ON Hom (-, -) AS B-ALGEBRAS

N. O. AL-SHEHRI

Department of Mathematics
Faculty of Education, Science Sections
King Abdulaziz University
Jeddah, Saudi Arabia

Abstract

In this paper, we give an example to show that $\operatorname{Hom}(-,-)$ may not, in general, be a B-algebra. Moreover, we find conditions under which $\operatorname{Hom}(-,-)$ is a B-algebra. Also, we introduce the notion of an orthogonal subset and discuss some related properties.

1. Introduction

Iseki and Tanaka introduced two classes of abstract algebras: BCK-algebras and $B C I$-algebras [4, 5]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI -algebras. In $[2,3] \mathrm{Hu}$ and Li introduced a wide class of abstract algebras: BCH -algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of BCH -algebras. In [9] the authors introduced the notion of d-algebras, which is another useful generalization of $B C K$-algebras, and then they investigated several relations between d-algebras and $B C K$-algebras as well as some other interesting relations between d-algebras and oriented digraphs. Jun et al. [7] introduced a new notion, called $B H$-algebras, which is a generalization of $B C H$, $B C I, B C K$-algebras. They also defined the notions of ideals in $B H$-algebras. Recently Neggers and Kim [10] introduced the notion of B-algebra, and then Cho and Kim [1] studied some of its properties. In [6] Jun and Meng investigated some properties of $\operatorname{Hom}(X, Y)$ the set of all homomorphisms of a BCI-algebra X into an arbitrary BCI-
2010 Mathematics Subject Classification: 06F35.
Keywords and phrases: associative B-algebra, 0 -commutative B-algebra, B-algebra.
Received March 5, 2010
algebra Y. In this paper, we investigate some properties of $\operatorname{Hom}(X, Y)$ as B-algebras. We show that $\operatorname{Hom}(X, Y)$ may not, in general, be a B-algebra for an arbitrary B-algebra, and we prove that if X is a B-algebra and Y is an associative B-algebra, then $\operatorname{Hom}(X, Y)$ is an associative B-algebra. Also, we prove that if X is a B-algebra and Y is a 0 -commutative B-algebra, then $\operatorname{Hom}(X, Y)$ is a 0 -commutative B-algebra. Also, we introduce the notion of orthogonal subsets and investigate some related properties.

2. Preliminaries

Definition 2.1 [10]. A B-algebra is a nonempty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=x *(z *(0 * y))$,
for all $x, y, z \in X$.
Proposition 2.2 [10]. If $(X, *, 0)$ is a B-algebra, then
(1) $(x * y) *(0 * y)=x$,
(2) $x *(y * z)=(x *(0 * z)) * y$,
(3) $x * y=0$ implies $x=y$,
(4) $0 *(0 * x)=x$,
for all $x, y, z \in X$.
Theorem 2.3 [10]. $(X, *, 0)$ is a B-algebra if and only if it satisfies the following axioms:
(5) $x * x=0$,
(6) $0 *(0 * x)=x$,
(7) $(x * z) *(y * z)=x * y$,
(8) $0 *(x * y)=y * x$,
for all $x, y, z \in X$.

Definition 2.4 [8]. A B-algebra $(X, *, 0)$ is said to be 0 -commutative if

$$
x *(0 * y)=y *(0 * x)
$$

for all $x, y \in X$.
Proposition 2.5 [8]. If ($X, *, 0$) is a 0-commutative B-algebra, then
(9) $(0 * x) *(0 * y)=y * x$,
(10) $(z * y) *(z * x)=x * y$,
(11) $(x * y) * z=(x * z) * y$,
(12) $(x *(x * y)) * y=0$,
(13) $(x * z) *(y * t)=(t * z) *(y * x)$,
for all $x, y, z, t \in X$.
A B-algebra X is said to be associative if $(x * y) * z=x *(y * z)$, for all x, y, $z \in X$. A nonempty subset S of X is called a subalgebra of X if $x * y \in S$, for all $x, y \in S$.

Definition 2.6 [10]. A nonempty subset N of a B-algebra X is said to be normal subalgebra of X if

$$
(x * a) *(y * b) \in N
$$

for any $x * y, a * b \in N$.
A mapping $f: x \rightarrow y$ between B-algebras X and Y is called a homomorphism if $f(x * y)=f(x) * f(y)$, for all $x, y \in X$. Define the trivial homomorphism 0 as $0(x)=0$, for all $x \in X$. Denote by $\operatorname{Hom}(X, Y)$ the set of all homomorphisms of a B-algebra X into a B-algebra Y (see [11]).

3. $\operatorname{Hom}(-,-)$ as B-algebras

Let $\operatorname{Hom}(X, Y)$ be the set of all homomorphisms of a B-algebra X into a B-algebra Y. In the following example, we show that $(\operatorname{Hom}(X, Y), *, 0)$ may not be a B-algebra in general, where $*$ is defined as follows:

$$
(f * g)(x)=f(x) * g(x), \quad \forall f, g \in \operatorname{Hom}(X, Y), \forall x \in X
$$

and 0 is a trivial homomorphism from a B-algebra X into a B-algebra Y.

