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Abstract 

The so-called exponentiated gamma distribution has a wide range of 
practical applications such as modelling life time data. In this paper, the 
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asymptotic percentage points of the distributions of the EDF-based 
Anderson-Darling and Cramér-von Mises statistics are given for the case 
of complete and type II censored samples. 

1. Introduction 

Following [4], a random variable X is said to have an exponentiated gamma 
distribution, if its cumulative distribution function (CDF) is given by 

 ( ) [ ( )]θ− +−=θ 11; xexF x   for .0,0 >>θ x  (1) 

This distribution has important applications in life testing; details can be found, for 
example, in [8-13]. In this paper, the percentage points of the asymptotic 

distributions for the Cramér-von Mises 2W  and the Anderson-Darling 2A  statistics 
are obtained for the problem of testing goodness-of-fit for the exponentiated gamma 
distribution when the parameters are estimated from a sample of size n censored at 
the right. The type of censoring considered here is known as type II, which 
corresponds to the situation in which, for fixed r, the rn −  largest observations are 
missing. 

Table 1. Upper percentage points of the asymptotic distribution of the 2
, nrA  statistic, 

for selected censoring proportions nrq −= 1  

Significance level 
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2. Maximum Likelihood Estimation 

The log-likelihood for a right-censored sample ( ) ( )rxx ...,,1  from the distribution 

(1) is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) )∑ ∑ ∑
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where ( ) ( ( ) ) ( ( ) ),exp11 iii xxV −+−=  ....,,1 ri =  The maximum likelihood estimator 

(MLE) of the parameter θ, is the value θ̂  which satisfies 
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For ,nr <  the solution of (2) can be found using an iterative procedure such as 

the Newton-Raphson method. In order to obtain the asymptotic variance of ,θ̂  we 
also find 
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As it can be seen, expression (3) involves the sample through the rth order 
statistic only, so the above expected values are computed using its distribution. Here, 
we obtain 

( ) ( ) ,,
22
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where 

( ) [ ( ) ( ) ( )( ) ( )rnrrnrnrrrnnrrnrH ,12, 22 Ψ−−Ψ−+ΨΨ+−=  

( )( ) ( ) ( ) ( )] ( ).122,12 −−Ψ+Ψ−Ψ+Ψ− rnnnrnnnrnnr  
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In the above expression, ( )xΨ  denotes the digamma function and ( )xk,Ψ  its 

kth derivative. A more detailed treatment of these functions can be found in [1]. 
Using the above results, assuming that the value of q remains constant as n tends to 
infinity, we have 

( ) ( )[ ( )( ) ] .1ln1lim
2

2

22

q
qqqlEnn

−+−
=⎥

⎦

⎤
⎢
⎣

⎡

θ∂

θ∂θ−
∞→

 

3. Test Procedures 

3.1. Right-censored samples 

Suppose that we are interested in testing the null hypothesis that the random 
sample ,...,,1 nxx  was drawn from the distribution (1), based on the r smallest 

observations. The test can be performed as follows: 

1. Find the maximum likelihood estimator θ̂  of θ  in (1). 

2. Obtain the order statistics ( ) ( )rxx ≤≤1  and compute ( ) ( ( ) )θ= ˆ,ii xFz  for 

....,,1 ni =  

Table 2. Upper percentage points of the asymptotic distribution of the 2
, nrW  statistic, 

for selected censoring proportions nrq −= 1  

Significance level 

 



EDF TESTS FOR THE EXPONENTIATED GAMMA DISTRIBUTION ... 99 

3. Compute the Anderson-Darling or the Cramér-von Mises statistics in their 
version for a type II right-censored sample [2], 

( ){ ( ) [ ( )]} [ ( )]∑ ∑
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4. Using the value ,1 nrq −=  the proportion of right-censoring, refer to Table 

1 or Table 2, according to the statistic used. If the value of the test statistic exceeds 
the value in the table, then for a given significance level, reject the null hypothesis. 

3.2. Left-censored samples 

A test for the left-censored case, based on ( ) ( ),...,,1 nrn xx +−  the largest r 

observations, can be carried out by taking ( ) ( ),1 1+−
∗ −= ini zz  ,...,,1 ri =  and 

computing the appropriate statistic for the right-censored case using the values 

( ) ( )....,,1
∗∗
rzz  For the left-censored case, the z-values must be computed using the 

appropriate maximum likelihood estimator of the parameter θ, namely, 
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3.3. Complete samples 

For the case of a complete sample, i.e., ,nr =  the maximum likelihood estimator 

of θ reduces to ( )
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i iVn  and that expressions (4) and (5) also apply. 
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Table 3. Empirical percentage points of the statistic 2
, nrA  for selected censoring 

proportions nrq −= 1  

Significance level 

 

4. Quadratic Statistics and Asymptotic Theory 

The Anderson-Darling 2A  and the Cramér-von Mises 2W  statistics belong to a 
class of discrepancy measures of the form 

