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Abstract 

This study focuses on a nonlinear mixed effects model for repeated 
measures data to describe longitudinal changes in carcinoembryonic 
antigen (CEA) levels of colorectal cancer patients over time. The CEA 
level of colorectal cancer patients is regarded as the marker choice for 
monitoring. Following surgery, if the CEA levels begin to rise, then there 
will be a recurrence of disease. The fixed effects parameter 2φ  of the 
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proposed model represents the recurrent time which is between the flat 
and rapid increase in an exponential phase. Parameters of the proposed 
model are estimated by using Lindstrom and Bates (LB) and the stochastic 
approximation version of the standard expectation and maximization step 
(SAEM) algorithms. The results show that the estimates of the recurrent 
time ( )2φ  by using LB and SAEM algorithms are equal to 17.4 and 22.8 

months, respectively. Further, the residual sum of squares of a proposed 
model by using the SAEM algorithm is equal to 25.14 which is less than 
the residual sum of squares using the LB algorithm (88.04). Hence, the 
predicted curve of the proposed model with parameters estimated by the 
SAEM algorithm is outperforms the LB algorithm for the CEA level of 
colorectal cancer patients. 

1. Introduction 

By definition, studies of growth and decay involve repeated measurements taken 
on sample units which could be human or animal, subjects, plants, or cultures. 
Modeling data of this kind usually involves characterization of the relationship 
between the measured response, y, and the repeated measurement factor, or 
covariate, x. In many applications, the proposed systematic relationship between y 
and x is nonlinear with unknown parameters of interest. With the nonlinear mixed 
effects model there are many methods to estimate the unknown parameter vector. 
One method is the algorithm proposed by Lindstrom and Bates (LB) [9] to estimate 
the parameters of their model. Another method is the stochastic approximation 
version of the standard expectation and maximization step (SAEM) algorithm 
developed by Kuhn and Lavielle [8]. Colorectal cancer is one of the leading causes 
of cancer death. A rising carcinoembryonic antigen (CEA) level indicates 
progression or recurrence of the cancer. The CEA is a type of protein molecule that 
can be found in many different cells of the body, but it is typically associated with 
certain tumors and the developing fetus [2]. The CEA is used as a tumor marker, 
especially for cancers of the gastrointestinal tract such as colorectal cancer. When 
the CEA level is abnormally high before surgery or other treatment, it is expected to 
fall to a normal level after success in removing all of cancer. If the level begins to 
rise above 6 ng/ml, then there will be a high correlation of recurrence of the cancer. 
However, this does not always happen in every case as there might be other factors 
which can increase the CEA level, including diverticulitis, pancreatitis, hepatitis and 
smoking. If these other causes are excluded, then we must look for recurrence of 
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cancer. Local recurrence of colorectal cancer after ‘curative’ surgery is a major 
clinical problem. Typically, 50-70 percent of patients presented to a surgical clinic 
will undergo apparently curative surgery for disease and about 10-25 percent of 
those will develop local recurrence in either the tumor bed or bowel wall [7]. In 
1987, Claudio et al. [5] made a comparative study of sixty-four consecutive patients 
who had undergone curative resection for colorectal carcinoma which was 
conducted to evaluate the roles of sequential CEA determinations and independent 
instrumental. The study was also a follow up in the early detection of respective 
recurrences. They found that CEA was the best predictor of recurrence when 
compared with the other two markers (tissue polypeptide antigen (TPA), colon 
cancer antigen detected with a monoclonal antibody (Ca19-9)). It is in accordance 
with 2000 update of American Society of Clinical Oncology colorectal cancer 
surveillance guidelines by Benson et al. [3] that follow up testing was done by 
protocol guidelines. Ninety-six of the 421 patients who developed recurrent disease 
underwent surgical resection with curative intent. For the subgroup of patients with 
resectable, the first test to detect recurrence was CEA, chest X-ray, colonoscopy, and 
other tests. The CEA was the most cost-effective approach to detect potentially 
metastases from colon cancer. Another study followed up patients with a specified 
testing strategy after curative colorectal surgery. Here, 64% of recurrences were 
detected first by CEA, far more than the other tests in the battery [4]. 

