This paper is available online at http://pphmj.com/journals/fjam.htm

© 2010 Pushpa Publishing House

ON THE NICHOLS ALGEBRA ASSOCIATED TO

$$(q_{ij}) = \begin{pmatrix} -\zeta^3 & -\zeta \\ -1 & -1 \end{pmatrix}$$
, **OF TYPE** B_2

TADAYOSHI TAKEBAYASHI

Department of Mathematics School of Science and Engineering Waseda University Ohkubo Shinjuku-ku, Tokyo, 169-8555 Japan

e-mail: takeba@aoni.waseda.jp

Abstract

We examine the defining relations of the Nichols algebra associated to $(q_{ij}) = \begin{pmatrix} -\zeta^3 & -\zeta \\ -1 & -1 \end{pmatrix}$, of type B_2 , by using the method introduced by Nichols [1] (see also [3]).

1. Introduction

Nichols algebras are graded braided Hopf algebras with the base field in degree 0 and which are coradically graded and generated by its primitive elements ([4-7]). Let V be a vector space and $c: V \otimes V \to V \otimes V$ be a linear isomorphism. Then (V, c) is called a *braided vector space*, if c is a solution of the braid equation, that is, $(c \otimes id)(id \otimes c)(c \otimes id) = (id \otimes c)(c \otimes id)(id \otimes c)$. The pair (V, c) determines the Nichols algebras up to isomorphism. Let G be a group. Then a Yetter-Drinfeld

2010 Mathematics Subject Classification: 20F55.

Keywords and phrases: Nichols algebra, diagonal type, Cartan matrix.

Received June 3, 2010

module V over $\mathbb{K}G$ is a G-graded vector space $V=\bigoplus_{g\in G}V_g$, which is a G-module such that $g\cdot V_h\subset V_{ghg^{-1}}$ for all $g,h\in G$. The category G_GYD of $\mathbb{K}G$ -Yetter-Drinfeld module is braided. For $V,W\in {}^G_GYD$, the braiding $c:V\otimes W\to W\otimes V$ is defined by $c(v\otimes w)=(g\cdot w)\otimes v,\ v\in V_g,\ w\in W$. Let V be a Yetter-Drinfeld module over G and let $T(V)=\bigoplus_{n\geq 0}T(V)(n)$ denote the tensor algebra of the vector space V. Let S be the set of all ideals and coideals I of T(V) which are generated as ideals by \mathbb{N} -homogeneous elements of degree ≥ 2 , and which are Yetter-Drinfeld submodules of T(V). Let $I(V)=\sum_{I\in S}I$. Then B(V):=T(V)/I(V) is called the Nichols algebra of $V\in {}^G_GYD$. In this paper, we examine the defining relations of the Nichols algebra B(V) associated to $(q_{ij})=\begin{pmatrix} -\zeta^3 & -\zeta \\ -1 & -1 \end{pmatrix}$, of type B_2 .

2. Nichols Algebras of Cartan Type

Let $\mathbb K$ be an algebraically closed field of characteristic 0. Let G be an abelian group and V be a finite dimensional Yetter-Drinfeld module. Then the braiding is given by a nonzero scalar $q_{ij} \in \mathbb K$, $1 \le i, j \le \theta$, in the form $c(x_i \otimes x_j) = q_{ij}x_j \otimes x_i$, where $x_1, ..., x_\theta$, is a basis of V. If there is a basis such that $g \cdot x_i = \chi_i(g)x_i$ and $x_i \in V_{g_i}$, then V is called *diagonal type*. For the braiding, we have $c(x_i \otimes x_j) = \chi_j(g_i)x_j \otimes x_i$ for $1 \le i, j \le \theta$. Hence, we have $(q_{ij})_{1 \le i, j \le \theta} = (\chi_j(g_i))_{1 \le i, j \le \theta}$. Let B(V) be the Nichols algebra of V. Then we can construct the Nichols algebra by $B(V) \cong T(V)/I$, where I denotes the sum of all ideals of T(V) that are generated by homogeneous elements of degree ≥ 2 and that are coideals. If B(V) is finite-dimensional, then the matrix (a_{ij}) defined by for all $1 \le i \ne j \le \theta$ by $a_{ii} := 2$ and $a_{ij} := -\min\{r \in \mathbb{N} \mid q_{ij}q_{ji}q_{ii}^r = 1 \text{ or } (r+1)_{q_{ii}} = 0\}$ is a generalized Cartan matrix fulfilling $q_{ij}q_{ji}=q_{ii}^{a_{ij}}$ or $ord\ q_{ii}=1-a_{ij}$. (a_{ij}) is called the Cartan

matrix associated to B(V). To examine the defining relations of B(V), we use the technique introduced by Nichols [1] and the following proposition [3]. For all $1 \le i \le 0$, let $\sigma_i : B(V) \to B(V)$ be the algebra automorphism given by the action of g_i . If $\sigma : B(V) \to B(V)$ is an algebra automorphism, then an (id, σ) -derivation $D: B(V) \to B(V)$ is a \mathbb{K} -linear map such that $D(xy) = D(x)\sigma(y) + xD(y)$, for all $x, y \in B(V)$.

