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Abstract 

Let S be a semigroup and s
Ss

RR ⊕
∈

=  be an S-graded ring with an identity 

element. We study some properties of the components of the identity 
element of R and the support of R when S is a completely regular 
semigroup and when S is a completely regular semigroup with a neutral 
element. We also study some of these properties when R is a commutative 
ring and S is a completely simple semigroup, and when R is a non-
commutative ring and S is a completely regular semigroup and the 
component ( )SsRs ∈∀  is an ideal in R. 

1. Preface 

Remark 1.1. Throughout this paper the word “semigroup” refers to 
multiplicative semigroup if not mentioned otherwise. 

Definition 1.2 [2, 10]. Let R be a ring, and S be a semigroup. Then we say that 
R is a graded ring by the semigroup S, or R is an S-graded ring if and only if there 
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exist additive subgroups { } SssR ∈  of R satisfying the following: 

(1) ;s
Ss

RR ⊕
∈

=  

(2) .,, ShgRRR ghhg ∈∀⊆  

Definition 1.3. Let R be a ring and S be a semigroup. 

(1) [3, 11] Let o be a binary operation on R, defined as: 

.,, Rbaabbaaob ∈∀−+=  

Then o is an associative operation on R, so ( )oR,  is a monoid with the zero of R as 

the identity element, we say that ( )oR,  is the monoid induced of R. 

An element Ra ∈  is called left (right) quasi-regular if a has a left (right) 
inverse in the monoid ( )oR,  with identity, i.e., if there exists an element b of R such 

that 

( ).00 == aobboa  

- If R has an identity 1, then an element a of R is left (right) quasi-regular if 
a−1  has a left (right) inverse with respect to ring multiplication. 

- If a is both left and right quasi-regular, then we say that a is quasi-regular. 

(2) [3, 11] Let I be a non-empty set of R. Then we say that I is (left, right) quasi-
regular if every element of I is (left, right) quasi-regular. 

(3) [4] Let e be an idempotent of a semigroup S. Then we say that e is a 
primitive idempotent if e is minimal in the set of non-zero idempotent. Thus, a 
primitive idempotent e has the following property: 

,0 feffeef =⇒≠==  

where f is an idempotent of S. 

4. [4] Let S be a semigroup without zero. Then we say that S is simple if it has 
no proper ideals. 

5. [4] Let S be a semigroup without zero. Then we say that S is completely 
simple if it is simple and if it contains a primitive idempotent. 

6. [4] A semigroup S will be called completely regular if there exists a unary 
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operation 1−→ aa  on S with the properties: 

( ) .andand 11111 aaaaaaaaaa −−−−− ===  

- An equivalent definition: 

Let S be a semigroup without zero. Then we say that S is completely regular if 
every element of S lies in a subgroup of S. 

Lemma 1.4 [4]. Let S be a semigroup without zero. Then the following 
conditions are equivalent: 

(1) S is completely simple. 

(2) S is regular, and has “weak cancellation” property: 

For all a, b, c in S, 

.babcacandcbca =⇒==  

(3) S is regular, and for all a in S, 

.bbabaaba =⇒=  

(4) S is regular and every idempotent is primitive. 

2. Results 

Theorem 2.1. Let R be a ring and S be a completely regular semigroup. 

Suppose that s
Ss

RR ⊕
∈

=  is a graduation of R by S. Then let { } IiiG ∈  be the family 

of all the maximal subgroups of S. So: 

(1) ( )IiR iG ∈  is a subring of R, and .iG
Ii

RR
∈
⊕=  

(2) If ( )IiR iG ∈∀  is an ideal in R and right quasi-regular in itself, then R is a 

right quasi-regular ring. 

Proof. (1) ( )IiR iG ∈  is a subring of R because on the one hand ( )IiR iG ∈  is 

additive subgroup of R and on the other hand: 

∑∑
∈∈

′==⇒∈∀
ii

i
Gt

t
Gt

tG rhrgRhg ;and,  

., ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⇒∈′ ∑∑

∈∈ ii Gt
t

Gt
tttt rrghRrr  
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Since iG  is a subgroup of S, thus 

.,, 2121 ii GttGtt ∈∀∈⋅  

It follows that 

.i
ii

G
Gt

t
Gt

t Rrrgh ∈⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
= ∑∑

∈∈

 

Since S is a completely regular semigroup, so S is a union of groups, i.e., 

∪
subgroup
of

.
H

S

HS =  

Moreover, since every subring of S is contained in a maximal subgroup of S, so for 
every subgroup H of S, there exists a maximal subgroup G of S such that .GH ⊆  
Thus 

