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Abstract 

There are several techniques to estimate the lag length of a dynamic 
regression model. However, none of them is completely satisfactory and a 
wrong choice may imply serious problems in the estimation of regression 
parameters. This paper presents a review of the main criteria for model 
selection used in the classical methodology. A Monte Carlo simulation 
study is conducted in order to compare the performance of significance 

tests, adjusted ,2R  final prediction error, Akaike information criterion, 
Schwarz information criterion, Hannan-Quinn criterion and corrected 
Akaike information criterion. 

1. Introduction 

A dynamic regression model for a variable Y includes lagged values of some 
variables, including Y itself, as explanatory variables for the response tY  at time t, 

and has a general structure for the error component. This class of models is used      
in economic and financial applications when it is reasonable to think that some 
variables observed at time t will affect the value of htY +  for ....,,1,0 ph =    

Among those models, the simplest ones impose independent and identically normally 
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distributed errors and specify that only some subset of covariates has a long-term 
effect on the response Y at time t. 

A Distributed Lag (DL) model belongs to this class, as it assumes independent 
and identically distributed normal errors, and does not have lagged values of the 
response variable among regressors. Its relevant characteristic within this class is 
that it assumes that for one or more values of j, the effect of covariate jX  on tY  is 

given as a linear function of its value at time t and at p lagged values of t (Hill et al. 
[7], Greene [3], Gujarati [4]). 

The DL model with p lags and just one explanatory variable X may be given by 
(1) with p being the lag size of X, α being the intercept and ( ) pii ...,,1=β  the vector of 

regression coefficients corresponding to ( ) ....,1 piitX =−  The errors tu  in equation (1) 

are assumed to be iid ( )2,0 σN  variables: 

 ( )∑
=

− +β+α=
p

i
titit uxY

0

.  (1) 

The choice of a Distributed Lag Model to describe appropriately the relationship 
between the variables in a data set, consists of the selection of covariates and their 
lags length. In classical methodology, there are several methods to accomplish this, 
none of them being the best in all situations. This is a serious issue since wrong 
choices will provide bad estimates of the effects of the regressors on the response 
variable. 

The problem of omission of variables in the model may arise if the size p of the 
lags of some X is assumed to be smaller than its true value, and the consequence is 
that least squares estimators (LS) will be biased and inconsistent, their disturbance 
covariance matrix is incorrectly estimated and, consequently, confidence intervals 
and hypothesis-testing will give misleading results (see Judge et al. [9]). On the 
other hand, when an irrelevant variable is included in the model, least squares 
estimators of regression coefficients of the relevant variables are unbiased and 
consistent although they will have variance larger than when the appropriate model 
is fitted. The conclusion is that to include irrelevant lags in the model is preferable to 
the omission of important variables. 

Due to the importance of making the most correct specification of the number of 
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lags in a Distributed Lags Model for a data set, this paper shows the results of an 
extensive Monte Carlo simulation study carried out to compare performances of 
several criteria for model selection under the Classic approach: a sequence of 
t-testings of one coefficient at each step, or of a global F test at each step (Judge et 

al. [9]), the comparison of adjusted 2
sR  associated at each submodel (Judge et al. 

[9]), the computation and comparison of Final Prediction Errors (Akaike [1]) and 
Information Criteria as defined by Akaike [2], Schwarz [10], Hannan-Quinn [6] and 
the computation and comparison of corrected Akaike criterium [8] for the different 
models. 

2. Criteria for Model Selection 

The choice of a parsimonious model nested in a full DL model with all available 
regressors and maximum number of lags fixed is often made through a sequence of 
t-testings of null hypothesis about one coefficient at each step, corresponding to a 
sequence of fittings of several available sub DL models. This can be done beginning 
with the most simple submodel to a more general one or vice-versa. 