Therefore, the aim of this study is to estimate the fixed effects parameter 2φ  of 

the proposed CEA model represents the recurrent time in patients with colorectal 
cancer which is between the flat and rapid increase in an exponential phase. 
Parameters of the proposed model are estimated by using Lindstrom and Bates (LB) 
and the stochastic approximation version of the standard expectation and 
maximization step (SAEM) algorithms. 

The paper is organized as follows: Section 2 describes on colorectal cancer data. 
Section 3 briefly introduces the models and uses nonlinear mixed effects model 
estimator by Lindstrom and Bates algorithm (LB), stochastic approximation version 
of the standard expectation and maximization step (SAEM) algorithm to estimate the 
parameters of the proposed model. The results including presentation of estimates of 
the parameters and estimates of the population and individual curves by LB and 
SAEM algorithms are given in Section 4. Section 5 provides conclusion and 
discussion. 
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2. Colorectal Cancer Data 

In this study, the subjects have participated in the National Cancer Institute of 
Thailand from July 1998 to April 2008. All of seven cancer cases have been detected 
clinically and confirmed histologically from biopsy tissue specimens. All subjects 
have undergone colorectal surgery after the colorectal cancer diagnosis and were 
recurrences appeared later. The follow ups started at the surgery date which is set up 
to be zero, and are in the range negative two to 55 months with a median of 18 
months over their follow up period. The follow ups started at the surgery date and 
then at least six times for measurement of CEA (ng/ml) values and had a median of 
10 observations over their follow up period. The recurrent times are in the range 
three to 38 months after the surgery date and have a median of nine months over 
their follow up period. Table 1 contains descriptive statistics for number of the 
participants, the measurement month, number of repeated CEA measurements and 
the recurrent time after surgery. 

Table 1. Description of study participants 

Colorectal cancer patients 

No. of participants 7 

Measurement month (surgery month is zero)  
Median 18 
Range  –2-55 

No. of repeated measurements  
Median 10 
Range 6-20 

Recurrent time after surgery (months)  
Median 9 
Range 3-38 

CEA values are transformed with the logarithm to make it easier to visualize. 
The curves of logarithm of the CEA data of colorectal cancer patients are shown in 
Figure 1. The logarithm of the CEA value increases slowly exponentially for each 
curve. The black dots for each curve are the recurrence time (months after surgery). 
The logarithm of the CEA values after the recurrent time is higher than the logarithm 
of the CEA values before the recurrent time. 
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Figure 1. Log(CEA) (in nanograms per milliliter) versus time (months) of seven 
subjects. The black dots are the recurrent time for each subject. 

3. The Nonlinear Mixed Effects Model 

Let us consider the following general nonlinear mixed effects model by using 
the notation of Lindstrom and Bates [9], the model for the jth observation on the ith 
individual in the study is written as 

 ( ) ,, ijiijij exfy +φ=  (1) 

where 

ijy  is the jth response on the ith individual, ,...,,1 mi =  

ijx  is the vector of predictor variables for the jth response on the individual i, 

f  is a nonlinear function of the predictor variables and parameter vector, 

iφ  is an 1×r  vector of parameters for the ith individual, and ( ).,0~ 2
iij INe σ  

Random-effects terms may be included in the parameter vector to allow the 
parameter value to vary from individual to individual by writing 

