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Abstract 

The multinomial distribution is the main statistical model for categorical 
data, including ordinal and nominal responses. A prerequisite assumption 
underlying this model is the independence between the individuals 
constituting the total number of the multinomial. This article shows that 
the multinomial model could be made asymptotically valid no matter   
how individuals are correlated. We focus on likelihood inference for      
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the regression parameter of interest associated with the polytomous 
logistic regression model. Simulations and several examples are used to 
demonstrate the efficacy of proposed parametric robust method. 

1. Introduction 

Correlated nominal data are commonly encountered in many research areas 
including biomedical or toxicology studies. The multinomial distribution is the 
conventional statistical model for nominal responses and polytomous logistic 
regression is the typical regression model for regression analysis uncovering the 
relationship between nominal cell probabilities and covariates (Agresti [1]). 

The analysis of clustered correlated categorical data is generally strenuous 
because of lacking suitable joint distributions for the correlated responses. A popular 
model for correlated nominal data that one frequently resorts to is the Dirichlet-
multinomial distribution. For instance, Paul et al. [9] used it to compare cell 
probabilities and derived explicit expressions for the exact Fisher information matrix 
for the parameters. Wilson and Chen [15] further considered generalized Dirichlet-
multinomial distribution to cope with varying response rates over time. 

Hedeker [4] suggested a mixed-effects multinomial logistic regression model for 
analyzing cluster nominal data. His method allows flexible choice of contrasts used 
to represent comparisons across the response categories. On the other hand, Zhang et 
al. [16] employed the Bayesian method to deal with multivariate nominal measures 
through multivariate multinomial probit models. Recently, Lee and Mercante [5] 
modeled longitudinal nominal data using a Markovian dependence structure. 

The abovementioned parametric approaches, despite their usefulness, 
unavoidably suffer from the drawback of being sensitive to model misspecifications. 
Should any of the model assumptions involved fail, the model-based inference is 
generally fallacious. 

The generalized estimating equations (GEE, Liang and Zeger [6]) methodology 
has become one of the most popular methods for analyzing correlated data, since its 
introduction in 1986. We can conveniently obtain consistent regression parameter 
estimates and their standard errors simply having the first moments correctly 
specified. In spite of its overwhelming popularity, the GEE, being a semi-parametric 
approach, fails to provide a likelihood function. Full likelihood inference tools, such 
as the likelihood ratio (LR) test, the score test and the goodness of fit test are usually 
unobtainable from GEE. 
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Tsou and Shen [14] proposed a robust likelihood approach for making inference 
about regression parameters for correlated ordinal data modeled by proportional  
odds model. They showed how we could fix the multinomial working model to 
encompass intra-cluster correlations. The naïve likelihood based on the working 
model, when properly adjusted, could be converted into an asymptotically valid 
likelihood for the regression parameter of interest. The validity of the resultant 
robust likelihood requires no knowledge of the true underlying correlation structures 
nor the joint distributions. 

In this paper, our focus is on correlated nominal data. We demonstrate how to 
correct the multinomial model in order to develop a robust likelihood for the 
regression parameters. The rest of the paper is organized as follows: We give a brief 
introduction to the robust likelihood method by Royall and Tsou [11] in Section 2. 
Section 3 contains details, we need to correct the multinomial likelihood to become 
robust. Sections 4 and 5 contain simulations and real data analysis demonstrating the 
efficacy of the proposed method. Some concluding remarks are made in Section 6. 

2. Robust Likelihood 

The idea of the robust likelihood methodology proposed by Royall and Tsou 
[11] has been explored and extended to various inferential problems. We only sketch 
the theory and will not reiterate it in details. Interested readers can refer themselves 
to Tsou and Shen [14]. 

Consider observations nyy ...,,1  regarded as realizations of independent random 

variables ....,,1 nYY  Let ( )φθ,l  denote the log likelihood function based on the 

working model f, where θ and φ are, respectively, the parameter of interest and the 
fixed-dimensional vector of nuisance parameters. Let 0θ  and 0φ  denote the limiting 

values of the working model-based (or simply model-based) maximum likelihood 

(ML) estimators, say, θ̂  and .φ̂  The convergence referred to here and henceforth is 

of the weak mode. 