When fitting a DL model with only one covariate in the simple to general     
way, we begin fitting a model with just this covariate without any lag, and proceeds 
adding its successive lags to the model sequentially, stopping the process when       
all regression coefficient have been tested and keeping in the model only the lags 
whose coefficients showed to be significantly different from zero by the t-test, with a 
prefixed global probability of Type I error. 

In a general to simple process of fitting, we begin fitting the full model with p 
lags of the covariate. If the coefficient of the pth lag shows to be significant in the 
t-test, then it is kept in the model, otherwise it is deleted from the model. The next 
step of the process of selection is the test of the coefficient of the ( )1−p th lagged 

value of x and so successively, until all the coefficients have been tested, finishing 
with a model of order .pp final ≤  The same kind of sequential procedure can be used 

with a F-test at each stage. 

A second way to choose between two regression submodels is to prefer the 
model that would “explain” the most part of variation observed in the response Y. 

The usual coefficient of determination 2R  is not adequate for this purpose since its 
increase may be solely due to the increase of the number of regressors. The 
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coefficient 2
ajuR  defined in (2) is a penalized version of the usual ,2R  and will be 

useful for comparison of models with different number of covariates, as it does not 
increase with the number of covariates: 

 ( ) .11
1111

11 22

y
e

aju Var
Var

SST
SSE

kn
nRkn

nR −=
−−

−−=−
−−

−−=  (2) 

In (2), k is the number of covariates in the model, SSE is the sum of squares due 

to error, SST is the total sum of squares and 1−−
= kn

SSEVare  and 1−
= n

SSTVary  are 

estimates of ( )uVar  and ( )YVar  in (1). 

The Final Prediction Error (FPE) (Akaike [1]) is an estimate of the asymptotic 
mean square error of prediction one-step-ahead in an autoregressive model. It can be 
used to choose a submodel in a class of nested autoregressive models, by finding the 
submodel with the minimum value of FPE. In our applications in fitting a DL model 
with a maximum lag length p, submodels with q lag lengths ( )pq <  are classified 

according their FPE values. 

For a linear regression model of Y on k regression coefficients, with n 

observations on Y and iid normal errors, FPE is defined by (3), where 2σ̂  is the 

Least Squares (LS) estimate of :2σ  

 .ˆ 2σ
−
+= kn

knFPE  (3) 

Akaike [2], defined an information criterion (AIC) to choose the best model 
within a class of nested parametric regression models for a data set with n 
observations on the response variable Y and p regression coefficients ( ).np <  It is 

defined by ( ) ( ),log22 LkkAIC −=  where L denotes the maximized value of the 

likelihood function of a model with 1−k  regression coefficients ( ).1 pk <−  This 

criterion is based on Kullback-Leibler information and in asymptotic normality and 
consistency of maximum likelihood estimators. AIC measures the information loss 
associated to each submodel relative to the full model. A choice based on minimum 
AIC is equivalent to choose the submodel with the minimum information loss. For a 
regression linear model of Y on 1−k  regression coefficients with iid normal errors 
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with variance ,2σ  ( )Llog2−  is equal to ( ) ( ),2log~log 2 π++σ nnn  where 2~σ  is 

the maximum likelihood estimator of 2σ  and AIC can be defined by (4), where n is 
the number of observations on Y: 

 ( ) ( ) .2~log 2 nknkAIC ++σ=  (4) 

Schwarz [10] under a Bayesian perspective, adopted a special class of a priori 
distribution for the parameters, and defined a criterion for selection of models based 
on the maximum value of a penalized logarithm of the likelihood of the observations. 
His method of model selection is very similar to Akaike’s and consists in choosing 
the model with order k such that it minimizes SC defined by (5): 

 ( ) ( ) .log~log 2
n

nkSC +σ=  (5) 

Hannan and Quinn [6] defined the HQ information criterion for the 
determination of the order of an autoregressive model. Hannan [5] generalized the 
criterion for a moving average autoregressive model. HQ criterion is one of several 
criteria that are defined as sum of the maximum value of the log likelihood plus a 
penalty and is given by (6). A model is chosen among other competitors if it has the 
minimum value of HQ: 