 ,iiii bBA +φ=φ    ( ),,0~ DNbi  (2) 
where 

φ  is a 1×p  vector of fixed population parameters, 

ib  is a 1×q  vector of random effects associated with individual i, 

iA  is a design matrix of size pr ×  for the fixed effects, 

iB  is a design matrix of size qr ×  for the random effects, and 

D  is a positive definite variance-covariance matrix. 
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Collecting the responses and errors for the ith individual into 1×in  vectors. This is 

accomplished by letting 
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Hence, ( ) ,iiii efy +φ=  where ( )ii INe 2,0~ σ  and iI  is an identity matrix for 

individual. We may summarize the data for the ith individual as 

( ) ,iiii efy +φ=   iiii bBA +φ=φ   and  ( ).,0~ DNbi  

From the logarithm of the CEA value curve (Figure 1), we see that trends in 
each subject case represent a period of slow exponential increase in the peripheral 
logarithm of CEA levels. Next, we try to use the exponential model for these data. 
The exponential model will be approached to find a recurrent time after surgery, 
which is the time point between the flat and rapid increase in the exponential phase. 

We used the LB and SAEM algorithms to estimate the parameters of the 
proposed model. Let ijy  be logarithm of CEA value for the jth response on the ith 

individual. Then the nonlinear model is ( ) ., ijiijij exfy +φ=  

The proposed CEA model is written as 

( ) ( ) ( ( )).expexp, 210 iijiiiij xxf φ−φφ=φ  

Since ,iiii bBA +φ=φ  ,000 ii b+φ=φ  ii b111 +φ=φ  and .222 ii b+φ=φ  

Therefore, we can rewrite the CEA model as follows: 

( ) ( ) (( ) ( ( )))iijiiiij bxbbxf 221100 expexp, +φ−+φ+φ=φ  

 ( ) ( ) (( ) ( ( ))),expexpexp 221100 iijii bxbb +φ−+φφ=  (3) 

here, [ ]′= iiii bbbb 210  has mean zero and variance-covariance matrix D, 

ijx  is time (months) (at  surgery date, ),0=ijx  

0φ  is the log(CEA) level (ng/ml) at the exponential phase, 

1φ  is the exponential rate constant during the exponential log(CEA) phase, 
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2φ  represents the time (months after surgery date) between the flat and rapid 
increase in the exponential log(CEA) phase, 

ib0  is random and allows the exponential phase to vary among participants, 

ib1  is random and allows the exponential rate constant to vary among 
participants, and 

ib2  is random and allows the time between flat and rapid increase in the 
exponential log(CEA) phase to vary among participants. 

3.1. Lindstrom and Bates (LB) algorithm 

In the above model, there are many methods to estimate the unknown parameter 
vector. One method is nonlinear mixed effects model algorithm as proposed by 
Lindstrom and Bates [9]. We also employed the LB algorithm to estimate the 
parameters of our proposed model. The algorithm uses a combination of least square 
estimators for nonlinear fixed effects models and maximum likelihood estimators for 
a linear mixed effects model. The linear mixed effects model is used to estimate 
parameters from an approximation to the marginal distribution of the complete data 
vector. This combination provides approximate maximum likelihood estimates for 
the nonlinear mixed effects model. The Lindstrom and Bates algorithm is suggested 
two steps of estimation schemes as follows: 

Step 1. Pseudo-data (PD) 

Lindstrom and Bates [9] showed that φ̂  is a maximum likelihood estimate 

relative to an approximate marginal distribution of y. As in the linear case, these 
estimates can be calculated as the solution to a (nonlinear) least squares problem 
formed by augmenting the data vector with “pseudo-data” as 

( ) ,,, iiiiii ebxfy +φ=  

where ( ).,0~ 2
ii INe σ  The probability density function of iy  is given by 

( ) ( )( ) ( ) ( )( ) .,,,,
2
1exp

2
1 12

212 ⎟
⎠
⎞⎜

⎝
⎛ φ−σφ−−⋅

σπ
= −

iiiiii
T

iiiii
i

i bxfyIbxfy
I

yf  

Since ib  has a normal distribution with mean zero and variance-covariance matrix D 

that is ( ),,0~ DNbi  hence the probability density function of ib  is given as 

( ) .
2
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2
1 1

21 ⎟
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π
= −

i
T
ii bDb

D
bf  
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Thus the joint probability density function of the response iy  and ib  is written as 

