i_2}}=\{0\}, \ \forall i_1, i_2\in I, i_1\neq i_2, \ \text{so}$$

$$\begin{aligned} a_{e_t} &= a_{e_t} a_{s_{t0}} + a_{e_t} a_{s_{t1}} + \dots + a_{e_t} a_{s_{tn_t}} = \sum_{r=0}^{n_t} a_{e_t} a_{s_{tr}} \\ &= a_{e_t} a_{s_{td_t}} + \sum_{\substack{r=0 \\ r \neq d}}^{n_t} a_{e_t} a_{s_{tr}}, \quad \forall t = 1, 2, ..., m. \end{aligned}$$

And since

$$a_{e_t}a_{s_{tr}} \in R_{e_t}R_{s_{tr}} \subseteq R_{e_ts_{tr}} = R_{s_{tr}}, \quad \forall t = 1, \, 2, \, ..., \, m, \ \, \forall r = 0, \, 1, \, ..., \, n_t$$

and

$$s_{t0}$$
, s_{t1} , ..., s_{tn_t} $(t = 1, 2, ..., m)$ are different elements of G_{r_t} ,

we deduce that

$$a_{e_t}a_{s_{tr}} = 0$$
, $\forall t = 1, 2, ..., m$ and $\forall r \in \{0, 1, ..., n_t\} \setminus \{d_t\}$.

Thus by (*) we find that

$$a_{s_{tr}} = 0, \quad \forall t = 1, \, 2, \, ..., \, m \quad \text{and} \quad \forall r \in \{0, \, 1, \, ..., \, n_t\} \backslash \{d_t\}.$$

It follows that

$$1 = \sum_{t=1}^{m} (a_{s_{t0}} + a_{s_{t1}} + \dots + a_{s_{m_t}}),$$

$$a_{s_{tr}} = 0, \quad \forall t = 1, 2, ..., m \quad \text{and} \quad \forall r \in \{0, 1, ..., n_t\} \setminus \{d_t\},$$

$$e_t = s_{td_t}, \quad \forall t = 1, 2, ..., m$$

The proof that $e_1, e_2, ..., e_m$ are all the idempotents in supp(R, S) is similar to the proof that in the last proposition.

 $a_{e_t}\ (t=1,\,2,\,...,\,m) \ \ {\rm is\ the\ identity\ of}\ \ R_{G_{r_t}}\ ,\ \ {\rm because\ on\ the\ one\ hand}\ \ a_{e_t}\ \ {\rm is\ an}$ element of $R_{G_{r_t}}$ and on the other hand

$$\forall b \in R_{G_{r_l}} \Rightarrow b = \sum_{g \in G_{r_l}} b_g \Rightarrow \begin{cases} b = \sum_{g \in G_{r_l}} b_g a_{e_t} = b a_{e_t}, \\ b = \sum_{g \in G_{r_l}} a_{e_l} b_g = a_{e_l} b. \end{cases}$$

References

- [1] Nader Elnader, Samir Saad and Alia Hakim, A study on quasi-regular graded rings (by semigroup), Researches J. Aleppo University, Basic Sciences Series, No. 60, 2008.
- [2] Nader Elnader, Samir Saad and Ali Khallawy, A study about graded ring by perpendicular band, Researches J. Aleppo University, Basic Sciences Series, No. 55, 2007.
- [3] Nader Elnader, Samir Saad and Ali Khallawy, Results in graded ring by semigroup, Researches J. Aleppo University, Basic Sciences Series, No. 54, 2007.
- [4] J. M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
- [5] A. V. Kelarev, A sum of two locally nilpotent rings may be not nil, Arch. Math. (Basel) 60 (1993), 431-435.
- [6] A. V. Kelarev, On groupoid graded ring, J. Algebra 178 (1995), 391-399.
- [7] A. V. Kelarev, A primitive ring which is a sum of two Wedderburn radical subrings, Proc. Amer. Math. Soc. 125(7) (1997), 2191-2193.
- [8] A. V. Kelarev, On classical Krull dimension of group-graded rings, Bull. Austral. Math. Soc. 55 (1997), 255-259.
- [9] A. V. Kelarev, Band graded rings, Math. Japon. 94(3) (1999), 467-479.
- [10] A. V. Kelarev, Ring Constructions and Applications, World Scientific Publishing Co. Inc., River Edge, NJ, 2002.
- [11] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.