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Abstract

Let ¢ be a prime number and L/K be an arbitrary finite Galois ¢ -extension
of function fields of one variable with field of constants k, an algebraically
closed field of characteristic p > 0. In the wildly ramified case, i.e., p =/,
we obtain the Galois module structure of the incomplete generalized
Jacobian % (p) and of %, the elements of order dividing p of
% (p), associated with the modulus 9B in L which is induced by a
modulus 2 in K, where 20 not necessarily contains in its support all

the prime divisors of K ramified in L. That is, we obtain explicitly
the decomposition of % (p)( ;%) as direct sum of indecomposable
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Z,[G]-modules (F,[G]-modules). For the tamely ramified case, i.e.,

p # {, when the modulus 2 in K contains in its support all except

one of the prime divisors of K ramified in L, we obtain explicitly the
decomposition of g (¢) (and of G, the £ -part of Gg(?)) as direct

sum of indecomposable Z,[G]-modules (F,[G]-modules).

1. Introduction

Let k be an algebraically closed field of characteristic p >0, ¢ be a prime
number, K/k be an algebraic function field of one variable with field of constants
k, and L/K be a finite Galois /-extension of function fields with Galois group
Gal(L/K) = G. The group G acts naturally on J;(7), the /-torsion of the Jacobian

variety J; associated to the function field L/k. By restriction, G acts on ,, J;,

fm

the group of points of J; of order dividing /. Then the direct limit J; (/) :=

0
lim ,J, = U ,mJ has anatural Z [G]-module structure, where Z, denotes the
! ,

m=1
ring of ¢ -adic integers and Z,[G] denotes the group ring over Z,. It is well known
that J; (/) is naturally G-isomorphic to %), (¢), the Sylow 7 -subgroup of the group

% of divisor classes of degree zero of L.

In [2], it is proved that, as groups,
T

%L(@;{ﬁL’ if p=1¢

2L if p 2o,

where t; denotes the Hasse-Witt invariant of L and g; denotes the genus of L,

R = % and Q, denotes the field of ¢ -adic numbers.
4

The basic tool used successfully in the study of the Galois module structure of
the usual Jacobian 4); (), that is, for finding the decomposition of %); (¢) as direct
sum of indecomposable Z,[G]-modules, in both wildly and tamely ramified cases,
ie., { = p and ¢ # p, respectively, has turned out to be the use of the generalized

Jacobian variety %y, where the modulus 9 in L is induced from a modulus 9t in
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K which contains in its support all prime divisors of K ramified in L, and the exact

sequence of Z,[G]-modules

0->R > Gnt) > %) >0, (1)

where G (¢) denotes the Sylow ¢ -subgroup of Gy, the group of classes of divisors
of degree 0 relatively prime to the modulus 91 in the field Z, and R is the kernel of

the natural map, which was characterized as Z,[G]-module by Villa-Salvador and

Madan (see [12, Theorem 1, page 257]).
A difference between the cases p = ¢ and p # /¢, occurs in the Galois module

structure of the generalized Jacobian %y (/). More specifically, in [11, Proposition
8], and in [13, Theorem 6], it is proved that, as Z,[G]-modules

R[GT&+L if p=1,

Gm(0) =
RGP @5, if p =1,

where ¢ is the total number of prime divisors in K ramified in L, d denotes the
minimum number of generators of G and S is an indecomposable Z,[G]-module
such that, as groups, S = R0 with s =|G|(d —1)+1 and | G| denotes the order
of G. In [4], we obtain two explicit characterizations of ,S, the ¢-part of the
Zy|G]-module S.

In (1), the generalized Jacobian @y (¢) is associated to the modulus 91. What
is the Z,[G]-module structure of % (¢), if the modulus B in L not necessarily

contains in its support all prime divisors of K ramified in L? In this direction, in
[3, Theorem 4.12], we obtained explicitly the Galois module structure of the

incomplete generalized Jacobian %y (¢) in the tamely ramified cyclic case.