( ) ( )( ) ( ) ( )( )⎟
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and the likelihood function of the response iy  is given by 
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Then the log-likelihood function of the response iy  is obtained by 

 ( ) iImmL 2log22log2log σ−π−=  

( )( ) ( ) ( )( )∑ φ−σφ−− −
iiiiii

T
iiiii bxfyIbxfy ,,,,2

1 12  

( ) ∑ −−−π− .ˆ
2
1log22log2

1
i

T
i bDbDmm  

Given the current estimate of ,ω  ω̂  (and thus 2σ̂  and ),D̂  minimize in φ and ,ib  

....,,1 mi =  The twice negative log-likelihood is given as 

(∑
=

− σ++=−
m

i
ii

T
i IbDbDL

1

21 ˆlogˆˆloglog2  

( )( ) ( ) ( )( )),,,ˆ,, 12
iiiiii

T
iiiii bxfyIbxfy φ−σφ−+ −  

where 

D̂  is variance-covariance of random effects, 

ib  is random effect, 
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iy  is observation, and 

( )iiii bxf ,, φ  is the CEA model. 

Denote the resulting estimates as ib̂  and .ˆ
0φ  

Step 2. Linear mixed effects (LME) 

Lindstrom and Bates [9] defined maximum likelihood estimators for φ with 
respect to the marginal density function of y, that is 

( ) ( ) ( )∫ |= .dbbfbyfyf  

However, the expectation function ( )iif φ  is nonlinear in b, and there is no closed-

form expression for this density function and the calculation of such estimates would 
be very difficult. Instead, they approximated the conditional distribution of y for b 

near b̂  by a multivariate normal with expectation that is linear in b. To accomplish 

this, they approximated the residual ( )φ− fy  near b̂  as Taylor series expansion 

about ii bb ˆ=  of ( )iii bxf ,, φ  so that 

( ) ( ) ( ) ( ) ,ˆˆ,ˆ,,,, iiiiiiiiiiii ebbbZbxfbxfy +−⋅φ+φ≈φ=  

( )DNbi ,0~   and  ( ),,0~ 2
ii INe σ  

where ( )ii bZ ˆ,φ̂  is the kni ×  matrix of derivatives of ( )iii bxf ,, φ  with respect to 

.ib  The expectation of iy  is given as 

 ( ) ( ( ) ( ) ( ) )iiiiiiiii ebbEbZbxfEyE +−φ+φ= ˆˆ,ˆ,,  

( ( )) ( ) ( ) ( )iiiiiiii eEbbEbZbxfE +−φ+φ= ˆˆ,ˆ,,  

( ) ( ) ,ˆˆ,ˆ,, iiiiii bbZbxf φ−φ=  

and the variance of iy  is given by 

 ( ) ( ( ) ( ) ( ) )iiiiiiiii ebbEbZbxfy +−φ+φ= ˆˆ,ˆ,,VarVar  

( ( )) ( ) ( ) ( ) ( )ii
T
iiiiiiii ebZbbbZbxf Varˆ,ˆˆVarˆ,ˆ,,Var +φ−φ+φ=  

( ) ( ) ( ) ii
T
iiii IbZbbZ 2ˆ,ˆVarˆ,ˆ σ+φφ=  

( ) ( ) .ˆ,ˆˆ,ˆ 2
ii

T
iii IbDZbZ σ+φφ=  
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Then, the response variables, iy  are distributed as a normal distribution with 

( ( ) ( ) ( ) ( ) ).ˆ,ˆˆ,ˆ,ˆˆ,ˆ,,~ 2
ii

T
iiiiiiiiii IbDZbZbbZbxfNy σ+φφφ−φ  

Therefore, the marginal distribution of iy  is written as 
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where ( ) ( ) ii
T
iiii IbDZbZV 2ˆ,ˆˆ,ˆ σ+φφ=  and ( )ii bZ ˆ,φ̂  is the kni ×  matrix of 

derivatives of ( )iii bxf ,, φ  with respect to .ib  

The likelihood function of iy  is written as 

( ) ( ( ) ( ) )Tiiiiiii
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The log-likelihood function of iy  is obtained by 