 ( ) ( )( ) .loglog2~log 2
n

nkHQ +σ=  (6) 

An error-corrected version of AIC ( )corAIC  was developed to improve AIC 

performance in applications in choice of models when the number of observations in 
Y is small, or when the ratio nk  of number of parameters to the number of 

observations is large. The reductions on error are done without enlarging the 
variance as the correction is made through the addition of a non-stochastic term to 
AIC. The expression of corAIC  is given by (7): 

 ( ) ( ) .2
212

−−
+++= kn

kkAICAICcor  (7) 

An equivalent expression for ,corAIC  when the number of coefficients is k and 

the number of observations is n, is given by (8): 

 ( ) ( ) .21
1~log 2

nk
nknnAICcor +−

++σ=  (8) 
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3. Simulation 

In this section, the results of a simulation study designed to compare the 
performance of the above described criteria are presented. B realizations of time 
series with n observations ( )100,50,20=n  on Y were generated from models given 

by equation (1). The data generating process involved choice of p, α, ( ) pii ...,,1=β  

and simulations of a sample of n observations on the covariate X and on the error 
term in (1). The covariate X was supposed to have a ( )20,20N  distribution and the 

errors sut′  distribution was ( ).10,0N  For each series size, 999=B  independent 

realizations of (1) with the given parameters were generated with a choice of a 
different random seed for each simulation. The models simulated are described 
below, from equation (9) to equation (11). 

Distributed Lags model with 3=p  lags of covariate X: 

 .1024163210 321 tttttt uxxxxY +++++= −−−  (9) 

Distributed Lags model with 6=p  lags of covariate X: 

 .97756317 654321 ttttttttt uxxxxxxxY ++++++++= −−−−−−  (10) 

Distributed Lags model with 10=p  lags of covariate X: 

54321 70483558307023 −−−−− ++++++= ttttttt xxxxxxY  

.1219512842 109876 tttttt uxxxxx ++++++ −−−−−  (11) 

In all simulated series, the estimation of a DL model was made by Ordinary 
Least Squares. A comparison of performance criteria for the model order selection is 
based on the number of correct choices made with each criterion and on the 
observed mean value of each criterion. The mean value, ,φ  of each criterion is 

calculated using the expression 

 .
ˆ

1
B

B

i i∑ =
φ

=φ  (12) 

In expression (12), iφ̂  is the observed value of one of the criteria: ,2
ajuR  FPE, AIC, 

SC, HQ, corAIC  or p-values of t-test for each time series realization. 
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The estimates of the probabilities of each method making a correct choice of the 
order p of the model, superestimating the order p of the model, or subestimating the 
order p of the model, are given below: 

Estimate of the probability of a right choice of 

{ } .
ˆeventtheoffrequency

B
ppp ==  

Estimate of the probability of superestimation of 

{ } .
ˆeventtheoffrequency

B
ppp >=  

Estimate of the probability of underestimation of 

{ } .
ˆeventtheoffrequency

B
ppp <=  

In the definitions given above, p is the number of lags of X in each model, p̂  its 

estimate, B is the total number of realizations of each model. In all comparisons, p 
was assumed to be greater than or equal to 3. For this reason, the probability of 
underestimation of a DL(3) will be zero, for all criteria. 

4. Results 

The estimated probabilities of a correct, under and superestimation of the order 
of a DL(p) model by each criteria, are depicted in Figures 1 to 3. Figure 1(a) 
corresponds to a DL(3) model. It shows that the percentual frequency of making     
the right choice of the order of the model increases with the size n of the simulated 

series. The criteria ,corAIC  AIC and 2
ajuR  had the worst performance and Figure 

1(b) shows that the percentual frequency of making a superestimation of the model 
order decreases as size n of the simulated series increases. 