∪
maximal

ofsubgroup

.
G

S

GS =  

Since { } IiiG ∈  is the family of all the maximal subgroup of S, so 

∪∩
Ii

iii GSiiIiiGG
∈

=≠∈∀∅= .and,,, 212121  

Remark that ,s
Ss

RR ⊕
∈

=  we deduce 

.iG
Ii

RR ⊕
∈

=  

(2) Suppose that ( )IiR iG ∈  is an ideal in R and right quasi-regular in itself. As 

( )IiR iG ∈  is an ideal in R and right quasi-regular in itself and ,iG
Ii

RR ⊕
∈

=  then R 

is a right quasi-regular ring (see the proof of the Propositions (2-6) in [1]). 

Proposition 2.2. Let R be a ring with an identity element 1 such that R does not 
have any divisor of zero, and let S be a completely regular semigroup. Suppose that 

s
Ss

RR ⊕
∈

=  is a graduation of R by S. Also suppose that iG
Ii

RR ⊕
∈

=  such that 
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{ } IiiG ∈  is the family of all the maximal subgroups of S. If 1 is a homogenous 

element in R, then ( )SR,supp  is a submonoid of S, and eR∈1  such that e is 

neutral element in ( ).,supp SR  

Proof. Suppose that 1 is a homogenous element in R. Since R does not have any 
divisor of zero, so ( )SR,supp  is a subsemigroup of S. 

As 1 is a homogenous element in R, so there exists an element s of S such that 

.1 sR∈  Since ∪
Ii

iGS
∈

= ,  so there exists I∈α  such that .α∈ GS  Thus 

.1
α

⊆∈ Gs RR  

Since 
αGR  is a ring and ,

α
αα

α ⊕
∈

= g
Gg

G RR  so 
αGR  is a graded ring by the group 

,αG  and since ,1
α

∈ GR  eR∈1  such that e is the neutral element in .αG  Since 

,1 eR∈  so { },0≠eR  thus ( ).,supp SRe ∈  Furthermore, if 1s  is an element of 

( ),,supp SR  and a is an element of ,}0{1 −sR  then 

1110 esse RRRaa ⊆∈⋅=≠  

and 

.1 11111 sesRRRaa sess =⇒=⇒∈⋅=  

Similarly, with observation that ,1 aa =⋅  we find that 

.),supp(, 111 SRsses ∈∀=  

So 

.),supp(, 1111 SRsseses ∈∀==  

Thus e is neutral element in .),supp( SR  Therefore, ),supp( SR  is a submonoid of S 

with a neutral element e, and .1 eR∈  

∗ - In the special case when ( ),,supp SRS =  S is monoid and eR∈1  such that 

e is the neutral element in S whether R has divisors of zero or not. 

Theorem 2.3. Let R be a ring with an identity element 1 and let S be a 

completely regular semigroup with a neutral element e. Suppose that s
Ss

RR ⊕
∈

=  is 
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a graduation of R by S, and also iG
Ii

RR ⊕
∈

=  such that { } IiiG ∈  is the family of all 

the maximal subgroups of S. Since ,1 s
Ss

RR
∈
⊕=∈  so 1 can be written with an only 

way, by the form 

{ }∑
=

−∈=
n

i
sss iii Raa

1
,0;1  

such that nsss ...,,, 21  are distinct elements of S. If { },0≠eR  then ∈e  

{ },...,, 21 nsss  and if we suppose, for example, that 1se =  and ( )IG ∈ββ   is the 

maximal subgroup of S which e belongs to, then es aa =1  is the identity element of 

the ring .
βGR  

Proof. Suppose that { },0≠eR  { }nssse ...,,, 21∈  because if it is not and if b is 

an element of { },0≠eR  then 

.1
11
∑∑
==

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⋅=

n

i
s

n

i
s ii baabbb  

Since 

,and...,,2,1,and}...,,,{ 21 esessn RbniRRbassse iii ∈=∀=∈∉  

so 

,0=b  

which is a contradiction. 