( ) ( ) ( ( ) ( ) )Tiiiiiiii bbZbxfyVmmL ˆˆ,ˆˆ,,2
1log22log2log φ+φ−−−π−= ∑  

 ( ( ) ( ) ).ˆˆ,ˆˆ,,1
iiiiiiii bbZbxfyV φ+φ−× −  

Estimate φ and ω as the values φ̂  and ω̂  that give twice the negative approximate 

marginal normal log-likelihood is obtained as 

( ( ( ) ( ) )Tiiiiiiiii bbZbxfyVL ˆˆ,ˆˆ,,loglog2 φ+φ−+=− ∑  

( ( ) ( ) )).ˆˆ,ˆˆ,,1
iiiiiiiii bbZbxfyV φ+φ−× −  

3.2. Stochastic approximation version of the standard expectation and 
maximization step (SAEM) algorithm 

The SAEM algorithm which is developed by Kuhn and Lavielle [8] provides 
general idea of the algorithm in order to replace the expectation phase of the EM 
algorithm, that is, the calculation of the conditional expectation of the likelihood of 
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the complete data. By using a stochastic approximation, this expectation can be 
analytically calculated in the case of nonlinear mixed effects models. 

At iteration [ ],k  let ( )[ ]k
kQ θ  be the expectation function of the complete 

likelihood conditional on the observations y and the vector of parameters θ estimated 
at iteration [ ],1−k  

( )[ ] ( ( [ ])).,;,log 1−θ|θφ=θ kk
k yypEQ  

The key idea is to recycle variates generated from the previous iterations of the 

EM. Therefore, instead of approximating ( )[ ]k
kQ θ  by the complete likelihood, i.e., 

( [ ] ),;,log θφ kyp  it is replaced by the following stochastic approximation: 

( )[ ] ( )[ ] ( ( [ ] ) ( )[ ]),;,log 11 −− θ−θφγ+θ=θ kk
k

kk
k QypQQ  

where φ is simulated according to the conditional distribution ( [ ])., 1−θ|⋅ kyp  The 

SAEM is consisted in replacing the usual E step of EM by a stochastic procedure. At 
iteration k, SAEM consists in three steps as follows: 

1. Simulation step. Draw [ ]kφ  from ( )kijyf θ;  by Metropolis-Hasting process 

which consists of 

1.1 generate u from ( ),1,0U  

1.2 draw pi,
~
φ  using the normal distribution and draw 1, −φ pi  from OLS, 

1.3 find ( )kpiyf θφ ;~, ,  and ( )kpiyf θφ − ;, 1,  by substituting pi,
~
φ  and ,1, −φ pi  

respectively, 

1.4 ( )
( )
( ) ,;

;~
,1min~,

1,

,
,1, ⎟

⎟
⎠

⎞
⎜
⎜
⎝
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−
kpi
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1.5 if ( ),~, ,1, pipiu φφα≤ −  then pipi ,,
~
φ=φ  else .1,, −φ=φ pipi  

2. Stochastic approximation step. Update ( )θkQ  according to 

( )[ ] ( )[ ] ( ( [ ] ) ( )[ ]),;,log 11 −− θ−θφγ+θ=θ kk
k

kk
k QypQQ  

where kγ  is a decreasing sequence of positive numbers. It has been set by 

MONOLIX, where 1=γk  for Kk ≤≤1  and Kkk −
=γ 1  for 1+≥ Kk  (the 

default value is ).300=K  The stochastic approximation step consists in updating 
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the sufficient statistics of the complete model as follows: 

( [ ] ),1,,11,,1,,1 −− −φγ+= ki
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3. Maximization step. Update kθ  according to ( ).maxArg θ=θ θ kk Q  The 

1+θk  is obtained in the maximization step as follows: 
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We used the software MONOLIX developed by Kuhn and Lavielle [8] which 
implements SAEM algorithm for maximum likelihood estimator in nonlinear mixed 
effects models. This MATLAB software is available at http://software.monolix.org. 