Figure 2 shows that, for the simulated Dl(6) series, the most efficient methods 
for estimation of the lag length are FPE, HQ and corAIC  which have a good 

performance for the three chosen values of n. AIC and SC superestimate the lag 
length, for .20=n  However, for longer series, the estimate of the probability of a 
right choice of p is reasonable (near 0,55) for AIC and quite good for SC. 
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For the simulated series of DL(10), Figure 3 shows that 2
ajuR  and FPE present a 

high percentual frequency of finding the correct value of p, the lag length, for all 
values of n. The other criteria also have this behaviour for series size larger than 20. 
For ,20=n  those criteria superestimate the true lag length. 

 

Figure 1. Performance of several criteria to detect the lag length p in simulated 
DL(3) series. Observed percentage of: (a) Correct estimation of lag length, .ˆ pp =  

(b) Superestimation of lag length, .ˆ pp >  

Tables from 1 to 9, in Appendix, present the observed mean values of the 
criteria under study. Tables from 10 to 12, in Appendix, show the estimated lag 
lengths for each method when the mean value of each criterion (shown in Tables 
from 1 to 9) are used as a new criterion. When using SC, AIC, HQ, FPE and 

,corAIC  the lag length corresponding to the least mean is chosen. On the other hand, 

when using ,2
ajuR  the lag length corresponding to the greatest mean is chosen. 



ESTIMATION OF LAG LENGTH IN DISTRIBUTED LAG MODELS: … 135 

From the tables, one verifies that the smaller means of criteria HQ, FPE and 

corAIC  are related to the choice of the true model, for any number of lags in it and 

any size of the simulated series. 

As what concerns to t-testings in finding the adequate model, at a significance 
level of 0.05, when using the general to simple approach, one must choose the 
model with the mean of the p-values less than 0.05, and, conversely, when using the 
simple to general approach, one must choose the model with the mean of the 
p-values greater than 0.05. 

The estimated lag lengths from the means of the p-values of the t-testing 
procedure are in Table 13 in Appendix. For the Distributed Lag models, the choice 
of the lag length by using the general to simple t-testing was adequate for any size of 
simulated series. However, if t-testing is used in a simple to general way, then there 
is more chance to obtain a correct estimate of the lag length if the size n of the 
simulated series is large. 

5. Final Comments 

The analysis of the simulated time series data allowed the authors to observe 
important characteristics of some model selection criteria when used to estimate the 
order of a Distributed Lags model. 

SC and AIC are the most popular criteria to choose a submodel fitted by 
Ordinary Least Squares within a rich class of regression models, being the most used 
in practical analysis. In the present study, it was possible to verify that for small 
value of n, the series size, their performance in detecting the correct order of a DL 
model is worse than the performance of FPE, HQ and .corAIC  FPE is the oldest 

among the selection techniques used in the present work and it showed the same 
efficacy in selecting the order of a DL model as more recent techniques. 

SC and AIC showed similar behaviors, both techniques choosing the correct 
order of the DL model only if n is large. For small or medium size number n of 
observations on Y, SC and AIC overestimate the order of the model. However, the 
percentage of correct estimation by SC is larger than that of AIC. The corAIC  

criterion, as was expected, corrects the choice of AIC when the size n of the series is 

small. 2
ajuR  did not show to be a good method for determination of the order of a 

Distributed Lag model. 
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Figure 2. Performance of several criteria to detect the lag length p in simulated 
DL(6) series. Observed percentage of: (a) Superestimation of lag length, ;ˆ pp >  (b) 

Subestimation of lag length, ;ˆ pp <  (c) Correct estimation of lag length, .ˆ pp =  
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Figure 3. Performance of several criteria to detect the lag length p in simulated 
DL(10) series. Observed percentage of: (a) Superestimation of lag length, ;ˆ pp >  (b) 

Subestimation of lag length, ;ˆ pp <  (c) Correct estimation of lag length, .ˆ pp =  

When using the t-testing procedure to choose the order of the model, it was 
observed in these simulations, that the general to simple approximation has a greater 
percentage of correct estimates than the other way, simple to general. 



