Far East Journal of Mathematical Sciences (FJMS)

Volume 43, Number 1, 2010, Pages 1-8
Published Online: September 24, 2010
This paper is available online at http://pphmj.com/journals/fjms.htm

© 2010 Pushpa Publishing House

COEFFICIENT INEQUALITIES FOR INTEGRAL OPERATOR CONTAINING FOX-WRIGHT FUNCTION

MASLINA DARUS* and RABHA W. IBRAHIM

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan, Malaysia

e-mail: maslina@ukm.my

rabhaibrahim@yahoo.com

Abstract

In the present paper, we study the coefficient estimates for integral operator containing Fox-Wright function and concave univalent functions. The sharpness of these estimates is also investigated.

1. Introduction and Preliminaries

Let \mathcal{H} be the class of functions analytic in U and $\mathcal{H}[a,n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z)=a+a_nz^n+a_{n+1}z^{n+1}+\cdots$. Let \mathcal{A} be the subclass of \mathcal{H} consisting of functions of the form $f(z)=z+a_2z^2+\cdots$. For complex parameters $\alpha_1,...,\alpha_q\left(\frac{\alpha_j}{A_j}\neq 0,-1,-2,...;\ j=1,...,q\right)$ and $\beta_1,...,\beta_p$ $\left(\frac{\beta_j}{B_j}\neq 0,-1,-2,...;\ j=1,...,p\right)$, the Fox-Wright generalization ${}_q\Psi_p[z]$ of the

Keywords and phrases: meromorphic univalent functions, concave functions, convex set, integral operator, Fox-Wright function.

This work is supported by UKM-ST-06-FRGS0107-2009.

2010 Mathematics Subject Classification: 30C45.

*Corresponding author

Received July 10, 2010

hypergeometric ${}_qF_p$ function, studied by the authors in [6]:

$${}_{q}\Psi_{p}[(\alpha_{j}, A_{j})_{1,q}; (\beta_{j}, B_{j})_{1,p}; z] = \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{q} \Gamma(\alpha_{j} + nA_{j})}{\prod_{j=1}^{p} \Gamma(\beta_{j} + nB_{j})} \frac{z^{n}}{n!},$$

where $A_j > 0$, for all j = 1, ..., q, $B_j > 0$, for all j = 1, ..., p and $1 + \sum_{j=1}^p B_j - \sum_{j=1}^q A_j \ge 0$. For special case, when $A_j = 1$, for all j = 1, ..., q, and $B_j = 1$, for all j = 1, ..., p we have the following relationship:

$${}_{q}F_{p}(\alpha_{1}, ..., \alpha_{q}; \beta_{1}, ..., \beta_{p}; z) = \Omega_{q}\Psi_{p}[(\alpha_{j}, 1)_{1, q}; (\beta_{j}, 1)_{1, p}; z],$$

$$q \leq p + 1; q, p \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}, z \in U, \text{ where } \Omega := \frac{\Gamma(\beta_{1}) \cdots \Gamma(\beta_{p})}{\Gamma(\alpha_{1}) \cdots \Gamma(\alpha_{q})}.$$

In [7], the authors introduced a function $(z_q \Psi_p[(\alpha_j, A_j)_{1,q}; (\beta_j, B_j)_{1,p}; z])^{-1}$ given by

$$(z_{q}\Psi_{p}[(\alpha_{j}, A_{j})_{1,q}; (\beta_{j}, B_{j})_{1,p}; z]) * (z_{q}\Psi_{p}[(\alpha_{j}, A_{j})_{1,q}; (\beta_{j}, B_{j})_{1,p}; z])^{-1}$$

$$= \frac{z}{(1-z)^{\lambda+1}}$$

and obtained the following integral operator:

$$I_{\lambda}[(\alpha_{j}, A_{j})_{1,q}; (\beta_{j}, B_{j})_{1,p}] f(z)$$

$$= (z_{q} \Psi_{p}[(\alpha_{j}, A_{j})_{1,q}; (\beta_{j}, B_{j})_{1,p}; z])^{-1} * f(z),$$
(1)

where
$$f \in \mathcal{A}, z \in U, \frac{\prod_{j=1}^{p} \Gamma(\beta_j)}{\prod_{j=1}^{q} \Gamma(\alpha_j)} = 1$$
 and

$$(z_q \Psi_p[(\alpha_j, A_j)_{1,q}; (\beta_j, B_j)_{1,p}; z])^{-1}$$

$$= z + \sum_{n=2}^{\infty} \frac{\prod_{j=1}^{p} \Gamma(\beta_{j} + (n-1)B_{j})}{\prod_{j=1}^{q} \Gamma(\alpha_{j} + (n-1)A_{j})} (\lambda + 1)_{n-1} z^{n}.$$

