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Abstract 

Old-age mortality for populations of developed countries has been 
improving rapidly since 1950’s. We need a method that can extrapolate a 
survival distribution to extreme ages without requiring accurate mortality 
data for the centenarian population. More specifically, we use the 
asymptotic distribution of the excesses over threshold to model the 
survival distribution beyond a particular age. This age, which is known as 
the threshold age, is chosen to ensure that the tail of the fitted distribution 
is consistent with the parametric graduation for earlier ages. We estimate 
finally, the parameter of this model. 

1. Introduction 

The asymptotic behavior of the residual life time is investigated ( ).for ∞→t  

Balkema and Haan [1] gives fairly complete answers for the asymptotic behavior of 
residual life time distributions for .∞→t  For example, we consider a light bulb. It 
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has a certain life time X, which is a random variable. After having burned t hours 
there remains a residual life time. It is considerable interest to know the asymptotic 
behavior of these residual life time distributions. Natural questions: What are the 
possible limit distribution types? For each such limit distribution G, what is the 
domain of attraction (the set of all distribution functions, suitably normed, converges 
to G)? What is the speed of convergence? 

In this paper, we consider a general situation. The paper is organized as follows: 
In Section 2, we give the model specification and in Section 3, we shall derive the 
possible limit distribution a (generalized Pareto distribution) and we shall estimate 
the parameters. Also, in Section 4, we provide a length-biased distribution for the 
real life application. 

2. Model Specification 

Let us define the following notation: 

• :X  The age at death random variable, assumed to be continuous. 

• ( ):Xf  The probability density function of the continuous random variable X. 

• ( ):XF  The distribution function of the continuous random variable X. 

• ( ) ( ):1 XFXS −=  The survival function of the continuous random variable 

X. 

• ( ) ( )
( ) :1 XF

XfX
−

=μ  The force of mortality for the continuous random variable 

X. 
• :xd  The number of deaths between the ages x and .1+x  

• :xE  The number of exposures-to-risk between the ages x and ,1+x  in 

practice, XE  is approximated by the mid-year population at age x. 

• :xl  The number of survivors to the age x. 

• :
x
x

x E
dm =  The central rate of death at the age x. 

• :
x
x

x e
dq =  The probability of death between the ages x and ,1+x  conditioning 

on survival to the age x. 
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Let { }dYdYZ >|−=  be the conditional excess of Y over a threshold d. The 

Balkema-De Haan-Pisckands theorem (Balkema and De Haan [1]) states that, under 
certain regular conditions, the limiting distribution of Z is a generalized Pareto 
distribution, as the threshold d approaches the right-hand end support of Y. This 
important result, in extreme value theory, provides a theoretical formula of the 
threshold life table, which is defined as follows: 
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where ( ) ( )NXPNSp >==  and N is known as the threshold age. In other words, 

we assume that the survival distribution is Gompertzian before the threshold age and 
the excesses over the threshold age follow a Generalized Pareto distribution, 
according to the Balkema-De Haan-Pisckands theorem. To ensure that F is a proper 
distribution function, we require ,0>B  0>C  and .0>θ  Such a specification 

ensures that F is continuous at the threshold age. However, it does not guarantee that 
F is smooth during the transition from graduation to extrapolation. To achieve 
smoothness, we require a careful choice of the threshold age. We notice that the 
excess { }NXNXZ >|−=  over the threshold age N follows a Generalized Pareto 

distribution, with parameter γ and θ. If ,0>γ  then Z follows a Pareto distribution; 

If ,0=γ  then Z follows an exponential distribution; If finally ,0<γ  then Z follows 

a Beta distribution, which has a finite right-hand-end support .
γ
θ−  

For the case ,0>γ  we consider the case of estimating the single parameter θ of 

the Pareto distribution. 

3. The Estimation of the Parameter for the Excess 

We consider the case of estimating the single parameter θ of the Pareto 
distribution, with ∞+<θ<0  and 
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where ∑
=

=
n

i
iyT

1
ln  is a complete sufficient statistic for θ. A mathematically 

convenient prior density for the problem under consideration is conjugate prior, 
(Sampford [6]) 

 ( ) ,0,0,,1 ≥θ≥βαθ∝θ∏ −αβθ−e  (3.2) 

which is simply a member of the gamma family of distributions. The advantage of 
taking the prior distribution to be conjugate, lies in the fact that the likelihood 
function ( ),yL |θ  the prior density ( )θ∏  and the posterior density ( )y|θ∏  are all 

of the same functional form, thus ensuring mathematical tractability. 