CAMILA PEDROZO RODRIGUES FURLAN et al. 138 

References 

 [1] H. Akaike, Fitting autoregressive model for prediction, Ann. Inst. Statist. Math.          
21 (1969), 243-247. 

 [2] H. Akaike, Information theory and an extension of the maximum likelihood principle, 
2nd International Symposium on Information Theory, 1973. 

 [3] W. H. Greene, Econometric Analysis, 5 ed., New York University, Prentice Hall, 
2003. 

 [4] D. N. Gujarati, Basic Econometrics, 4 ed., The McGraw-Hill Companies, 2004. 

 [5] E. J. Hannan, The estimation of the order of an ARMA process, Ann. Statist. 8(5) 
(1980), 1071-1081. 

 [6] E. J. Hannan and B. G. Quinn, The determination of the order of an autoregression,     
J. Royal Statistical Society B 41(2) (1979), 190-195. 

 [7] R. C Hill, W. E. Griffiths and G. G. Judge, Econometria, 2ed., Editora Saraiva, São 
Paulo, 2003. 

 [8] C. M. Hurvich and C.-L. Tsai, Regression and time series model selection in small 
samples, Biometrika 76(2) (1989), 297-307. 

 [9] G. G. Judge, R. C. Hill, W. E. Griffiths, H. Lütkepohl and T.-C. Lee, Introduction to 
Theory and Practice of Econometrics, 2 ed., John Wiley & Sons, New York, 1998. 

 [10] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6(2) (1978), 461-464. 

Appendix 

Tables with the observed mean values of the criteria under study and 
values of lag length p selected by some criteria 

This Appendix presents the tables with the observed mean values of the criteria 
under study, with the estimated lag lengths for each method when the mean value of 
each criterion is used as a new criterion and with the estimated lag lengths from the 
means of the p-values of the t-testing procedure. The symbol “-” in Tables from (10) 
to (13) means that it was not possible to select a lag length through the means of 

2
ajuR  or the t means. 
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Table 1. Means of some criteria when estimating p from simulations of a DL(3) with 
20=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 110,66 105,68 2,78 16,72 –26,75 1,00 
4 112,12 106,14 2,88 18,57 –20,48 1,00 
5 113,51 106,54 2,99 20,74 –15,60 1,00 
6 114,69 106,73 3,09 23,28 –11,81 1,00 
7 115,76 106,79 3,19 26,26 –8,74 1,00 
8 116,67 106,71 3,29 29,89 –6,18 1,00 
9 117,35 106,40 3,39 34,43 –4,09 1,00 

10 117,40 105,45 3,47 39,41 –2,71 1,00 
11 117,34 104,39 3,56 46,39 –1,37 1,00 
12 116,84 102,90 3,65 56,01 –0,29 1,00 
13 115,83 100,89 3,74 70,00   0,68 1,00 
14 112,99 97,06 3,78 89,44   0,50 1,00 

Table 2. Means of some criteria when estimating p from simulations of a DL(3) with 
50=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 270,35 260,79 2,56 12,26 178,13 1,00 
4 273,05 261,58 2,61 12,75 180,76 1,00 
5 275,79 262,40 2,66 13,28 183,58 1,00 
6 278,52 263,22 2,72 13,84 186,56 1,00 
7 281,20 263,99 2,77 14,43 189,68 1,00 
8 283,80 264,68 2,82 15,02 192,90 1,00 
9 286,38 265,35 2,88 15,65 196,32 1,00 

10 288,99 266,04 2,93 16,34 199,99 1,00 
11 291,52 266,66 2,99 17,06 203,83 1,00 
12 294,08 267,31 3,04 17,83 207,96 1,00 
13 296,55 267,87 3,09 18,63 212,31 1,00 
14 299,05 268,45 3,15 19,51 216,98 1,00 