Example 3.1. Let $X=\{0,1,2,3,4,5\}$ be a B-algebra with Cayley table (Table 1) as follows:

Table 1

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Define a map $f: X \rightarrow X$ by $f(x)=0$, for all $x \in X$, and a map $g: X \rightarrow X$ by $g(x)=x$, for all $x \in X$. Then it is easily checked that $f, g \in \operatorname{Hom}(X, Y)$, but $f * g \notin \operatorname{Hom}(X, Y)$ for

$$
(f * g)(3 * 1)=(f * g)(4)=f(4) * g(4)=4
$$

and

$$
(f * g)(3) *(f * g)(1)=(f(3) * g(3)) *(f(1) * g(1))=3 * 2=5
$$

therefore,

$$
(f * g)(3 * 1) \neq(f * g)(3) *(f * g)(1)
$$

Hence, $\operatorname{Hom}(X, Y)$ is not a B-algebra.
Theorem 3.2. If X is a B-algebra and Y is an associative B-algebra, then $\operatorname{Hom}(X, Y)$ is an associative B-algebra.

Proof. Let $f, g \in \operatorname{Hom}(X, Y)$ and $x \in X$. Then

$$
\begin{aligned}
(f * g)(x * y) & =f(x * y) * g(x * y) \\
& =(f(x) * f(y)) *(g(x) * g(y)) \\
& =f(x) *((f(y) * g(x)) * g(y)) \\
& =(f(x) *(0 * g(y))) *(f(y) * g(x)) \quad \text { by }(2)
\end{aligned}
$$

$$
\begin{aligned}
& =((f(x) * 0) * g(y)) *(f(y) * g(x)) \\
& =(f(x) * g(y)) *(f(y) * g(x)) \quad \text { by (II) } \\
& =(f(x) *(g(y) * f(y))) * g(x) \\
& =f(x) *(g(x) *(0 *(g(y) * f(y)))) \quad \text { by (III) } \\
& =f(x) *(g(x) *(f(y) * g(y))) \quad \text { by (8) } \\
& =(f(x) * g(x)) *(f(y) * g(y)) \\
& =(f * g)(x) *(f * g)(y) .
\end{aligned}
$$

Then $f * g \in \operatorname{Hom}(X, Y)$, for all $f, g \in \operatorname{Hom}(X, Y)$. Since Y is a B-algebra, it is easy to prove that the axioms in Definition 2.1 are satisfied for all $f, g, h \in$ $\operatorname{Hom}(X, Y)$, and so $\operatorname{Hom}(X, Y)$ is a B-algebra. Now let $f, g, h \in \operatorname{Hom}(X, Y)$ and $x \in X$. Then

$$
((f * g) * h)(x)=(f(x) * g(x)) * h(x)=f(x) *(g(x) * h(x))=(f *(g * h))(x)
$$

because Y is an associative B-algebra, and the proof is completed.
Theorem 3.3. If X is a B-algebra and Y is a 0-commutative B-algebra, then $\operatorname{Hom}(X, Y)$ is a 0 -commutative B-algebra.

Proof. Let $f, g \in \operatorname{Hom}(X, Y)$ and $x \in X$. Then

$$
\begin{aligned}
(f * g)(x * y) & =f(x * y) * g(x * y) \\
& =(f(x) * f(y)) *(g(x) * g(y)) \\
& =(g(y) * f(y)) *(g(x) * f(x)) \quad \text { by }(13) \\
& =(0 *(f(y) * g(y))) *(0 *(f(x) * g(x))) \quad \text { by }(8) \\
& =(f(x) * g(x)) *(f(y) * g(y)) \quad \text { by }(9) \\
& =(f * g)(x) *(f * g)(y)
\end{aligned}
$$

Therefore, $f * g \in \operatorname{Hom}(X, Y)$, for all $f, g \in \operatorname{Hom}(X, Y)$. Since Y is a B-algebra, it is easy to prove that the axioms in Definition 2.1 are satisfied for all $f, g, h \in$ $\operatorname{Hom}(X, Y)$, and so $\operatorname{Hom}(X, Y)$ is a B-algebra. Let $f, g \in \operatorname{Hom}(X, Y)$ and $x \in X$. Then

$$
((f * 0) * g)(x)=(f(x) * 0) * g(x)=g(x) *(0 * f(x))=((g * 0) * f)(x)
$$

because Y is a 0 -commutative B-algebra, and the proof is completed.
Definition 3.4. Let M and Θ be subsets of X and $\operatorname{Hom}(X, Y)$, respectively. We define orthogonal subsets M^{\perp} and Θ^{\perp} of M and Θ, respectively, by

$$
M^{\perp}=\{f \in \operatorname{Hom}(X, Y) \mid f(x)=0, \text { for all } x \in M\}
$$

and

$$
\Theta^{\perp}=\{x \in X \mid f(x)=0, \text { for all } f \in \operatorname{Hom}(X, Y)\} .
$$

Theorem 3.5. Let X be a B-algebra, Y be an associative B-algebra, $M \subseteq X$ and $\Theta \subseteq \operatorname{Hom}(X, Y)$. Then M^{\perp} and Θ^{\perp} are normal subalgebras of $\operatorname{Hom}(X, Y)$ and X, respectively.