Proposition 2.1 ([3]). (1) For all $1 \le i \le \theta$, there exists a uniquely determined (id, σ)-derivation $D_i : B(V) \to B(V)$ with $D_i(x_j) = \delta_{ij}$ (Kronecker δ) for all j.

(2)
$$\bigcap_{i=1}^{\theta} \ker(D_i) = \mathbb{K}1.$$

Let B(V) be a Nichols algebra with Cartan matrix $(a_{ij}) = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}$ of type B_2 . From the results of Helbig [2], let $q_{11} = -\zeta^3$, $q_{12}q_{21} = \zeta$, $q_{22}^{-1} = -1$, $\begin{pmatrix} -\zeta^3 & \zeta & -1 \\ \bigcirc & & \end{pmatrix}$. Then $B(V) = T(V)/([x_1x_1x_2x_1x_2], x_1^4, x_2^2)$ with basis

$$\begin{aligned} & \{x_2^{r_2} \left[x_1 x_2 \right]^{\eta_{12}} \left[x_1 x_1 x_2 \right]^{\eta_{112}} \left[x_1 x_1 x_1 x_2 \right]^{\eta_{1112}} x_1^{\eta_1} \mid 0 \le r_1 < 4, \\ & 0 \le \eta_2, \ \eta_{112} < 3, \ 0 \le \eta_{1112}, \ r_2 < 2 \end{aligned}$$

and $\dim_{\mathbb{K}} B(V) = 144$. Using this, we obtain the following:

Proposition 2.2. Let $(q_{ij}) = \begin{pmatrix} -\zeta^3 & -\zeta \\ -1 & -1 \end{pmatrix}$, $(type\ B_2)$ (where ζ is a primitive root of unity of order 12). Then the Nichols algebra B(V) is described as follows:

Generators: x_1, x_2 .

Relations: $x_1^4 = 0$, $x_2^2 = 0$,

$$x_1^2 x_2 x_1 x_2 + (1 + \zeta + \zeta^2) x_1 x_2 x_1 x_2 x_1 + \zeta^2 x_2 x_1 x_2 x_1^2 + (\zeta + \zeta^2) x_2 x_1^2 x_2 x_1$$

$$+ (1 + \zeta) x_1 x_2 x_1^2 x_2 + \zeta x_2 x_1^3 x_2 = 0.$$

Its basis is given as follows:

$$\{1, x_1, x_2, x_1^2, x_1x_2, x_2x_1, x_1^2x_2, x_2x_1^2, x_1x_2x_1, x_2x_1x_2, x_1^3x_2, x_1^2x_2x_1, x_1x_2x_1^2, (x_1x_2)^2, (x_2x_1)^2, x_2x_1^2x_2, x_2x_1^3, (x_1x_2)^2x_1, (x_2x_1)^2x_1, x_2x_1^2x_2, x_1, x_1x_2x_1^2x_2, x_2x_1^3x_2, x_1^2x_2x_1^2, x_1x_2x_1^3, (x_2x_1)^2x_2, x_1^3x_2x_1, (x_1x_2)^3, x_1(x_2x_1)^3x_1, x_1x_2x_1^2x_2x_1, (x_1^2x_2)^2, (x_2x_1^2)^2, x_1x_2x_1^3x_2, x_2x_1^3x_2x_1, x_1^3x_2x_1^2, x_1^2x_2x_1^3, (x_2x_1)^2x_1x_2, (x_2x_1)^2x_1^2, (x_1x_2)^2x_1, (x_1^2x_2)^2x_1, (x_2x_1)^2x_1x_2x_1, x_2(x_1^2x_2)^2, (x_2x_1^2)^2x_1, x_2x_1^3x_2x_1^2, x_1^2x_2x_1^3x_2, x_1(x_2x_1^2)^2, (x_1x_2)^2x_1^2, x_2x_1^2, x_2x_1^$$

$$(x_2x_1)^2(x_2x_1^2)^2x_2, x_1x_2(x_1^3x_2)^2x_1^2, x_1^2x_2(x_1^3x_2)^2x_1, x_2x_1^2x_2(x_1^3x_2)^2,$$

$$x_1x_2x_1^2(x_2x_1^3)^2, (x_2x_1)^2(x_2x_1^3)^2, (x_2x_1)^3x_1x_2x_1^3x_2, x_2x_1x_2(x_1^3x_2)^2x_1,$$

$$x_2x_1x_2x_1^2x_2x_1^3x_2x_1^2, (x_2x_1)^2x_1^2x_2x_1^3x_2x_1, x_1x_2x_1(x_2x_1^2)^3, (x_2x_1)^2(x_2x_1^2)^2x_2x_1,$$

$$x_1^2(x_2x_1^3)^2x_2x_1^2, x_2x_1^2(x_2x_1^3)^2x_2x_1, x_1x_2x_1^2(x_2x_1^3)^2x_2, (x_2x_1)^2(x_2x_1^3)^2x_2,$$