Now suppose nyy ...,,1  are in reality generated from, say, { ( )( ),,; λθτ⋅= ii hh  

},...,,1 ni =  where λ represents the nuisance parameter (or fixed-dimensional 

parameters) for h. Here we assume regularity conditions on f and h that ensure the 
asymptotic normality of the ML estimators. 
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Assume that the true model is actually h while 0θ  remains the true value of the 

parameter of interest. Royall and Tsou [11] demonstrated that working likelihoods 
that fulfill this condition can be converted to be asymptotically legitimate under 
model misspecification. 

Denote the elements of the model-based Fisher information matrix by 

[( ) ( ) ]ttt IIII φφφθθφθθ ,,,  calculated by the second derivatives of the log likelihood 

function. Its counterpart, calculated according to the products of the first derivatives 

of the log likelihood, is denoted by [( ) ( ) ] .,,, ttt VVVV φφφθθφθθ  For instance, =θφI  

[ ( ) ] nlE t
n φ∂θ∂φθ∂−∞→ 00

2 ,lim  and 

[ ( ) ( ) ],,,lim 0000 nllEV t
n φ∂φθ∂×θ∂φθ∂= ∞→θφ  

where E denotes expectation taken under h. 

Now define φθ
−
φφθφθθ −= IIIIA 1  and .2 111

φθ
−
φφφφ

−
φφθφφθ

−
φφθφθθ +−= IIVIIVIIVB  

These two quantities play the key roles for the modification of the working 

likelihood and can be estimated by their empirical versions, say, Â  and ,B̂  by simply 

substituting θ̂  and φ̂  for their respective targets and plugging in second moment 

estimates where needed. In the meantime, let ( )θφ  denote the constrained ML 

estimate of φ given .θ  Then the function ( ) ( )( )θφθ,ˆˆ lBA  is the robust likelihood 

function for ,θ  see Royall and Tsou [11] and also Royall [10]. 

The adjusted robust LR test, the robust score test and other likelihood-based 
statistical tools could be obtained by operating on this robust likelihood function. For 

example, the adjusted robust LR test statistic ( ){ ( ( )) ( )( )}00,ˆ,ˆˆˆ2 θφθ−θφθ llBA  is 

asymptotically 2
1χ  distributed, whereas the naïve version of the statistic { ( ( ))θφθ ˆ,ˆ2 l  

( )( )}00, θφθ− l  is 2
1χ  only if the model assumption is correct. 

It is emphasized that 1−A  is the model-based variance of θ̂n  in the presence 

of φ (Cox and Hinkley [3]). In contrast 11 −− BAA  is the robust variance of ,θ̂n  that 

is, asymptotically legitimate under model misspecifications (Stafford [12]). 
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3. The Multinomial Model 

Let ,, jiZ  the jth subunit of the ith cluster, indicate the nominal outcome, taking 

on nominal values 1 to H for ,...,,2,1 iqj =  ....,,2,1 ni =  Let hi,π  represent the 

probability ( ),, iji hZP x|=  given p-dimensional covariate ix  in the ith cluster. Now 

consider the polytomous logistic regression model, 

,...,,3,2,log ,
1,

, Hhh
t
ihi

i

hi ==τ=







π
π

βx  

where ( ) ,...,,, 1,1,0,
t

phhhh −βββ=β  ( )tpiiii xxx 1,1,0, ...,,, −=x  and .10, ≡ix  Here 

1,iτ  is zero so that 

∑
=

=ττ=π
H

h
hihihi Hh

1
,,, ....,,2,1,  

Now let hjiY ,,  be the binary indicator, whose value is 1 if hZ ji =, and 0 otherwise, 