Table 3. Means of some criteria when estimating p from simulations of a DL(3) with 
100=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 530,82 517,79 2,44 11,04 –1270,86 1,00 
4 534,35 518,71 2,47 11,27 –1095,88 1,00 
5 537,88 519,64 2,50 11,50 –959,77 1,00 
6 541,38 520,53 2,54 11,73 –850,91 1,00 
7 544,90 521,45 2,57 11,97 –761,81 1,00 
8 548,39 522,34 2,60 12,21 –687,57 1,00 
9 551,90 523,24 2,63 12,47 –624,73 1,00 

10 555,28 524,02 2,66 12,71 –570,98 1,00 
11 558,76 524,89 2,69 12,98 –524,30 1,00 
12 562,24 525,76 2,72 13,25 –483,43 1,00 
13 565,61 526,53 2,75 13,52 –447,47 1,00 
14 569,03 527,35 2,78 13,80 –415,44 1,00 
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Table 4. Means of some criteria when estimating p from simulations of a DL(6) with 
20=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 225,27 220,29 8,51 5480,69 197,75 0,11 
4 222,19 216,22 8,39 4688,99 197,93 0,27 
5 216,34 209,37 8,13 3526,20 196,32 0,47 
6 114,86 106,89 3,10 23,52 100,35 1,00 
7 115,98 107,02 3,20 26,70 108,66 1,00 
8 116,94 106,98 3,30 30,46 119,08 1,00 
9 117,59 106,63 3,40 35,02 132,41 1,00 

10 117,55 105,60 3,47 40,21 149,83 1,00 
11 117,39 104,45 3,56 47,13 174,68 1,00 
12 116,58 102,64 3,63 56,80 211,95 1,00 
13 114,93 99,99 3,69 69,88 274,29 1,00 
14 112,54 96,61 3,76 90,84 400,05 1,00 

Table 5. Means of some criteria when estimating p from simulations of a DL(6) with 
50=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 561,22 551,66 8,37 4225,39 468,96 0,21 
4 549,69 538,22 8,14 3266,92 457,37 0,40 
5 530,45 517,07 7,76 2169,84 438,22 0,60 
6 278,57 263,27 2,72 13,86 186,61 1,00 
7 281,27 264,06 2,77 14,45 189,74 1,00 
8 283,91 264,79 2,83 15,05 193,02 1,00 
9 286,53 265,50 2,88 15,69 196,47 1,00 

10 289,15 266,21 2,94 16,38 200,16 1,00 
11 291,66 266,80 2,99 17,09 203,98 1,00 
12 294,24 267,47 3,04 17,87 208,13 1,00 
13 296,70 268,02 3,10 18,67 212,45 1,00 
14 299,20 268,61 3,15 19,56 217,13 1,00 

Table 6. Means of some criteria when estimating p from simulations of a DL(6) with 
100=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 1116,56 1103,53 8,30 3900,26 927,73 0,25 
4 1089,80 1074,17 8,03 2923,04 899,76 0,44 
5 1047,63 1029,39 7,60 1880,17 856,43 0,64 
6 541,38 520,54 2,54 11,73 349,10 1,00 
7 544,91 521,47 2,57 11,97 351,59 1,00 
8 548,42 522,37 2,60 12,22 354,13 1,00 
9 551,92 523,27 2,63 12,47 356,73 1,00 

10 555,33 524,07 2,66 12,72 359,31 1,00 
11 558,81 524,94 2,69 12,98 362,03 1,00 
12 562,31 525,84 2,72 13,26 364,86 1,00 
13 565,68 526,60 2,75 13,53 367,63 1,00 
14 569,09 527,41 2,78 13,81 370,53 1,00 
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Table 7. Means of some criteria when estimating p from simulations of a DL(10) 
with 20=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 306,09 301,11 12,55 342942,16 278,58 0,30 
4 305,42 299,45 12,55 328106,43 281,17 0,37 
5 294,85 287,88 12,06 201870,39 274,83 0,64 
6 290,65 282,68 11,89 165809,54 276,16 0,72 
7 289,76 280,80 11,89 162027,09 282,46 0,75 
8 245,88 244,92 10,20 30937,97 257,05 0,96 
9 233,55 22,59 9,20 11297,37 248,38 0,99 