Proof. Let $f * g, h * k \in M^{\perp}$. Then $(f * g)(x)=0$, for all $x \in M$ and $(h * k)(x)=0$, for all $x \in M$, by Theorem 3.2, we have that $\operatorname{Hom}(X, Y)$ is an associative B-algebra. Thus

$$
\begin{aligned}
((f * h) *(g * k))(x) & =(((f * h) * g) * k)(x) \\
& =((f *(g *(0 * h))) * k)(x) \text { by (III) } \\
& =((f *((g * 0) * h)) * k)(x) \\
& =((f *(g * h)) * k)(x) \text { by (II) } \\
& =((f * g) *(h * k))(x) \\
& =(f * g)(x) *(h * k)(x)=0
\end{aligned}
$$

for all $x \in M$. Thus, $(f * h) *(g * k) \in M^{\perp}$, and so M^{\perp} is normal subalgebra of $\operatorname{Hom}(X, Y)$.

Now let $x * y, a * b \in \Theta^{\perp}$, hence $f(x * y)=0$ and $f(a * b)=0$, for all $f \in \operatorname{Hom}(X, Y)$. Since Y is an associative B-algebra, in similar way we can prove that $f((x * a) *(y * b))=0$, for all $f \in \operatorname{Hom}(X, Y)$, and then $(x * a) *(y * b) \in$ Θ^{\perp}, for all $f \in \operatorname{Hom}(X, Y)$. Therefore, Θ^{\perp} is normal subalgebra of X.

Theorem 3.6. Let X be a B-algebra, Y be a 0 -commutative B-algebra, $M \subseteq X$ and $\Theta \subseteq \operatorname{Hom}(X, Y)$. Then M^{\perp} and Θ^{\perp} are normal subalgebras of $\operatorname{Hom}(X, Y)$ and X, respectively.

Proof. Let $f * g, h * k \in M^{\perp}$. Then $(f * g)(x)=0$, for all $x \in M$ and $(h * k)(x)=0$, for all $x \in M$, from Theorem 3.3 we know that $\operatorname{Hom}(X, Y)$ is a 0 -commutative B-algebra. Hence

$$
\begin{aligned}
((f * h) *(g * k))(x) & =((k * h) *(g * f))(x) \text { by }(13) \\
& =((0 *(h * k)) *(0 *(f * g)))(x) \text { by (8) } \\
& =(0(x) *(h * k)(x)) *(0(x) *(f * g)(x))=0,
\end{aligned}
$$

for all $x \in M$. Thus, $(f * h) *(g * k) \in M^{\perp}$ and so M^{\perp} is normal subalgebra of $\operatorname{Hom}(X, Y)$.

Now, let $x * y, a * b \in \Theta^{\perp}$. Then $f(x * y)=0$ and $f(a * b)=0$, for all $f \in$ $\operatorname{Hom}(X, Y)$. Since Y is a 0 -commutative B-algebra, in similar way we can prove that $f((x * a) *(y * b))=0$, for all $f \in \operatorname{Hom}(X, Y)$, and then $(x * a) *(y * b)$ $\in \Theta^{\perp}$, for all $f \in \operatorname{Hom}(X, Y)$. Therefore, Θ^{\perp} is normal subalgebra of X.

Acknowledgement

The author thanks the Dean of Scientific Research of King Abdulaziz University for the support to this paper.

References

[1] J. R. Cho and H. S. Kim, On B-algebras and quasigroups, Quasigroups and Related Systems 8 (2001), 1-6.
[2] Q. P. Hu and X. Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
[3] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japo. 30 (1985), 659-661.
[4] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
[5] K. Iseki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japo. 23 (1978), 1-26.
[6] Y. B. Jun and J. Meng, On $\operatorname{Hom}(-,-)$ as BCK/BCI-algebras, Kyungpook Math. J. 35 (1995), 77-83.
[7] Y. B. Jun, E. H. Roh and H. S. Kim, On BH-algebras, Sci. Math. Japonica Online 1 (1998), 347-354.
[8] H. S. Kim and H. G. Park, On 0-commutative B-algebras, Sci. Math. Japonica Online e-2005, 31-36.
[9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1999), 19-26.
[10] J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
[11] J. Neggers and H. S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Inter. Math. J. 2 (2002), 207-214.