Suppose, for example, that .1se =  Then 

( ) .1 22 nn seseeesseeee aaaaaaaaaaaa +++=+++=⋅=  

Since niRRaa iii sesse ...,,3,2, =∀=∈  and nssse ...,,,, 32  are distinct elements 

of S, so 

....,,3,2,0 niaa ise =∀=  

If we suppose, for instance, that ( )IG ∈ββ  is the maximal subgroup of S which e 
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belongs to, then 

,...,,3,2, niGsi =∀∉ β  

because, if any element of the set { },...,,, 32 nsss  for example, 2s  belongs to ,βG  

then 

,1 222222 sssssess aaaaaaaa n+++=⋅=  

so if j is an element of the set { },...,,4,3 n  such that ,02 ≠ss aa j  then 2ss aa j  

,2sR∉  because if 22 sss Raa j ∈  it follows that 

22 sss Raa j ∈  and 

;0 1
22

1
222222222

−− =⇒=⇒∈≠⇒∈ ssssssssRRaaRaa jjsssssssss jjjj ∩  

1
2
−s  is the inverse of 2s  in ,eseseG jj =⇒=⇒β  

and this contradicts .es j ≠  Since ,02 =seaa  so 

.222 sss aaa =  

Thus 

.0 2222 ssss RRa ∩∈≠  

Hence 

.222 sss =  

But β∈ Gs2  and βG  is a group in which its identity is the only idempotent, so 

,2se =  and this contradicts .2se ≠  Since 

 ,...,,3,2, niGsi =∀∉ β  (∗) 

so ea  is the identity element in ,
βGR  because on the one hand ea  belongs to ,

βGR  

and on the other hand 

∑
β

β
∈

=⇒∈∀
Gg

gG bbRb ;  
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( )nsse
Gg

ggg aaabbbRb +++
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
==⇒∈ ∑

β∈

...1 2  

 .
2
∑ ∑∑
= ∈∈ ⎟⎟

⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+=⇒

ββ

n

i Gg
sg

Gg
eg iababb  

Let t be an element of the set { }n...,,3,2  and y be an element of βG  such that 

.0≠tsyab  Then 
β

∉ Gsy Rab t  because if it is not so, we have 

tt yssy Rab ∈≠0  

and 

.;0 gysGgRab tGsy t
′=∈′⇒∈≠ ββ

 

Suppose that 1−y  is the inverse of y in ,βG  it follows that 

.111 gysgyysygys ttt ′=⇒′=⇒′= −−−  

Since βG  is a group and ,1−y  g′  are two elements of ,βG  we have 

,β∈ Gst  

and this contradicts (∗). 

Thus 

∑
β∈

==
Gg

eeg baabb .  

In the same way, we can prove that 

.bab e=  

So 

.,
β

∈∀== Gee Rbbabab  

Thus es aa =1  is the identity element in .
βGR  
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Theorem 2.4. Let R be a commutative ring with an identity element 1, and S be 

a completely simple semigroup (S without zero). Suppose that s
Ss

RR ⊕
∈

=  is a 

graduation of R by S, and also iG
Ii

RR ⊕
∈

=  such that { } IiiG ∈  is the family of all the 

maximal subgroups of S. So we can write 1 in the form 

( ) { } ,;...,,1,0,0;...1
1

10∑
=

+∈=∀−∈+++=
m

t
tsssss ZmnjRaaaa tjtjttntt  

such that ( )mtsss ttntt ...,,2,1...,,, 10 =  are distinct elements of ( ),IrG trt ∈  

then mrrr GGG ...,,, 21  are the all maximal subgroups of S, where 

{ } { },0...0}0{
21

≠≠≠
mrrr GGG RandandRandR  

and if we suppose that ( )mtet ...,,2,1=  is the neutral of ,trG  then { }meee ...,,, 21  

{ }mmnmnn ssssss ...,,...,,...,,,...,, 0220110 21⊆  and ( )mta te ...,,2,1=  is the 

identity element of the subring 
trGR  and meee ...,,, 21  are the all idempotents in 

( ).,supp SR  

Proof. Since ,1 iG
Ii

s
Ss

RRR
∈∈
⊕⊕ ==∈  so we can write 1 in only way in the 

form 

[ { } ]....,,2,1,and0;1
1
∑
=

=∀∈−∈=
m

t
tGGG mtIrRbb

trtrtr  

Thus 

mtRb
trtr GG ...,,2,1, =∀∈  

,...,,2,1,...0 mtaab
ttnttr ssG =∀++=⇒  

such that 

{ } ,...,,2,1,...,,1,0,0 mtnjRa tss tjtj =∀=∀−∈  
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and 

