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Abstract

In the present paper, we study the coefficient estimates for integral
operator containing Fox-Wright function and concave univalent functions.
The sharpness of these estimates is also investigated.

1. Introduction and Preliminaries

Let H be the class of functions analytic in U and #[a, n] be the subclass of

consisting of functions of the form f(z) = a + ayz" + ap,z™* +---. Let A be the

subclass of H consisting of functions of the form f(z)=1z+ a222 +---. For

o
complex parameters ay, ..., aq (A_J #0,-1,-2,...; =1 .., qJ and By, ..., Bp
]

(B—J 20,-1,-2,..;j=1 .., p], the Fox-Wright generalization ,¥p[z] of the

Bj

2010 Mathematics Subject Classification: 30C45.

Keywords and phrases: meromorphic univalent functions, concave functions, convex set,
integral operator, Fox-Wright function.

This work is supported by UKM-ST-06-FRGS0107-2009.
*Corresponding author
Received July 10, 2010



2 MASLINA DARUS and RABHA W. IBRAHIM

hypergeometric ,F), function, studied by the authors in [6]:

q
o || C(o; +nd;) ,
: : Y -
q‘yp[(aj’ Aj)l,q’ (B]’ B_j)l’pa Z] = Z

p

R
)

where Aj >0, for all j=1..4q, B; > 0, for all j=1,..,p and 1+
p q . _ P
ijl B; - zj=1 Aj > 0. For special case, when 4; =1, forall j=1,.., g, and
B; =1, forall j =1, .., p we have the following relationship:
g Fplag, s ags B s Bps 2) = Q¥ [(a, 1)1,q5 B 1)1,p5 z],

T'(B;)--TE,)

<p+1lq, peNy=NU{0}, zeU, where Q .= —————— L.
q=p q, p 0 {0} F(Oq)"'r((xq)

In [7], the authors introduced a function (z,'¥,[(a.;, Aj)l,q; B, Bj) 2 z])7!
given by
-1
(z4¥pl(a;, A B By z]) * (¥, (e, A_j)l’q; ®; Bj)Lp; z])

_ z
(1 _ Z)?H—l
and obtained the following integral operator:

(o, 4;) By By ,1/(2)

:(Zq‘{’p[(ajv Aj)l’q; (BJ» Bj)l’p; Z])_l *f(z)r (l)
" TB;)
where f e A, zeU, ;—:1 and
szll"(ocj)

(quyp[(ajs Aj)]7q; (B]’ Bj)],p; Z])71

szlr(sj +(n-1)B;)
szlr(“/ +(n-1)4;))

(}\4 + 1)11—1 Zn.
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For some computation, we have

Loy, 4)) 45 Bys Bj)y ,1/(2)

oo H;r(pj +(n—1)B;)

—z+ )

" szlr(aj +(n=1)4;)

A+1),_ya,z", 2)

where (a), is the Pochhammer symbol. Note that operator (2) is a generalization of

the one introduced by Noor [9].

In the theory of univalent functions the most important question is to find the

coefficient estimates for
fE) =2+ 4,(f)2" (3)
n=2

that are analytic and univalent in the unit disk U := {z:|z| < 1}. Let Co(p) be
the family of functions f : U — C, where p € (0, 1) that satisfy the following

assumption:
Assumption (A):
(i) f1s meromorphic in U and has a simple pole at the point p.

(i) £(0) = f(0)-1=0.

(iii) £ maps U conformally onto a set whose complement with respect to C s

convex.

The family Co(p) has been investigated recently in [1-4, 10]. In [8], Livingston

introduced a necessary and sufficient condition for a function fto be in Co(p):

m{—(l + p2)+2pz - (z=p)- pz)f"(z)} >0, Vzel.

1)

In [4], Avkhadiev and Wirths proved that for each f e Co(p) with the

expansion in (3):
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1_ p2n+2
1 4

pi(-p")

is valid. Equality is attained if and only if

2 2n-2
p-(1-p™7)

1 4
p"(1-p")

<

An(f) -

z - Lz(l +e9)22
fe)=—AtL . @
E

In [5], Bhowmik and Pommerenke obtained certain coefficient estimates for

functions

oo}

1))=Y a(NE-p), zea, (5)
where A:={zeC:|z—p|<1-p}and pe(0,1),

n=-—1
< p l—(l_p4j 2 n 3.
S 1-phHa-py! » o

In this paper, we determine some estimates the real part of A4,(f) for n > 2

2
pP

l-p

2
_ (1 — b an—l)
p

a,_» a_j+

4

and a,, for n = 0,1 and n > 2. For this purpose, we need the following result:

Theorem 1.1 [10]. For each f € Co(p), there exists a function ® holomorphic
in U such that o(U) c U and

z-—L 1+ of2) 2

1) = El+—p%j(l—zp) . zeU. ©)

2. Coefficient Estimates

In this section, we introduce some coefficient estimates for the integral operator
(1). Denoted by

" T@; +(n-1)B))
Hy_ = Hj:l j+ ' (A +1), -

szlr(aj +(n-1)4;)
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Theorem 2.1. Let p € (0,1) and I [(o, 4;) ,: B}, B)), ,1f(2) € Co(p)
have the Laurent expansion

0

Lo, 47, 4 (Bjn By 1) = D ()= p)" (7
n=-—1
Then
2
|a_1|£1fp2. ®)

Proof. Let 7;[(a;, Aj)l,q5 B;. B p]f(z) € Co(p). Then by Theorem 1.1,
there exist a function @(z) holomorphic in U and o(U) c U satisfying (6). Assume
that

o0

o2)= Y ez -p)"s zea ©)

n=0
with | ¢y | < 1. By using these two expansions (7) and (9),

0

<1+p2)(z—%ji a,(z - p)' :(1+pr){npz—pzzcn(z—p)" - (0)

n=—1 n=0

Comparing the coefficient of z(z — p)~' on both sides of (10), yields

2
a_| = P 3 Co» (11)
1+p

we pose the assertion (7).

Theorem 2.2. Let p < (0, (V5 - 1)/2) and ©,[(a;, 4;), s By B /()

€ Co(p) have the Laurent expansion (7). Then

lag | < —L—. (12)
1—p4

Proof. By using [5, Theorem 1.1] and Theorem 2.1.
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For n > 3, we have the following result:

Theorem 2.3. Let p €(0,1) and I)[(a;, Aj)l,q; B Bj)l,p]f(z) e Co(p)

have the Laurent expansion (7). Then

(1-pa, )
anfz—T"l
4\2 2 2 2
< p -|1=2 PP . (13)
(1-pHa-py?! pt )+ p? 1-pt

Proof. By using [5, Theorem 1.2] and Theorem 2.1.

Theorem 2.4. Let p e (0, (V5 -1)/2) and L[(o;, 4;), s B B, 1f()

€ Co(p) have the Laurent expansion (7). Then for n > 3,
| An([k[(aj: Aj)l,q; (Bj: Bj)l’p]f(z))l
< P’ +—2
(1+p>)1-p) 1-p

+<1—p>"[ 4

2 2
(1-pt ? 2

3 pyl 4 7 4

(1-p")(1-p) p l+p° 1-p

An(lk[(aj: Aj)l,q; (Bjs Bj)l,p]f(z)) =H, a,.

], (14)

where

Proof. Equating the right sides of (2) and (7), assuming |z| <1 and |z - p| <
1 — p. Then applying Theorems 2.1, 2.2 and 2.3.

Corollary 2.1. Let the assumptions of Theorem 2.4 hold. Then n > 3,

2

4L p n

2 2
x i 1—(1_’74J[ P’ + P’ j H, . (15)
(1-pH-p)y! pt ) e p? 1-pt !

a, <
@, (/)] L




COEFFICIENT INEQUALITIES FOR INTEGRAL OPERATOR ... 7

Next we consider the class Z of all functions F of the form (2) and belongs to
the family Co(p), where p € (0, 1).

Let F and G be analytic in the unit disk U. Then the function F is subordinate to
G, written F' < G, if G is univalent, F(0) = G(0) and F(U) < G(U). In more general
case, given two functions F(z) and G(z), which are analytic in U, the function
F(z) is said to be subordination to G(z) in U if there exists a function p(z),
analytic in U with p(0) = 0 and | p(z)| < 1 such that F(z) = G(p(z)).

Let ¢ be analytic in U of the form (2) and subordinate to the function
f € Co(p). Then we have the following result:

Theorem 2.5. Let p € (0,1). If F € T and ¢ < F, where ¢ has the form (2),
then

(l+p)2+p|:1+ 4p2}
LY (16)
(1+p) Hn—l

| a,(9)| <

Proof. Since ¢ < F, there exists a function p(z) satisfies p(0)=0, |p(z)| <1,
holomorphic in U and ¢(z) = F(p(z)). Also, since F € Co(p), by Theorem 1.1, F
satisfies (6). Now replacing z by p(z) in (6), putting ¢(z) = F(p(z)) and using the
fact that | @(p(z))| < e with | z| = 1, yield the assertion (16).
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