4. Results 

The full model with all the parameters of (3) is fitted to the data. The estimates 
of the fixed effects parameters (the φ’s) as well as their asymptotic z values (z value 
= estimate/standard error (SE)) and estimates the error variance, variance-covariance 
matrix for random effects (D) and also the residual sum of squares by the LB and 
SAEM algorithms are given in Table 2. Initial values for parameters (parameters of 

vector θ consist of ,0φ  ,1φ  ,2φ D and )2σ  must be specified for the first step. As in 

standard nonlinear estimation, poor starting values can cause poor results. 
Afterwards we use an ordinary least square (OLS) method to find the initial values. 
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Table 2. Estimates of the fixed effects, SE and approximate estimates of the error 
variance, variance-covariance matrix for the random effects, and the residual sum of 
squares by the LB and SAEM algorithms 

 LB  SAEM 
Parameters Estimates SE z  Estimates SE z 

0φ  1.1325 0.5138 2.204  1.26 0.43 2.93 

1φ  0.0283 0.0062 4.564  0.0325 0.0046 7.06 

2φ  17.489 8.584 2.037  22.8 10 2.28 
2σ  0.831    0.585   

11D  0.9044    0.483   

22D  0.0007    0.285   

33D  0.1868    0.293   

Residual sum of squares      

( ( ))∑ φ−
ij

iijij xfy 2,  88.04   25.1396  

The residual sum of squares of the CEA model which is estimated from 
parameters by the LB and the SAEM algorithms are 88.04 and 25.14, respectively. 

The prediction curves based on the estimated population mean fixed effects 
from the fitted CEA model are shown in Figure 2. The diamond and the square lines 
represent the estimated population mean fixed effects from the LB and SAEM 
algorithms, respectively. 

 
Figure 2. The log(CEA) value (in ng/ml) of seven subjects, population observation 
and predictive of log(CEA), where open circles represent observed, diamonds and 
squares represent population predictions of log(CEA) by the LB and SAEM 
algorithms, respectively. 
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The goodness of fit of the observations with predictions for population prediction 
of the CEA model by the LB and SAEM algorithms are displayed in Figure 3. 

 

Figure 3. Observations versus prediction for all subjects. Predicted values (squares) 
are based on the estimated population mean fixed effects from the fitted CEA model 
( );0=ib  (a) by the LB and (b) by the SAEM algorithms, respectively. The triangles 

represent observations. 
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The goodness of fit of the observations with predictions for individual prediction 
of the CEA model by the LB and SAEM algorithms are displayed in Figure 4. 

 

Figure 4. Observations versus prediction for all subjects. Predicted values (squares) 
are based on the estimated individual random effects from the fitted CEA model; (a) 
by the LB and (b) by the SAEM algorithms, respectively. The triangles represent 
observations. 
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The goodness of fit of the quality of the CEA model with time plots for 
residuals population parameters by the LB and SAEM algorithms are displayed in 
Figure 5. 

 

 

 

Figure 5. Residual plots of the CEA population parameters model versus time (in 
months) (a) by the LB algorithm (b) by the SAEM algorithm. 
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The goodness of fit of the quality of the CEA model with time plots for 
residuals individual parameters by the LB and SAEM algorithms are displayed in 
Figure 6. 

 

 

 

Figure 6. Residual plots of the CEA individual parameters model versus time (in 
months) (a) by the LB algorithm, (b) by the SAEM algorithm. 