for ....,,2,1 Hh =  Note that ∑ =
=

H
h hjiY1 ,, 1  and ( )tHjijiji YYY ,,2,,1,, ...,,,  follows 

a multivariate distribution with probabilities ( ) ....,,, ,2,1,
t

Hiii πππ  

Define the partial sum ∑ =+ = iq
j hjihi YY 1 ,,,, .  Under the multinomial        

working model, the probability function for ( )tHiii YYY ,,2,,1,, ...,,, +++  is 

∏ = +
+π

H
h hi

y
hii yq hi

1 ,,, !! ,,  and the log likelihood function  is proportional to 

 ( )∑ ∑= = + π
n

i

H

h hihiy
1 1 ,,, .log  (1) 

Notice that when ,, jiZ  iqj ...,,1=  are dependent, (1) is no longer a valid likelihood 

function. 

Notice that the score functions for Hkk ...,,3,2, =β  are 

 ( )∑ ∑ ∑
= = =

++ π−=
τ∂
π∂

π
=

∂
∂

n

i

H

h

n

i
kiikii

ki

hi

hi
hii

k
qyy

1 1 1
,,,

,

,

,
,, .1 xxβ  (2) 
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An immediate result is that the expected values of kβ∂∂  equal zero so long as 

kiiq ,π  is the correct mean of ,,, kiY +  regardless of whether or not iji qjZ ...,,1,, =  

are independent. This guarantees that the solutions of ,0=∂∂ kβ  say ,ˆ , kiπ  remain 

consistent as long as ( ) kiiki qYE ,,, π=+  (McCullagh [7]). We can hence modify (1) 

to become legitimate for general correlated nominal responses. 

We can also easily see that 

,1
,

,

,

,
ki

ki

hi

hi
π−=

τ∂
π∂

π
 for ,,...,,3,2,...,,2,1 hkHkHh ≠==  

,11
,

,

,

,
hi

hi

hi

hi
π−=

τ∂
π∂

π
 for ,...,,2 Hh =  and ∑

=

π−=π
H

h
hii

2
,1, .1  

Routine calculations lead to three pp ×  matrices, 

∑ =∞→
ββ ππ−=

n

i sikii
t
ii

n
nqI sk 1 ,, ,lim xx  

( )∑ =∞→
ββ π−π=

n

i kikii
t
ii

n
nqI kk 1 ,, 1lim xx  

and 

( )∑ = ++
∞→

ββ =
n

i uiki
t
ii

n
nYYCovV uk 1 ,,,, ,,lim xx  for { }....,,2, Hsku ∈≠  

These then constitute the elements of A and B for any chosen regression parameter 
of interest. 

Notice that the above I and V terms could be conveniently estimated by 
substituting ML estimates for the regression parameters and replacing second 
moments, such as ( )uiki YYCov ,,,, , ++  with the empirical version ( )kiiki qY ,,, π̂−+  

( ).ˆ ,,, uiiui qY π−⋅ +  Here ui,π̂  and ki,π̂  are the ML estimates of ui,π  and ,, kiπ  

respectively. We can hence derive Î  and ,V̂  the empirical versions of above I and V, 

which then lead to consistent estimate Â  and B̂  of A and B, respectively. 
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4. Simulation Studies 

In this section, we use simulations to demonstrate the merit of robust likelihood 
method. The number of response levels H is set to be 3 and the number of clusters 
n employed includes 30, 50, 100 and 200. Polytomous logistic regression models, 

( ) ,log 1,0,1,, hihihi x β+β=ππ  ,3,2=h  ni ...,,2,1=  are ascertained, with ix  

independently and uniformly sampled from the interval [ ].1,1−  The cluster size iq  

is generated uniformly from integers in [2, 5]. The coefficient ,1,3β  designated as        

θ for convenience, is the parameter of interest and ( ) =ββββ t
1,30,31,20,2 ,,,  

( )t6.0,5.0,4.0,5.0 −−  are the true values employed. 