Our main goals in this paper are two. First, we obtain explicitly the Galois

module structure of the incomplete generalized Jacobian %p(p) in the wildly
ramified case. That is, for p = ¢ and L/K any finite Galois /-extension, we obtain
explicitly the decomposition of Gy (p) as direct sum of indecomposable Z,[G]-

modules. This is Theorem 3.1. The tools used to obtain the injective component and

the non-injective sums of %y (p) are similar to those used in [5]. Second, in the
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tamely ramified case, if L/K is any finite Galois /-extension and 9B is a modulus

in L induced from a modulus 2 in K which contains in its support all except one of
the prime divisors of K ramified in L, we obtain the Galois module structure of the

incomplete generalized Jacobian €3 (?), i.e., we obtain explicitly the decomposition
of Gx(?) as direct sum of indecomposable Z,[G]-modules. This is Theorem 4.4.
Furthermore, we obtain the decomposition of , %)y, the £ -part of Ggs(¢), as direct
sum of indecomposable F,[G]-modules, where F, denotes the finite field with

¢ elements. This is Theorem 4.5. More precisely, in Section 4, we determine the

non-injective component of % (/) and of ,%pg. In Section 2, we collect several

results that will be of use in the rest of the paper.
2. Notation and Preliminaries

In this section, we establish notations and auxiliary results which will be
needed along the paper. Let ¢ be a prime number and L/K denote a finite Galois

¢ -extension of function fields of degree ¢" with Galois group G = Gal(L/K) and

field of constants £, an algebraically closed field of characteristic p > 0. Let
P = {SOD §925 s 8255 85415 -+ pt}
be the collection of the different prime divisors of K ramified in L. Let

P = {Qj(i) liefl,. ., t}, jell, .., 0",

denote the set of prime divisors 2]-(" ) of L such that 2]-(" ) divides the prime divisor

;, for 1< j < ("™ where ¢" denotes the ramification index of the prime divisor

;. Let 9T and 2 be the moduli in K defined by

m =ﬁgoi and 2 =li[gol~.
i=1 i=1

Let 91 and B be the moduli in L induced by 9t and 2A, respectively, i.e., N

and B are the conorms of 2 and 2, respectively, given by

‘ﬂ:HQ and %:H,@.

2| p; 2| p;
1<i<t 1<i<s
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We use the following notations:

IP; is the set of prime divisors of L.
2. 1s the group of divisors of degree zero of L.

Py is the group of principal divisors of L.
% = % is the group of classes of divisors of degree zero of L.
L

Do (P ) is the group of divisors of L relatively prime to 98, (M).
Qs (Zys ) is the group of divisors of degree zero relatively prime to B, ().

Py(PRy) is the group of principal divisors (o) such that o = 1 mod B, (1).

%%=%%

is the group of classes of divisors of degree zero associated the

modulus ‘B.

is the group of classes of divisors of degree zero associated the

%mZ%{?

modulus 1.

The Sylow ¢ -subgroup %p(¢) of the group of classes of divisors of degree
zero relatively prime to B, will be called the incomplete generalized Jacobian of L.
The Sylow ¢-subgroup %o(¢) of the group of classes of divisors of degree
zero associated to D1, will be called the generalized Jacobian of L. The Sylow
£ -subgroup %7 () of the group of classes of divisors of degree zero, will be called

the usual Jacobian of L.

Let B, and B, be moduli over L. We say that ‘B, divides B;, denoted
by B, B, if ve(B)) = ve(B,) for all & e P;. The general result giving a

relationship between two moduli of a field L is the following:
Lemma 2.1. Let By and ‘B, be two moduli of L such that B, divides B.
Then there exists a unique epimorphism @ : Gy, (£) = Gy, (¢) such that Hey, |3,

= ker(¢) is a connected subgroup (in the Zariski topology) of Gz, ().
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Proof. See [10, page 91, Proposition 6]. g

In [12, page 267, (29)], it was obtained the basic exact sequence of Z,[G]-

modules

_é‘)lR[G/G,-]

0+ = Gn(l) > %L(0) >0, )

%
Re,

where G; denotes the decomposition group of the prime divisor @; of K, G/G;
denotes the set of left cosets of G; in G, R[G/G;] is the Z,[G]-module

{ Z as0|as € R} on which G acts naturally and

ceG/G;
Re/ = Z XGj, ouny Z xo, ||x € Ry,
61€G/G; c,;€G/G;
t
i.e., Re; is isomorphic to R := % and it is embedded diagonally in (‘BR[G/ G;l.
¢ i=1

On the other hand, we have that the moduli B and 9t in L satisfy that ‘B|1.
In [3, page 764, (21)], it was obtained the exact sequence of Z,[G]-modules

0> © RG/G] > Gonl1) > Fyn(1) > 0. ®

where ¢ is the number of prime divisors of K ramified in L and s is the number of
prime divisors in the support of the modulus 20 which is associated to the modulus
B of L.