SONTIMOON, TIENSUWAN, PANUNZI and SUMETCHOTIMAYTHA 58 

5. Conclusion and Discussion 

We proposed a nonlinear mixed effects model to describe the longitudinal CEA 
data. The CEA data are obtained from colorectal cancer patients. Hence, the proposed 
model is called the CEA model. The model itself is ideal for such analyses because 
the random effects may provide an adequate variance-covariance matrix to explain 
the nonindependence among repeated CEA measurements for each subject. The data 
are not necessarily nicely balanced in terms of numbers of observations and intervals 
among subjects. Further, the average curves can be estimated from the fixed effects 
model and the differences in the individuals’ progression are estimated by using the 
random effects model. We believe that the model-fitting approach is not only a 
methodologically but also a biologically valuable interpretation. 

Because of the nonlinearity and the complexity of the nonlinear mixed effects 
model, implementation of parameter estimation in the model should be done very 
carefully. Divergence and false convergence problems sometimes occur in fitting the 
model since many parameters in the model need to be estimated. To deal with these 
problems, it is suggested to try different initial values; in this study, we therefore 
used the ordinary least square (OLS) method to find the initial values. 

The estimates of the fixed effects parameters (the φ’s) as well as their asymptotic 
z values (z value = estimate/standard error) and estimates the error variance and 
variance-covariance matrix for random effects (D) by the LB and SAEM algorithms 
are shown in Table 2. All of the fixed effects parameter estimates for the CEA model 
are significantly different from zero based on the z statistics. The parameter 2φ  

represents the recurrent time (months after surgery date), which is between the flat 
and the rapidly increasing in the exponential phase. The recurrent times of the CEA 
model are equal to 17.4 and 22.8 months by using the LB and the SAEM algorithms, 
respectively. This is in line with recommended colorectal cancer surveillance 
guidelines by the American Society of Clinical Oncology [1] that postoperative 
serum CEA testing may be performed every 2 to 3 months in colorectal cancer 
patients in stage II or III disease for two or more years after diagnosis. The majority 
of recurrences in patients who have undergone a complete resection of a colorectal 
cancer will occur within 5 years, and usually within 3 years of surgery. The residual 
sum of squares by using the LB and SAEM algorithms for the CEA model are also 
illustrated in Table 2. The residual sum of squares of the CEA model by using the 
SAEM algorithm is equal to 25.14, which is less than by using the LB algorithm 
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(88.04). From these results, we can assume that the predicted curve of the CEA 
model, which is estimated by the SAEM algorithm, fits the logarithm of CEA of 
colorectal cancer patients better than as estimated by the LB algorithm. Moreover, 
the SAEM algorithm obviously takes the computational time much less than the LB 
algorithm. 

The SAEM algorithm is implemented in specialized software for the phenotypic 
analysis of nonlinear mixed effects models called ‘MONOLIX’, which can be freely 
downloaded from the website: http://software.monolix.org. The software program is 
based on a thorough statistical theory [6, 8] and several statistical developments are 
ongoing. 

Since the diseases can be recurrent in colorectal cancer patients after surgery, 
the key question of ‘How long does it take, after surgery, for the recurrence to 
appear?’ is an important consideration for physicians. The results from this study 
hence can provide basic information as a guideline of curing colorectal cancer 
patients. Our study found out that the SAEM algorithm estimated the recurrent time 
of colorectal cancer patients as equal to 22.8 months. Therefore, the period of 22.8 
months or 2 years approximately after surgery is the opportunity for disease 
recurrence in patients with colorectal cancer. However, it is suggested that more 
complete data from a larger number of patients and from CEA measurements at 
varied different periods of time can confirm a significant window of opportunity in 
detecting the recurrence of the CEA levels. 

For a comparison of these two algorithms we could use a simulation study to see 
which algorithm is perform better in more general cases of nonlinear mixed effects 
colorectal cancer model. Finally, it is essential for future research on improving 
algorithms for cancer recurrence to collect data from other cases involving different 
body organs. Moreover, we can apply these algorithms to the problem of nonlinear 
mixed effects models in the medical, agriculture and industry fields. 
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