The correlated responses ( )tiii yyy 3,,2,,1,, ,, +++  are generated from the 

Dirichlet-multinomial distribution with probability density function 

( )
( )

( )
( )∏

=
+

+
κπΓ
κπ+Γ

+κΓ
κΓ

3

1 ,,,

,,, .!!
h hihi

hihi

i
i y

y
qq  

The parameter ( )0>κ  is related to the implied intra-cluster correlation and the 

second moments by ( ) ( ) ( ) ( )κ+π−πκ+=+ 11 ,,,, hihiiihi qqYVar  and 

( ) ( ) ( ),1, ,,,,,, κ+ππκ+−=++ kihiiikihi qqYYCov  for { },3,2,1∈≠ kh  

respectively. The values 10, 5, 1 and 0.2 are selected for κ in the simulations. Note 
that the larger κ is, the less hiY ,, +  and kiY ,, +  are correlated. 

Table 1 displays the empirical type I error probabilities committed by the naïve 
and the robust LR tests, denoted by naα  and ,adjα  respectively, for testing the null 

hypothesis 6.0:0 =θH  with a nominal level of 0.05. Also, included in the tabulation 

are the average of the 3,000 simulated θ̂  values and the corresponding sample 

variance, denoted by ( )θ̂m  and ( ),ˆ2 θs  respectively. We also exhibit the average of 

the robust and the naïve asymptotic variance estimates of ,θ̂  denoted by ( )θ̂âdjV  and 

( ),ˆˆ θnaV  respectively. Recall that the former and the latter are calculated based on 

( )2ˆˆ AnB  and ( ),ˆ1 An  respectively. 
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Table 1. The efficacy of robust likelihood 

N κ ( )θ̂m  ( )θ̂2s  ( )θ̂n̂aV  ( )θ̂âdjV  naα  adjα  

10 0.6338 0.4203 0.3258 0.3685 0.0830 0.0813 

5 0.6285 0.4901 0.3288 0.4262 0.1050 0.0807 

1 0.6461 0.8680 0.3489 0.7190 0.2053 0.0913 

30 

0.2 0.7138 1.3570 0.4030 1.0970 0.2697 0.0767 

10 0.6136 0.1829 0.1447 0.1697 0.0770 0.0597 

5 0.6025 0.2121 0.1456 0.1951 0.1033 0.0660 

1 0.6440 0.3681 0.1510 0.3189 0.2080 0.0767 

50 

0.2 0.6511 0.5646 0.1578 0.4623 0.2957 0.0797 

10 0.6021 0.0851 0.0674 0.0825 0.0877 0.0627 

5 0.6207 0.0992 0.0678 0.0964 0.1010 0.0507 

1 0.6173 0.1727 0.0686 0.1618 0.2137 0.0637 

100 

0.2 0.6228 0.2292 0.0699 0.2310 0.2717 0.0507 

10 0.6127 0.0370 0.0299 0.0371 0.0777 0.0520 

5 0.6034 0.0455 0.0300 0.0436 0.1187 0.0573 

1 0.6027 0.0710 0.0302 0.0718 0.2013 0.0553 

200 

0.2 0.6056 0.1011 0.0304 0.1012 0.2857 0.0520 

Obviously, the ML estimate under model misspecifications is close to the true 

value, 0.6, owing to the property of consistency. Moreover, the adjustment BA ˆˆ  

does correct the naïve likelihood so as to providing legitimate statistics. This is 

evident by seeing that the robust variance estimate, ( )θ̂adjV  is close to the sample 

variance of ,θ̂  as n increases. Similarly, the empirical type I error probability of the 

robust LR test is close to the nominal level 0.05. The accuracy and approximation 
improves as the sample size increases as well. On the contrarily, the corresponding 
statistics derived from the naïve likelihood are way off their respective nominal 
levels. 
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5. Real Examples 

In this section, we analyze real data sets to show the performance of our 
parametric robust approach. We use naLR  and adjLR  to, respectively, stand for the 

naïve and the robust LR test statistics for .0:0 =θH  

Example 1. Moore and Tsiatis [8] analyzed a low-iron rat teratology data set. 
The purpose of study was to assess the effects of chemical agents or dietary 
regimens on fetal development in laboratory rats. The 48 female rats were dieted by 
iron-deficient food and classified into four groups according to iron supplement 
(GRP=1: untreated group, GRP=2: rat received injections on day 7 or day 10 only, 
GRP=3: rat received injections on days 0 and 7, GRP=4: rat injected with iron 
supplement weekly). Each litter of female rat was counted the total number of fetuses 
and number of dead fetuses. The hemoglobin levels (HB) of the mothers were also 
recoded. 

