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Abstract

In this paper, we use the equivalence relation between K-functional and
modulus of smoothness, and give the Stechkin-Marchaud-type inequalities
for linear combination of Bernstein-Durrmeyer operators. Moreover, we
obtain the inverse result of approximation for linear combination of

Bernstein-Durrmeyer operators with oafp; (f; x). Meanwhile we unify and

extend some previous results.
1. Introduction and Main Results

Let f eLp[0,1], (1< p<w). Then the Bernstein-Durrmeyer operator

D, (f; x) (n e N :=set of naturals) is defined as follows:
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Du(1 0= 3 b+ 3 o0 101K tR)
k=0

where
o 00 = @3,

which was first introduced and investigated by Derrieinnic [1] in 1985. The linear
combination of Bernstein-Durrmeyer operators is given by

2r-1

On,r(f; %)= X ci(m) Dy, (F; X), (12)

i=0
where n; and ¢;(n) satisfy:
Mn<ng<m <---<nypq L€y,

2r-1

(i) Y ci(n) =1
i=0

2r-1

(i) > [ci(n)] <M,
i=0

2r-1
(iv) Y (D, (t-=x)"™x) =0, m=12 .., 2r-1 (1.3)
i=0

Ditzian and Ivanov [2], Zhou [3] and Guo and Li [4] studied the linear
combination of Bernstein-Durrmeyer operators, and obtained the characterization of
approximation, the relationship of differential and modulus of smoothness for
On, r(f; X).

In this paper, we first establish Bernstein-type inequality with parameter A
for O, ((f; x). After that, we use the equivalence relation between K-functional

and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities in
Lp[0, 1] for linear combination of Bernstein-Durrmeyer operators. Moreover, we

obtain the inverse result of approximation for linear combination of Bernstein-

Durrmeyer operators with co(zprK (f; x). Meanwhile we unify and extend [2-4] results.
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First, we introduce some useful definitions and notations.
Definition 1.1. Let ¢%(x) = x(1—X), 0 S A <1 1< p < oo,
The modulus of smoothness by
2r 2r
o (f;t), = sup | A%, T,
S0, = s A

where

AL F(x) = Zr:@(—l)k F(x + (r/2 = K)h), [x - x +%} c [0, 1,
k=0
otherwise Al f(x) = 0.
The K-functional by
KE(F ), = Inf {1 =g, + ] g,
where
G=1{g/g e Lp[0,1] 9@ e ACyp, 0*™g®") e L0, 1]}
By [5, p. 10-11], there exists M > 0 such that

-1, 2 .42 2 . 2 .42
M K(P{(f,t Do Sm(p';(f,t)p < MK(p{(f,t Do

We are now in a position to state our main results.

Theorem 1.1. For f € G, reN, 0<A <1 §,(x)= (p(X)+%, we have
n
the Stechkin-Marchaud inequality
_r n
W% (F; 0 28007 00), < Mn Y | O o (F) = |, (1.4)

k=1

Theorem1.2.Let f €e G, re N, 0< a < 2r. Then

1
[On,r(F)= I, = O((n 285 (0)) = oZ (1), =0(%).  (15)
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Remark 1.1. For the inverse result, it is obvious that the result of [2] is a special
case of (1.5) with A =1, the result of [3] is a special case of (1.5) with A =0,

p = o, and the result of [4] is a special case of (1.5) with p = oo.

Throughout this paper, M denotes a positive constant independent of x, y, n and
f which may be different in different places.

2. Auxiliary Lemmas

To prove the theorems, we need also the following lemmas:

Lemma2.1.1f c < % d < % then
1 —C _an—d
[ porea-n s Mn‘l(%j (1—%) | 2.1

Proof. We notice [5, p. 164]

1 n
IO Pn.k (H)tNdt < Mn‘l(%) . on> -1

¢
[ Vi (= P
0o n

Using Holder’s inequality, we have

1 1
Jo poscr @< [ pn oo [on - v e
0 0 0

—C —d
< Mn_l(ﬁj (1 _ Ej _
n n
Lemma 2.1 has been proved. U

Lemma22.1f c>0,d >0, x > 0, then

n —c _d
Z pn,k(x)(k :1j (1— K r:lj < Mx¢(@-x)% (2.2)
k=0

Proof. We notice [5, p. 164]

n [
n _
%pn,k(x)(k_”.) < Mx I, for | eN,
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n n C _C
E p”'k(x)(—n—k+1) <M(@-x)", for {eN.
k=0