$$x_1x_2x_1(x_2x_1^3)^2x_2x_1, (x_1x_2)^2x_1^2x_2x_1^3x_2x_1^2, (x_2x_1)^2(x_2x_1^2)^3,$$

$$(x_1x_2)^2(x_1^2x_2)^2x_1^3, x_2x_1x_2(x_1^3x_2)^2x_1^2, x_2x_1^2x_2(x_1^3x_2)^2x_1^2, x_1x_2x_1^2x_2(x_1^3x_2)^2x_1,$$

$$x_2x_1x_2x_1^2(x_2x_1^3)^2x_2, (x_1x_2)^2(x_1^3x_2)^2x_1^2, (x_1x_2)^2x_1^2(x_2x_1^3)^2, (x_2x_1)^3x_1x_2x_1^3x_2x_1^2,$$

$$(x_2x_1)^2(x_2x_1^2)^2x_2x_1^3, x_1x_2x_1^2x_2(x_1^3x_2)^2x_1^2, x_2x_1x_2x_1^2x_2(x_1^3x_2)^2x_1,$$

$$(x_1x_2)^2x_1^2x_2(x_1^3x_2)^2, (x_2x_1)^3x_1(x_2x_1^3)^2, x_2x_1x_2x_1^2x_2(x_1^3x_2)^2x_1^2,$$

$$(x_1x_2)^2x_1^2x_2(x_1^3x_2)^2, (x_2x_1)^3x_1(x_2x_1^3)^2, (x_1x_2)^2x_1^2x_2(x_1^3x_2)^2x_1^2,$$

$$(x_1x_2)^2x_1^2x_2(x_1^3x_2)^2x_1, (x_2x_1)^3x_1x_2(x_1^3x_2)^2, (x_1x_2)^2x_1^2x_2(x_1^3x_2)^2x_1^2,$$

$$(x_1x_2)^2x_1^2x_2(x_1^3x_2)^2x_1, (x_2x_1)^3x_1x_2(x_1^3x_2)^2, (x_1x_2)^2x_1^2x_2(x_1^3x_2)^2x_1^2,$$

$$(x_2x_1)^3x_1x_2(x_1^3x_2)^2x_1, (x_2x_1)^3x_1x_2(x_1^3x_2)^2, (x_1x_2)^2x_1^2x_2(x_1^3x_2)^2x_1^2,$$

Hence, the Hilbert polynomial of B(V) is

$$P(t) = 1 + 2t + 3t^{2} + 4t^{3} + 7t^{4} + 9t^{5} + 11t^{6} + 13t^{7} + 15t^{8} + 14t^{9} + 15t^{10} + 13t^{11} + 11t^{12} + 9t^{13} + 7t^{14} + 4t^{15} + 3t^{16} + 2t^{17} + t^{18}.$$

Proof. They are similarly shown as in [8-12].

References

- [1] W. D. Nichols, Bialgebras of type one, Comm. Algebra 6 (1978), 1521-1552.
- [2] M. Helbig, On the lifting of Nichols algebras, preprint.
- [3] N. Andruskiewitsch and H.-J. Schneider, Pointed Hopf algebras, New Directions in Hopf Algebras, Vol. 43, pp. 1-68, MSRI Publications, Cambridge Univ. Press, 2002.
- [4] N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math. 154 (2000), 1-45.

- [5] I. Heckenberger, Examples of finite-dimensional rank 2 Nichols algebras of diagonal type, Compos. Math. 143 (2007), 165-190.
- [6] M. Graña, On Nichols algebras of low dimension, Contemp. Math. 267 (2000), 111-134.
- [7] A. Milinski and H.-J. Schneider, Pointed indecomposable Hopf algebras over Coxeter groups, Contemp. Math. 267 (2000), 215-236.
- [8] T. Takebayashi, On the Nichols algebra associated to $(q_{ij}) = \begin{pmatrix} \omega & -1 \\ -\omega^2 & \omega \end{pmatrix}$, of type A_2 , 43(1) (2010), 49-52.
- [9] T. Takebayashi, On the Nichols algebra associated to $(q_{ij}) = \begin{pmatrix} i & 1 \\ -1 & -1 \end{pmatrix}$, of type B_2 , 43(1) (2010), 53-56.
- [10] T. Takebayashi, On the Nichols algebra associated to $(q_{ij}) = \begin{pmatrix} \omega & 1 \\ \omega & -1 \end{pmatrix}$, of type B_2 , 43(2) (2010), 131-135.
- [11] T. Takebayashi, On the Nichols algebra associated to $(q_{ij}) = \begin{pmatrix} \omega & 1 \\ -1 & -1 \end{pmatrix}$, of type B_2 , preprint.
- [12] T. Takebayashi, On the Nichols algebra associated to $(q_{ij}) = \begin{pmatrix} \omega & 1 \\ \omega & \omega^2 \end{pmatrix}$, of type B_2 , 43(2) (2010), 155-159.