Moore and Tsiatis [8] fitted several logistic regression models to assess the 
effects of HB and GRP separately. We, nonetheless, use our robust approach to study 
the joint effects of the two covariates. First, we code GRP simply to differentiate rats 
receiving injections ( )4,3,2GRP:1 =  or not ( ).1GRP:0 =  

The probability of dead fetuses was estimated by the following logistic 
regression model ( ) .GRP65.2HB19.003.2ˆlogit −−=π  More statistics are reported 

in Table 2. 

Example 2. This example concerned with the developmental effects resulting 
from exposure to hydroxyurea. The data set contained litters (clusters) of mice with 
varying sizes. Each female rat was randomly assigned to one of the treatment 
groups, including control, low dose (L), medium dose (M) and high dose (H). Three 
outcomes were recorded (the numbers of implantation sites (I), malformations (II) 
and dead/resorbed fetuses (III)). We only consider three dose groups (L, M and H) 
due to zero response in malformations under control group, like the way Chen et al. 
[2] did. 

Chen et al. [2] proposed using the Dirichlet-trinomial distribution to incorporate 
the within-cluster association. Before proceeding, we first define two dummy 
indicators 1x  and 2x  for the treatment groups: ( ),0,0 21 == xxL  ( )0,1 21 == xxM  

and ( ).1,0 21 == xxH  Our method suggested that ( ) 1III 24.037.2ˆˆlog x+−=ππ  
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217.0 x+  and ( ) .80.149.125.2ˆˆlog 21IIII xx ++−=ππ  Naïve and robust statistics are 

also included in Table 2. 

Example 3. This data set contains records of eye-testing results of 3,242 men 
and 7,477 women employees in Royal Ordnance factories in 1943-46. Both eyes of a 
person (cluster) were recorded according to four grades, 1~4. We used “grade 1”    
as the baseline category and found ( ) ,51.011.1ˆˆlog 1,2, iii x−=ππ  ( ) =ππ 1,3, ˆˆlog ii  

ix55.001.1 −  and ( ) ,12.087.0ˆˆlog 1,4, iii x−=ππ  where 1=ix  for man and 0=ix  

for woman. 

Obviously, results tabulated in Table 2 indicate that, contrary to the conclusion 
from the naïve LR test statistic, our adjusted LR test statistic found no significant 
difference between sex for eye grade 4 and grade 1. This is identical to the 
conclusion by Stuart [13] who used some rank statistic to compare gender difference. 

Despite Stuart [13] and our adjusted LR test statistic lead to the same 
conclusion, our robust approach provides not only valid likelihood ratio test results, 
but also consistent point estimates and valid standard errors. Most importantly,     
our method supplies a legitimate likelihood function which makes available full 
likelihood inferences that are unobtainable from any nonparametric or semi-
parametric means. 

Table 2. Naïve and robust statistics for real data analysis 

 θ̂  ( )θ̂n̂aV  ( )θ̂âdjV  naLR  adjLR  

Teratology data –2.65 0.2327 0.6086 35.15 13.44 

Hydroxyurea data   1.80 0.0475 0.0615 96.31 74.35 

Eyes data – 0.12 0.0024 0.0039 5.87 3.58 

6. Conclusion 

We have proposed a robust likelihood means for regression analysis of 
correlated nominal data. The validity of our robust likelihood requires no knowledge 
of the true underlying joint distributions of the cluster data. This accomplishment is 
not accessible by nonparametric or semi-parametric methods. 
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