( ) ( )[ ] ( ) ( )∫
∞

∞−
θψθ−= ;; 2 xdFxxFxFnQ nn  

known as quadratic statistics, where nF  denotes the Empirical Distribution Function 

(EDF) of a random sample of size n from an absolutely continuous distribution F, θ 
denotes (in general) a vector parameter and ψ is a weighting function. The well- 

known Cramér-von Mises 2W  and the Anderson-Darling 2A  statistics are obtained 

taking ( ) 1=ψ x  and ( ) ( )[ ] ( )[ ]{ } ,;1; 1−θ−θ=ψ xFxFx  respectively. For details on 

the asymptotic theory of the EDF statistics, the reader is referred, for example, to [3, 
5, 6, 7, 14], where the main results used here to obtain numerically the asymptotic 
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percentage points for the exponentiated gamma distribution under type II censoring, 
can be found. In the following, it will be assumed that the proportion censored, 

,1 nrq −=  remains constant as n tends to infinity. Let θ̂  denote the maximum 

likelihood estimator of the vector parameter ,θ  with estimates where necessary, q is 
the censoring proportion and .1 qp −=  For the case of a singly right-censored 

sample, the process { ( ) ( )},ˆ; θ− xFxFn n  evaluated at ( ),ˆ; θ= xFt  converges 

weakly to a Gaussian process ( ) ( ){ }pttY ,0: ∈  with certain covariance function 

( )ts,ρ  which depends both, the functional form of F, and on which parameters have 

been estimated. The statistics 2W  and 2A  are asymptotic functionals of the process 

( ) ( ){ };,0: pttY ∈  namely, 2W  converges in distribution to ( )∫
p

dttY
0

2  and 2A  

converges in distribution to ( )∫
p

dtta
0

2 ,  where ( ) ( )[ ( )] .1 1−−= tttYta  ( )tY  and 

( )ta  are both Gaussian processes defined in ( ),,0 p  with covariance functions ( )ts,ρ  

and ( ) ( )[( ) ( )] ,,, 122 −−−ρ=ρ ttsststsa  respectively, for ,0 s≤  .pt ≤  

According to [3], in both cases, the limiting distribution is known to be that of 

∑∞
=

∗νλ1 ,i ii  where ...,1ν  are independent chi-square random variables with one 

degree of freedom, and ...,1
∗λ  are the eigenvalues of the integral equation 

 ( ) ( ) ( )∫ ∗∗ λ=ρ
p

iii tfdssfts
0

,,  (6) 

where ∗ρ  denotes the covariance function corresponding to the limiting process on 

which the test statistic is based; in our case ( )ts,ρ  or ( )., tsaρ  In samples from the 

exponentiated gamma distribution defined in (1), with a right-censored proportion q, 
the limiting covariance function given of the process ( )tY  is given by 

( ) ( ) ( ) ( )
( )[ ( )]

.
1ln1

lnln,min, 2 qqq
tsqststtsts
−+−

−−=ρ  

Thus, the asymptotic distributions of the EDF statistics will not depend on the 
particular value of the shape parameter. 

In order to obtain numerically the asymptotic percentage points, the integral 
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equation (6) was solved using 400 points in ( )p,0  to approximate the integral and 

the appropriate covariance function was evaluated in the 400400 ×  grid, for values 
of ( ) .90.005.005.0=p  The eigenvalues were used to calculate the asymptotic 

percentage points using Imhof’s [5] method. The results are shown in Tables 1 and 
2. The row corresponding to 0=q  denotes the asymptotic percentage points for 

complete samples. 

Table 4. Empirical percentage points of the statistic 2
, nrW  for selected censoring 

proportions nrq −= 1  

Significance level 

 

5. Small Sample Distributions 

In order to investigate the appropriateness of a test of fit based on the 
asymptotic percentage points, a simulation study was performed for both statistics 
considering different censoring proportions. For selected values of q and n, ten 
thousand pseudo-random samples from the distribution (1) were generated and the 

statistics 2
, nrW  and 2

, nrA  were calculated to estimate the empirical percentage points. 

The results are shown in Tables 3 and 4. 
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These results suggest that the speed of convergence of the empirical, to the 
asymptotic percentage points, does not depend heavily on the proportion of 
censoring; therefore, the asymptotic percentage points can be used with very good 

accuracy, for moderately large samples, especially for the case of the statistic .2
, nrW  

6. Conclusions 

The percentage points of the asymptotic distributions of the Cramér-von Mises 
2W  and the Anderson-Darling 2A  statistics were calculated numerically and tables 

for testing goodness-of-fit for the exponentiated gamma distribution, when its 
parameter is estimated from a complete or censored sample, were provided. 

Results from a simulation study showed that for moderately large samples, a 
goodness-of-fit test can be performed with good accuracy using the asymptotic 
percentage points of these statistics. 
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