For some computation, we have

$$I_{\lambda}[(\alpha_{j}, A_{j})_{1,q}; (\beta_{j}, B_{j})_{1,p}]f(z)$$

$$= z + \sum_{n=2}^{\infty} \frac{\prod_{j=1}^{p} \Gamma(\beta_j + (n-1)B_j)}{\prod_{j=1}^{q} \Gamma(\alpha_j + (n-1)A_j)} (\lambda + 1)_{n-1} a_n z^n,$$
 (2)

where $(a)_n$ is the Pochhammer symbol. Note that operator (2) is a generalization of the one introduced by Noor [9].

In the theory of univalent functions the most important question is to find the coefficient estimates for

$$f(z) = z + \sum_{n=2}^{\infty} A_n(f) z^n$$
(3)

that are analytic and univalent in the unit disk $U := \{z : |z| < 1\}$. Let Co(p) be the family of functions $f : U \to \overline{C}$, where $p \in (0, 1)$ that satisfy the following assumption:

Assumption (A):

(i) f is meromorphic in U and has a simple pole at the point p.

(ii)
$$f(0) = f'(0) - 1 = 0$$
.

(iii) f maps U conformally onto a set whose complement with respect to \overline{C} is convex.

The family Co(p) has been investigated recently in [1-4, 10]. In [8], Livingston introduced a necessary and sufficient condition for a function f to be in Co(p):

$$\Re\left\{-(1+p^2)+2pz-\frac{(z-p)(1-pz)f''(z)}{f'(z)}\right\}>0, \quad \forall z\in U.$$

In [4], Avkhadiev and Wirths proved that for each $f \in Co(p)$ with the expansion in (3):

$$\left| A_n(f) - \frac{1 - p^{2n+2}}{p^{n-1}(1 - p^4)} \right| \le \left| \frac{p^2(1 - p^{2n-2})}{p^{n-1}(1 - p^4)} \right|$$

is valid. Equality is attained if and only if

$$f(z) = \frac{z - \frac{p}{1+p^2} (1+e^{i\theta}) z^2}{\left(1 - \frac{z}{p}\right) (1-zp)}.$$
 (4)

In [5], Bhowmik and Pommerenke obtained certain coefficient estimates for functions

$$f(z) = \sum_{n=-1}^{\infty} a_n(f)(z-p)^n, \quad z \in \Delta,$$
 (5)

where $\Delta := \{z \in C : |z - p| < 1 - p\}$ and $p \in (0, 1)$,

$$\left| a_{n-2} - \frac{(1 - p^2 a_{n-1})}{p} \right| \le \frac{p}{(1 - p^4)(1 - p)^{n-1}} \left[1 - \left(\frac{1 - p^4}{p^4} \right) \right| a_{-1} + \frac{p^2}{1 - p^4} \right|^2, n \ge 3.$$

In this paper, we determine some estimates the real part of $A_n(f)$ for $n \ge 2$ and a_n for n = 0, 1 and $n \ge 2$. For this purpose, we need the following result:

Theorem 1.1 [10]. For each $f \in Co(p)$, there exists a function ω holomorphic in U such that $\omega(U) \subset \overline{U}$ and

$$f(z) = \frac{z - \frac{p}{1 + p^2} (1 + \omega(z)) z^2}{\left(1 - \frac{z}{p}\right) (1 - zp)}, \quad z \in U.$$
 (6)

2. Coefficient Estimates

In this section, we introduce some coefficient estimates for the integral operator (1). Denoted by

$$H_{n-1} := \frac{\prod_{j=1}^{p} \Gamma(\beta_{j} + (n-1)B_{j})}{\prod_{j=1}^{q} \Gamma(\alpha_{j} + (n-1)A_{j})} (\lambda + 1)_{n-1}.$$