Remark 2.2. The exact sequence of Z,[G]-modules (3), holds in general, that

is, it is true either for p = £ or p # (.

Let M be a Z,[G]-module and let 0 > M — Y — P — 0 be any exact
sequence of G-modules, with Y an injective Z,[G]-module. We write P = PV @

PO, where P! is an injective Z,[G]-module and P(’) has no Z,[G]-injective
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components. Then QF (M) := PO s the dual of Heller’s loop operator of M. The

Z,,[G]-module QF (M) is unique up to isomorphism. Note that Q is well defined

since the Krull-Schmidt-Azumaya Theorem (see [1, (6.12), page 128]) holds for
Z,[G]-modules.

Proposition 2.3. Let G be a finite [ -group and let H be a subgroup of G. Then

. R[G] .
(i) R[G/H] and RG/H] are indecomposable 7,[G-modules.

(i) Q*(R[G/H)) = RFG[/GIL] as Z,[G]-modules.

(iii) If M, and M, are Z,[G]-modules, then QF(M; ® M,) = QF(M,)
® O (M,).
(iv) If M is an injective 7.,[G]-module, then QF (M) = {0}.

Proof. (i), (ii) and (iii) were proved in [4, Proposition 2.8, page 108]. For (iv),
since M is injective, we have the exact sequence

0>MSM 500
with id the identity function. Therefore, Q" (M) = {0}. O

Let M be a Z,G]-module such that the Pontryagin’s dual X(M) =

Homgy, (M, R) is finitely generated, G is a finite ¢-group and M is a Z,-injective

module. Then, as groups, M = R® with s < oo. If ;M denotes the set of elements
of M whose order divides /, then ,M is a finitely generated F,[G]-module and
oM will be called the ¢ -part of M. With this terminology, we have

Theorem 2.4 (Rzedowski-Villa-Madan). Let M and G be given as above. If
/M =F,)[G]" ® U, where F,[G] is not a component of U and M = R[G]" @V,

where R[G] is not a component of V, then n = m.

Proof. See [7, Lemma 3, page 81]. U
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For any G-module A4, the i-th Tate cohomology group H i(G, A) with i € Z is

denoted by H'(G, A). The trivial group is denoted by {0}, whether its structure
is additive or multiplicative. Finally, we denote by C,, the cyclic group with m

elements.
3. Wildly Ramified Case

In this section, we assume that L/K is any finite Galois ¢ -extension of function
fields with field of constants £, an algebraically closed field of characteristic p = /.

Our main goals in this section are to obtain the Galois module structure of

the incomplete generalized Jacobian %ys(p) and of , %3, the elements of order

dividing p of ®n(p), i.c., we obtain explicitly the decomposition of &gy (p) and
of , % as direct sum of indecomposable Z ,[G]-modules and F ,[G]-modules,

respectively, where B is a modulus in L induced by the modulus 2l in X which not

necessarily contains in its support all prime divisors of K ramified in L.

Theorem 3.1. Let L/K be an arbitrary finite Galois ( -extension of function
fields with field of constants k of characteristic p = {. Then the Z p[G] -module

structure of G (p) is given by

t
Gu(p) = RIGTE @] @ R[%/%]] ,
i=s+1 z

where T denotes the Hasse-Witt invariant of K, s is the number of prime divisors

contained in the support of the modulus A of K and t is the number of prime
divisors ramified in L/K.

Proof. In [12, Theorem 9, page 267], it was proved:
Gmn(p) = RIGIKH,

From the exact sequence (3), we have the exact sequence of Z ,[G]-modules

t
0> @ R[G/G;]— RIGT*"™ - Gu(p) - 0. ()

i=s+1
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By the Krull-Schmidt-Azumaya Theorem, we have:
Gxs(p) = RIG]" ® W, where W does not have R[G] as a component.