For ¢ =0, d =0, the result of (2.2) is obvious. For ¢ >0, d >0, using
Holder’s inequality, we have

k=0 k=0
2d
s n o\l [20 [2d]+1 ) [2d]+1
<> P33 Zm(x)( 1)
k=0

c d
< M(X ([2c] +1)) ((1 X) [2d]+1)) I+1 < Mx™ C(l X) d

For c>0, d=0or c=0, d >0, the proof is similar. Thus, this proof is

completed. U

Lemma23. For f € L,[0,1], reN, 0<1 <], Sn(x):q)(x)+%, n>2r,

we have the Bernstein-type inequality

| o?™0RP(f) |, < Mn"Z A0 £ ). (2.3)
1, 1 5
Proof. For p =1, if XGEnZ[H,l—H} S(x)<n2, £>0, then by

simple computation, we have

2r
DEY(H: %) = (x( =) 2y Qilx, mn'
i=0

S oS- o 0 @4
k=0
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with Q;(x, n) is a polynomial in nx(1— x) of degree [(2r —i)/2] with nonconstant
bounded coefficients. Therefore,
i |'—l l'-%—l
[Qi(x, )n' | < M(xA-x)) 2n 2, xekE,.
Thus,

| 2™ (x)D{Z(f; %) |

< Mn"(24) . (25)

2r i y n K i 1

D 1267 (0 P k(0[5 = x] (04D po (W) Flu)d
i=0 k=0

Note that [5, p. 129]

-2m k 2m -m-1
[ om00pn k0[5 -x) dx < Mn
E

n

we can write

| 92 D) e, )

< M) inizzn:jE o7 (x) pn‘k(x)(%— xjidx(n +1)j01 o1 (U) £ (U)du
i=0 k=0

n

N1

< Mn"(-%) j P k(W) f(U)[du < MnT@H)| £ L. (2.6)
k=0 0

c_|nl 1 _nt gy 200 _ -Th

If x e ES _[o, nju(l n,l}, then sy = 0¥, [, =0

1 1 . .
Io Pn. k (X)dx = T By simple calculation, we have

D(f; x)

n-2r

2r )
= g 2 P k000 0] Y ) o @ 1@ @)
" k=0 Oj:o J
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we can write
2ri— (2
| 92 Df "(f)||1<Eg>

n-2r

@ MZJ Pn-2r, k(x)dx [jrj(nﬂ).[:pn’k”(u)l flay

n-2r

- ”Z@ZJ Pricej @] F@]ou <M CH e 29

For p =, if x € E,, then by (2.5), we can now write

IA

IA

| 2™ (x)D{2I(f; x) |

2r i n i
02070 o0& <] (03[ o) F0)c0
i=0 k=0

M £, an(p_'(x)z on (& ) 0 0 e

i=1

Mnr(Z*X)

IA

IA

<Mn" @) (2.9)

If x e Ef, then by (2.7), the proof is similar to that (2.9), it is enough to show
that

| @2 (x)DE(f; x)| < M) £ (2.10)

By (2.6), (2.8), (2.9) and (2.10), applying Riesz-Thorin theorem, we get
2rv (2 2-% 2r(A-1
| 92 DZ(F) [, < M EH £ ) < M 82 H D) £,

Combining (iii) of (1.3), we obtain

| o?™0ZP(F) [, < M 8 D00 f .
Lemma 2.3 has been proved. O
Lemma24.1f f eG, reN,0<A<1 n>2r, then

| o®™OfZ(H) [, < M| ™1 . (2.11)
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Proof. By calculation, we have

n-2r

DT 1) = (1) Y B 01— = k= 20)
k=0

((n = 2r))?(k + 2r)(n — k)

1
<[ Pocar ke (@) 12w (212)
For p =1, by Lemmas 2.1 and 2.2, we can write

| 9> DEI(1) |y

n-2r

M +D)Y [ o ar (007 (00— 0=k =20
k=0

((n = 2r))?(k + 2r)i(n — k)