( )mtsss ttntt ...,,2,1...,,, 10 =  are different elements of .trG  

It follows that 

( )∑
=

+++=
m

t
sss ttntt aaa

1
.1 10 …  

Since 

{ } ,...,,2,1,and...,,2,1,0 000 mtGsmtRa ttt rtss =∀∈=∀−∈  

so 

....,,2,1,0 0 mtRa
trt Gs =∀∈≠  

Thus 

{ } ....,,2,1,0 mtR
trG =∀≠  

If k is an element of I such that ,}0{≠
krGR  then there exists in kG  an element y 

such that ,}0{≠yR  so if yb  is an element of { }0−yR  and e is the neutral of ,kG  

we have 

( ).1
1

10∑
=

+++=⋅=
m

t
systysyyy ttnt abababbb  

Let βs  be an element of the set 

{ } kmnmnn Gssssss m \...,,...,,...,,,...,, 0220110 21  

such that .0≠
βsyab  Then ,ysy Rab ∉

β
 because if ,ysy Rab ∈

β
 then 

yysyysRbaab yyssy ==⇒∈=≠ ββββ
and0  

( 1−y  is the inverse of y in )kG  

.and eesees ==⇒ ββ  

If we suppose that f is the neutral element of the maximal subgroup which βs  
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belongs to, then 

 

( ) ( )

( ) ( )

.and efeef

eesefsesffe

eesfsefesef

==⇒

⎪
⎪
⎭

⎪⎪
⎬

⎫

====

====

βββ

βββ

 (∗) 

Since S is completely simple semigroup, so by Lemma 1.4, we find that 

,fe =  

and this is a contradiction. 

Since { },0≠yb  so there exists an element αs  in { ,...,,,...,, 21 220110 nn ssss  

} kmmnm Gss ∩...,,..., 0  such that { }.0−∈
α ysy Rab  Hence .yys =α  Thus 

.11 eseesyyysyyys =⇒=⇒=⇒= αα
−

α
−

α  

It follows that the neutral element of kG  is an element of the set 

{ } ....,,...,,...,,,...,, 0220110 21 kmmnmnn Gssssss ∩  

Thus kG  is one of the maximal subgroups 

,...,,, 21 mrrr GGG  

so mrrr GGG ...,,, 21  are the all maximal subgroups of S, where 

{ } { } .}0{and...and0and0
21

≠≠≠
mrrr GGG RRR  

We also deduce that if δs  is an element of { ...,,...,,...,,,...,, 0220110 21 mnn sssss  

} kmmn Gs ∩  such that { },0−∈
δ ysy Rab  then ,es =δ  and since the elements of 

the set { } kmmnmnn Gssssss ∩...,,...,,...,,,...,, 0220110 21  are all different, so 

 .eyy abb =  (∗∗) 

Let us refer to the neutral element in trG  as ( )....,,2,1 mtet =  

We see that ( )mta te ...,,2,1=  is the identity of ,
trGR  because on the one 
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hand tea  is an element of 
trGR  and on the other hand 

∑ ∑
∈ ∈

=⇒=⇒∈∀

tr
t

tr
tr

Gg
e

Gg
ggG abbbbRb  (that is from (∗∗)) 

 .tt

tr

ee
Gg

g baabb =
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=⇒ ∑

∈

 

Since ( )mtet ...,,2,1=  is the neutral element in ,trG  so { } ⊆meee ...,,, 21  

{ },...,,...,,...,,,...,, 0220110 21 mmnmnn ssssss  and since S is a completely regular 

semigroup so any idempotent of S is the neutral of a maximal subgroup of S, thus if 
e is an idempotent of ( ),,supp SR  then { }0≠GR  such that G is the maximal 

subgroup that e belongs to, hence { },...,,...,,...,,,...,, 0220110 21 mmnmnn sssssse ∈  

and since meee ...,,, 21  are all the idempotents in the set { ...,,,...,, 20110 1 sss n  

}mmnmn sss ...,,...,, 02 2  as well as also each one of them belongs to ( ),,supp SR  so 

meee ...,,, 21  are the all idempotents in ( ).,supp SR  

Proposition 2.5. Let R be a ring with an identity element 1, and S be a 

completely regular semigroup. Suppose that s
Ss

RR ⊕
∈

=  is a graduation of R by S, 

and also iG
Ii

RR ⊕
∈

=  such that IiiG ∈}{  is the family of all the maximal subgroups 

of S. If ( )IiR iG ∈  is an ideal in R, then we can find a subset }...,,,{ 21 mrrr  of I (m 

is a positive integer) such that mrrr GGG ...,,, 21  are the all maximal subgroups of 