Now, we must find the value of x and decompose W as direct sum of

indecomposable Z ,[G]-modules.

Using the dual of Heller’s loop operator in (4) and Proposition 2.3, we obtain

t t t
w=a' @ R6/Gll=z © of(Rl6/G]) = (—B( RG] )

i=s+1 i=s+1 i=s+1 R[G/Gi]

On the other hand, to compute x, we use the technique used to obtain the

injective component of %) (p)(case p = /). We have, the exact sequences of

Z ,[G]-modules (4) and

t t
0> @ RG/G]— RIGK » | @ RG/G]| -0,
i=s+1 P
i=s+1
where ¢ is the minimum natural number such that there exists a Z p[G]-
monomorphism
t

o:| © RlG/G]| > RIGLF.

i=s+1

Using that R[G]¢ and R[G]% 7! are injective Z »[G]-modules and Schanuel’s

Lemma for injective modules, we have
t

t
RIGF ®RGT ®| D ROl Lot @ Re G;]|® RlGTk * 11
i=s+1 R[G/Gi] i=s+1 [/ ]

From the Krull-Schmidt-Azumaya Theorem, we obtain

R[G] @ R[GF* = R[G]%, T1~ 1,
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ie., x = g +t—1-c. Now,to determine ¢, we have

G
t t

: , G

c=dmp | p D RG] |=dimp | D F,[6/G)]
Pl li=s+1 p\i=s+l
@
= dim F,l=t-s.
Fp[i:sﬂ p}
Finally, x = (tx +¢t—-1)-(t —s) =t +s— L. O

Corollary 3.2. We keep the notation as above. Let L/K be any finite Galois

{ -extension. Then the F p[G] -module structure of p%% is given by

- N Fyldl
phim =1, [T+ O i=6?+1 W '

Proof. The result follows from Theorem 3.1, since

. R[G] ) _ F,[G]
p(RIG) = F,[6] and 740> 7 (676

4. Tamely Ramified Case

In this section, we assume that L/K is an arbitrary finite Galois ¢ -extension of

function fields with field of constants £, an algebraically closed field of characteristic
p # £. Our main goals in this section are to obtain the Galois module structure of

the incomplete generalized Jacobian % (¢) and of ,%)y, where B is a modulus

in L induced by the modulus 2 in K which contains in its support all except one of

the prime divisors of K ramified in L.

Lemma 4.1. Let L/K be a finite Galois ( -extension and G = Gal(L/K). Then

(i) H'(G, Gp) = —

t
(i) H(G, ) = D ().

i#1()
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(iti) H'(G, Gm) = C/ ",

where n;

0 denotes the maximum ramification index of the prime divisors not

contained in the support of 2, s is the number of prime divisors in the support of

the modulus 21 of K and t is the total of the prime divisors ramified in L/K .

Proof. (i) and (ii) follow from Theorem 2.15 and Propositions 2.4 and 2.5 of
[3]. From (17), [3, page 759], we obtain

HG, (Byp) = C0E)r 1 (Gom),

where
: H' (G, G») _ . i
o, (By) = dimp, ————"=2> = dimyp, ;H'(G, Gp)-
e (G Gw) ®
Since ay(B) =1 and 0(Gy) =t — s — 1, (iii) follows. O

Lemma 4.2. With the notation as above, if *B is a modulus in L induced by the
modulus 2 in K which contains in its support all except one of the prime divisors of
K ramified in L, then

(i) H'(G, Gp) = C ey

(ii) H°(G, Gp) = {0}.

(i) #'(G, Gp) = C;.
Proof. The result follows from Lemma 4.1, taking s = ¢ — 1. g

Proposition 4.3. Let L/K be an arbitrary finite Galois ( -extension. Then the
integral representation of the incomplete generalized Jacobian Gsg(() is of the

form
B (f) = RGP @ M,
where M has no R[G] components, e is the minimum number of generators of

G/G'U, and U is the group generated by the inertia groups of the prime divisors
different from those in the support of U, G' denotes the commutator subgroup of G,
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and as groups,
t
M=R", m=|Glle+t-s-1- Z

i=s+1

1

|G|+1 %)

Proof. From the Krull-Schmidt-Azumaya Theorem, we have
%) = R[G]* ® M, where M does not have R[G] as a component.