If 0=β=α  in (2.2), then we have the subclass of prior density, given by 

 ( ) ,1
θ

∝θ∏  (3.3) 

which is a uniform density function. Substituting from (3.3) and (3.1), the optimum 

estimator θ̂  of θ is a solution of 

 ( ){ }∫ =θ+θ−θ
θδ
δ − ,01expˆ

1 dTL n  (3.4) 

where ∑
=

=
n

i
iyT

1
,ln  is defined before. 

If the loss function is Modified Linear Exponential (MLINEX), see (Cruz [2]), 
i.e., 
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for the loss function given in (3.5), then it follows from (3.4) that: 
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from which follows that: 

( )
( ) Tn

n 1ˆ
1
γ
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⎤
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γ−Γ
Γ=θ  

and same as 

[ ( )] ,ˆ 1
γ

γ−
θ θ=θ EB  

provided that this expected value exists. 

Hence, the optimum estimator θ̂  for the loss function (3.5), is given by 

,ˆ
TB
Λ=θ  
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1
ln  is a complete sufficient statistic. 

Since y is a Pareto variable with parameter θ, ∑
=

=
n

i
iyT

1
ln  is distributed as 

gamma distribution with parameters θ and n, i.e., ( ).,~ nGT θ  The probability 

density function of T, is 

 ( ) ( ) ( ) .0,0;exp 1 >θ≥θ−
Γ
θ=θ| − TTTnTp n

n
 (3.6) 

Again, if the loss function is squared-error of the form 

 ( ) ( ) ,ˆ,ˆ 2θ−θ=θθ CL  (3.7) 

where C is a positive constant. 

For the loss function given by (3.7), it follows from (3.4) that the optimum 

estimator θ̂  is given by 
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ln  was defined before. 
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Now, we are interested in finding risk functions for the estimators Bθ̂  and ,ˆ
Sθ  

with respect to MLINEX and SE loss functions. 

Hence, the risk function of the estimator ,ˆ
Bθ  with respect to MLINEX, is given 

by 

 ( ) [ ( )] ( ) ( ) .1lnˆlnˆ1,ˆ,ˆ
⎥⎦
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Using a transformation ,TZ θ=  then 

( ) ( ) ( ) ( ) ( )
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where 

( ) ( ) ( )∫
∞

−−=Γ′
0

1expln dyyyyn n  

is the first differentiation of the ( )nΓ  function, with respect to n. 

Thus, 

( ) ( )
( ) .lnlnˆln n
nE B Γ

Γ′−θ+Λ=θ  

By using the above results, (3.8) is given by 
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Similarly, the risk function of the estimator ,ˆ
Sθ  with respect to MLINEX loss 

function, is 
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The risk functions of the estimators Bθ̂  and ,ˆ
Sθ  with respect to SE loss 

function, are, respectively, 
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( ) ( ) ( ) ( ) .21
2ˆ,ˆ 22 θ
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MLINEX and SE risk functions, can be calculated for different values of these 
parameters. It is evident in every case considered, except of ,1−=γ  that the 

MLINEX risk function ( )θθ ,ˆ
BMLR  is uniformly smaller than ( ).,ˆ θθSMLR  This 

implies that in the case of the MLINEX loss function, the MLINEX estimator Bθ̂  is 

better compared to the SE estimator .ˆ
Sθ  If ,1−=γ  then the two estimators and 

hence their risk functions, are identical. 

If now ,1−<γ  then the risk of ,ˆ
Bθ  with respect to SE loss function is always 

greater than that of .ˆ
Sθ  Therefore, in this case, Sθ̂  is better compared to the estimator 

,ˆ
Bθ  when SE loss function is considered. If ,1−=γ  then the two risks are equal 

and either estimator is acceptable, whereas if ,1−>γ  then ( ) ( ),ˆˆ
SSBS RR θ<θ  

implying that Bθ̂  estimator is better and acceptable, with respect to SE loss function. 

In Healthcare Organizations (HCOs) adverse events may provoke dangerous 
consequences on patients, such as death, a longer hospital stay, and morbidity. As a 
consequence HCO’s department needs to manage legal issues and economic 
reimbursements. Governances and physicians are interested in Operational Risk 
(OR), (Goulionis [3-5]) and Clinical Risk (CR) assessment, mainly for forecasting 
and managing losses and for a correct decision making. 
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4. Conclusion 

Old-age mortality rates are important in many actuarial applications. This paper 
considers a method which is based on the asymptotic distribution of the excesses 
over a threshold age. We estimate the parameter of the excess over the threshold age 
N. Also, we prove that sampling distributions that are subjected to weight functions 
other than length-biased, can also be seen in real life applications. 
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