IA

1
RO ORI

n-2r

k+1Y*n-2r-k+1\* (n)(n — k — 2r)!
ngZ(n—er ( n-2r ) ((n = 202 (k + 2r)(n = k)

el

<. Poar k(We* )] £ () |du

a1N=2r r(r—2) r(,-2)
k+1 —2r—k+1
MY pank@( ] (R e @l 1w
“F k=0
rl
<M 0<p2“(u)| @) |du = M| 2™ £ 20, (2.13)

For p = o, by (2.12) and Lemmas 2.1 and 2.2, using the method similar to that
(2.9) and (2.13), it is enough to show that

| 9*™()DZI(f; x)| < M| o?™ 120,
which implies

| 9*DE(f) ], < M| o™ £ . (2.14)



STECHKIN-MARCHAUD-TYPE INEQUALITIES 107

By (2.13) and (2.14), using Riesz-Thorin theorem, we get

| 9> D(1)

IA

M ” (erk §(2r) ”p

Combining (iii) of (1.3), we obtain

IA

" (PZrkO(Zr (f) " ) M " (PZrk f (2r) "p’

which completes the proof. |

Lemma25.1f f eG, reN, 0<X <1 then

n
| 9?0 (f) [, < M8 Oy ((F) - £ - (2.15)
k=1

Proof. By Lemmas 2.3 and 2.4, noting that Ol(yzrr)(f; x) = 0, we have
0" o2 0R0(1) |,
<0 o?ORP©, (1) [, + 0" 9> OO, ()~ ),
< Mo 20D (1) | + Mg8Z (0 O (F) - £ || (2.16)

We write || Og, (1)~ f |, = Maxyegenll O, ()~ f [+ For [ Og, (1)~ 1 [,
1<k<n, [[ O r(f)—f [, =0, thereexists M3 > 0, such that || Og r(f)—f |, <

Mg Ok ((f)— f ||p. Therefore
Man ™| @* 0 (),
< Mo~ @® OO ()= )], + Man " 9*™0P(0y ((F) [,
< MM8? () Oy (F) = £, + MESE D of2() |,
< MM () O () - f Ip

< MMoMg2 ()| O (F) - . (2.17)
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Noting that 8§r(x‘1)(x) < 82'-D(x), by (2.16) and (2.17), we have

n
| 9?™OP(f) [, < M8 (0> [ Oy (£) - £,
k=1
where M = M; + M{M,M3. Lemma 2.5 has been proved. U

3. Proofs of Theorems

Proof of Theorem 1.1. For n > 2, there exists m € N, such that % <m<n,

and

IO, ()= fll, = min O ()= £,
Eskgn

[ Om, ()=, <20 D [0y (F)= |

%skgn
Therefore, using the definition of KZ{(f; x), and Lemma 2.5, noting that
9

521 (x) < 52'-1(x), we have

K;;(f; n 82 M(x),
<[ Om, e (F) = f [l +n "85 M0 92™0RV(F)

<ont Y0 (F)-

n
—<k<
2,k,n

4 Mn—l’sﬁr(l—k)(x)mr—162mr(k—1)(x)
m

x> 10 ()= 11,
k=1

n
<MY O () - £,
k=1
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By relationship of K-functional and modulus of smoothness, we get

r n
@i;(f; n 25 0(x), < MY O () - 1 .
k=1

This completes the proof of Theorem 1.1. U

1
Proof of Theorem 1.2. By || Oy (f) - f [, < M(n 2501 (x))*, according

to the definition of K 2! (f; t2"), we have
¢
K2r f: t2r
(107,
2r 20 (2
<[ £ =0p ()], + | O],

1
< M[(n Z8§7M))* +12(| 2™ 0RP(f - 9) |, + ]| 0> O (9) I,)]

IA

1
MI(n 285700)* + 2 ("8 D) £ - g, + ] * g )]

1 2r
M| (n 288 M) 4 —

IA

2r e, -1 2r(1-2)
Te2r ) Kq)k(f’n ¢ )p}
n

By Berens-Lorens theorem, and relationship of K-functional and modulus of
smoothness, we have

o) (f; 1), < Mt
@
This completes the proof of Theorem 1.2. U
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