S, where 
{ } { } { },000

21
≠≠≠

mrrr GGG Rand...andRandR  

and then we can write 1 in the form 

{ } ,...,,2,1,0;1
1
∑
=

=∀−∈=
m

t
eee mtRaa ttt  

such that ( )mtet ...,,2,1=  is the neutral of .trG  We also find that meee ...,,, 21  

are the all idempotents in ( )SR,supp  and ( )mta te ...,,2,1=  is the identity element 

of the subring .
trGR  
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Proof. Since ,1 iG
Ii

s
Ss

RRR
∈∈
⊕⊕ ==∈  so we can write 1 in only way in the 

form 

( ) { }∑
=

=∀−∈+++=
m

t
tsssss njRaaaa tjtjttntt

1
...,,1,0,0;...1 10  

such that ( )mtsss ttntt ...,,2,1...,,, 10 =  are different elements of ( )IrG trt ∈  

(see the proof of the last proposition). 

Since 

{ } ,...,,2,1,and0 000 mtGsRa ttt rtss =∀∈−∈  

so 

....,,2,1,0 0 mtRa
trt Gs =∀∈≠  

Hence 

{ } ....,,2,1,0 mtR
trG =∀≠  

If k is an element of I such that { },0≠
krGR  then there exists in kG  an element 

y such that { },0≠yR  so if yb  is an element of { }0−yR  and e is the neutral of 

,kG  then 

( )∑
=

+++=⋅=
m

t
sysysyyy ttntt abababbb

1
.1 10  

Since 

( )IiRRR ii GG
Ii

∈∀=
∈
⊕ and  is an ideal in R, 

therefore 

{ } .,,,0 212121
iiIiiRR ii GG ≠∈∀=  

Hence 

{ } .\...,,...,,...,,,...,,,0 0220110 21 kmnmnnsy Gsssssssab m∈∀= ββ
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Since { },0≠yb  so there exists an element αs  in { ,...,,...,,,...,, 0220110 21 mnn sssss  

} kmn Gs m ∩...,  such that { }.0−∈
α ysy Rab  Hence ,yys =α  thus ,es =α  so the 

neutral element of kG  is an element of the set 

{ } ....,,...,,...,,,...,, 0220110 21 kmnmnn Gssssss m ∩  

It follows that kG  is one of the maximal subgroups 

,...,,, 21 mrrr GGG  

so mrrr GGG ...,,, 21  are the all maximal subgroups of S, where 

{ } { } { }.0and...and0and0
21

≠≠≠
mrrr GGG RRR  

Also if δs  is an element of { } kmnmnn Gssssss m ∩...,,...,,...,,,...,, 0220110 21         

such that { },0−∈
δ ysy Rab  then ,es =δ  and since the elements of the set 

{ } kmnmnn Gssssss m ∩...,,...,,...,,,...,, 0220110 21  are all different, so .eyy abb =  

By a similar argument, since ,.1 yy bb =  we can prove that 

.yey bab =  

It follows that 

 .eyyey abbab ==  (∗) 

Denote the neutral element in trG  by ( )....,,2,1 mtet =  Then 

{ } { }....,,...,,...,,,...,,...,,, 022011021 21 mmnmnnm sssssseee ⊆  

Suppose, for example, that 

{ }....,,1,0,...,,2,1, tttdt ndmtse t ∈=∀=  

Then 

mmntmtntttt seseseseee aaaaaaaaaa ++++++=⋅= 011101  

for all t in the set { }....,,2,1 m  
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Since { } ,,,,0 212121
iiIiiRR ii GG ≠∈∀=  so 

∑
=

=+++=
t

trtttntttttt

n

r
sesesesee aaaaaaaaa

0
10  

 ....,,2,1,
0
∑
≠
=

=∀+=
t

t

trtttdt

n

dr
r

sese mtaaaa  

And since 

tssesese nrmtRRRRaa trtrttrttrt ...,,1,0,...,,2,1, =∀=∀=⊆∈  

and 

( )mtsss ttntt ...,,2,1...,,, 10 =  are different elements of ,trG  

we deduce that 

{ } { }.\...,,1,0and...,,2,1,0 ttse dnrmtaa trt ∈∀=∀=  

Thus by (∗) we find that 

{ } { }.\...,,1,0and...,,2,1,0 tts dnrmta tr ∈∀=∀=  

It follows that 

( )

{ } { } .1

...,,2,1,

,\...,,1,0and...,,2,1,0

,1

1

1
10

∑
∑

=

=

=⇒

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

=∀=

∈∀=∀=

+++=

m

t
e

tdt

tts

m

t
sss

t

t

tr

ttntt

a

mtse

dnrmta

aaa
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