10 117,76 105,81 3,49 40,20 150,04 1,00 
11 117,75 104,81 3,58 47,54 175,04 1,00 
12 117,76 103,42 3,67 57,64 212,75 1,00 
13 116,09 101,16 3,75 71,88 275,46 1,00 
14 113,78 97,85 3,82 94,30 401,28 1,00 

Table 8. Means of some criteria when estimating p from simulations of a DL(10) 
with 50=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 770,40 760,84 12,56 288285,44 678,14 0,38 
4 765,09 753,62 12,45 251049,45 672,76 0,47 
5 737,34 723,95 11,89 141691,22 645,08 0,71 
6 723,15 707,85 11,61 103740,21 631,15 0,79 
7 716,50 699,29 11,48 88238,76 624,94 0,82 
8 628,85 609,73 9,73 15128,55 537,93 0,97 
9 570,73 549,70 8,56 4630,14 480,66 0,99 

10 289,21 266,27 2,94 16,40 200,22 1,00 
11 291,73 266,88 2,99 17,11 204,05 1,00 
12 294,25 267,48 3,04 17,87 208,14 1,00 
13 296,79 268,11 3,10 18,69 212,54 1,00 
14 299,30 268,71 3,16 19,58 217,23 1,00 

Table 9. Means of some criteria when estimating p from simulations of a DL(10) 
with 100=n  

Lags/Criteria SC AIC HQ FPE corAIC  2
ajuR  

3 1539,96 1526,94 12,54 273679,19 –261,77 0,41 
4 1525,46 1509,83 12,39 231321,72 –104,81 0,51 
5 1467,12 1448,89 11,80 126936,54 –30,58 0,73 
6 1434,82 1413,98 11,47 89981,41 42,49 0,81 
7 1417,48 1394,03 11,29 73998,78 110,74 0,85 
8 1239,84 1213,79 9,51 12343,01 3,84 0,97 
9 1119,45 1090,79 8,30 3634,36 –57,21 0,99 

10 555,23 523,97 2,66 12,71 –571,02 1,00 
11 558,71 524,85 2,69 12,97 –524,33 1,00 
12 562,18 525,71 2,72 13,25 –483,47 1,00 
13 565,60 526,53 2,75 13,52 –447,46 1,00 
14 569,04 527,35 2,78 13,80 –415,42 1,00 
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Table 10. Values of lag length p selected by some criteria for a DL(3) simulated 
model 

Series size/Criteria SC AIC HQ FPE corAIC  2
ajuR  

20=n  14 14 3 3 3 - 
50=n  3 3 3 3 3 - 

100=n  3 3 3 3 3 - 

Table 11. Values of lag length p selected by some criteria for a DL(6) simulated 
model 

Series size/Criteria SC AIC HQ FPE corAIC  2
ajuR  

20=n  14 14 6 6 6 - 
50=n  6 6 6 6 6 - 

100=n  6 6 6 6 6 - 

Table 12. Values of lag length p selected by some criteria for a DL(10) simulated 
model 

Series size/Criteria SC AIC HQ FPE corAIC  2
ajuR  

20=n  14 14 10 10 10 - 
50=n  10 10 10 10 10 - 

100=n  10 10 10 10 10 - 

Table 13. Values of lag length p selected by t-testing for DL(3), DL(6) and DL(10) 
simulated models 

Simple to General General to Simple Series size DL(3) DL(6) DL(10) DL(3) DL(6) DL(10) 
20=n  3 - - 3 6 10 
50=n  3 6 - 3 6 10 

100=n  3 6 10 3 6 10 

 