In [3, page 760], Theorem 3.5, it was obtained the exponent of the injective
summand of g (/), i.e., o = 2gx + s — 1 — e. Now, we will determine the rank of

M. On the one hand, we have that, as groups, g (/) = R™B | where
Ay =|G|Qgx —e+s—1)+m. (6)

On the other hand, using the exact sequence (3), we obtain that, as groups,
Gor(0) = R with Ay =2g; +| M| -1

and

t
@ R[G/G;] = RZi=sn1! 4]
Therefore,

!
heg = Aoy — Z |G/Gi |,
i=s+1
Using, the computation for Ag; in [13, page 47], we have

t

~[1G|Cgx -2+ +1]- > |G/G;|. (7)
i=s5+1

Now, from (6) and (7), it follows
t

|G|(2gx —e+s—1)+m=|G|(2gg —2+1)+1- Z [G/G,]

i=s+1

—|G|(e+t—s—1)+1—|G|Z Il

i= s+1

—|G|e+t—s—l—Z|G| O

i=s+1
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Theorem 4.4. Let L/K be any finite Galois ( -extension of function fields of

one variable with field of constants k, an algebraically closed field of characteristic

p # L. If B is a modulus in L induced by a modulus A in K which contains in its
support all except one of the prime divisors of K ramified in L, then the 7.,(G]-

module structure of €3 (0) is given by
Gu(0) = RGPS @ uy,

where gy denotes the genus of K, t is the number of prime divisors ramified in L/K,
e| is the minimum number of generators of group G/G'G,, G is the decomposition

group of the prime divisor removed from M and M| is an indecomposable 7.,(G]-

module such that, as groups My = R* with a =|G |(el - ﬁ) +1.
1

Proof. Taking s = ¢ — 1 in Proposition 4.3, we find the injective component of

G (?), where G; =U denotes the decomposition group of the ramified prime
divisor g, which is not in the support of the modulus 20 of K. The rank of M,
follows from (5). Now, suppose that M; = A ® B for some Z,[G]-modules 4 and
B such that R[G] is not a component neither of 4 nor of B. Since R[G] is

cohomologically trivial, we have
H' (G, ) = H'(G, My) = H'(G, 4)® H'(G, B).
Using Lemma 4.2, we obtain

0} = H°(G, Gp) = H(G, 4) ® H°(G, B), (8)

Conmy = H'(G, §p) = H'(G, 4)® H'(G, B). (9)

Therefore, from (8), we obtain that H%(G, 4) = {0} and H°(G, B) = {0}. From
(9), it follows that H'(G, A) = {0} or H'(G, B) = {0}. Therefore, 4 or B is
cohomologically trivial and Z,-divisible. Hence, 4 or B must be Z,[G]-injective,

which is absurd. It follows that M| is an indecomposable Z,[G]-module. O



38 FAUSTO JARQUIN ZARATE and GABRIEL VILLA SALVADOR

Theorem 4.5. With the notation as above, if B is a modulus in L induced by a
modulus A in K which contains in its support all except one of the prime divisors of
K ramified in L, then the F )[G]-module structure of ;s is given by

(G = F G274 @ M,

where My is an indecomposable ¥ ,[G]-module, and as groups,
b 1
M()E]FZ with bzlGl(el__j—i—l.
|Gy

Proof. From Theorems 4.4 and 2.4, it suffices to prove that M, is an
indecomposable F,[G]-module. Suppose that My = A ® B, for some not trivial
F,[G]-modules A and B, i.e., M is not indecomposable. Since F,[G] is cohomology
trivial, we have H'(G, ;) = H'(G, M). In particular, using (iii) of Lemma 4.2,
we obtain

HY(G, My) = H'(G, %) = C,.
Then
c, = H'(G, My) = H'(G, 4)® H'(G, B),

hence, H'(G, 4) = {0} or H'(G, B) = {0}. From [9, Theorem 5, page 142], we obtain
A=TF,[G]" or B = F,[G]*2, which is absurd. Therefore, M, is an indecomposable
F,[G]-module. O
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