Theorem 2.1. Let $p \in (0, 1)$ and $I_{\lambda}[(\alpha_j, A_j)_{l,q}; (\beta_j, B_j)_{l,p}]f(z) \in Co(\mathfrak{p})$ have the Laurent expansion

$$I_{\lambda}[(\alpha_{j}, A_{j})_{1, q}; (\beta_{j}, B_{j})_{1, p}] f(z) = \sum_{n=-1}^{\infty} \mathbf{a}_{n}(f) (z - p)^{n}.$$
 (7)

Then

$$|\mathbf{a}_{-1}| \le \frac{p^2}{1+p^2}.$$
 (8)

Proof. Let $I_{\lambda}[(\alpha_j, A_j)_{1,q}; (\beta_j, B_j)_{1,p}] f(z) \in Co(p)$. Then by Theorem 1.1, there exist a function $\omega(z)$ holomorphic in U and $\omega(U) \subset \overline{U}$ satisfying (6). Assume that

$$\omega(z) = \sum_{n=0}^{\infty} c_n (z - p)^n, \quad z \in \Delta$$
 (9)

with $|c_0| < 1$. By using these two expansions (7) and (9),

$$(1+p^2)\left(z-\frac{1}{p}\right)\sum_{n=-1}^{\infty} \mathbf{a}_n(z-p)^n = \left(1+\frac{p}{z-p}\right)\left[1+p^2-pz\sum_{n=0}^{\infty} c_n(z-p)^n\right].$$
(10)

Comparing the coefficient of $z(z-p)^{-1}$ on both sides of (10), yields

$$\mathbf{a}_{-1} = \frac{-p^2}{1+p^2}c_0,\tag{11}$$

we pose the assertion (7).

Theorem 2.2. Let $p \in (0, (\sqrt{5} - 1)/2)$ and $I_{\lambda}[(\alpha_j, A_j)_{l,q}; (\beta_j, B_j)_{l,p}] f(z)$ $\in Co(p)$ have the Laurent expansion (7). Then

$$\left| \mathbf{a}_0 \right| \le \frac{p}{1 - p^4}. \tag{12}$$

Proof. By using [5, Theorem 1.1] and Theorem 2.1.

For $n \ge 3$, we have the following result:

Theorem 2.3. Let $p \in (0, 1)$ and $I_{\lambda}[(\alpha_j, A_j)_{l,q}; (\beta_j, B_j)_{l,p}]f(z) \in Co(p)$ have the Laurent expansion (7). Then

$$\left| \mathbf{a}_{n-2} - \frac{(1 - p^2 \mathbf{a}_{n-1})}{p} \right| \le \frac{p}{(1 - p^4)(1 - p)^{n-1}} \left| 1 - \left(\frac{1 - p^4}{p^4} \right)^2 \left(\frac{p^2}{1 + p^2} + \frac{p^2}{1 - p^4} \right)^2 \right|. \tag{13}$$

Proof. By using [5, Theorem 1.2] and Theorem 2.1.

Theorem 2.4. Let $p \in (0, (\sqrt{5} - 1)/2)$ and $I_{\lambda}[(\alpha_j, A_j)_{l,q}; (\beta_j, B_j)_{l,p}]f(z)$ $\in Co(p)$ have the Laurent expansion (7). Then for $n \ge 3$,

$$\left| A_{n}(I_{\lambda}[(\alpha_{j}, A_{j})_{1, q}; (\beta_{j}, B_{j})_{1, p}] f(z)) \right|$$

$$\leq \frac{p^{2}}{(1+p^{2})(1-p)} + \frac{p}{1-p^{4}}$$

$$+ (1-p)^{n} \left[\frac{p}{(1-p^{4})(1-p)^{n-1}} \left| 1 - \left(\frac{1-p^{4}}{p^{4}} \right)^{2} \left(\frac{p^{2}}{1+p^{2}} + \frac{p^{2}}{1-p^{4}} \right)^{2} \right| \right],$$
 (14)

where

$$\mathbf{A}_n(I_{\lambda}[(\alpha_j,\,A_j)_{1,\,q};\,(\beta_j,\,B_j)_{1,\,p}\,]f(z))\coloneqq H_{n-1}a_n.$$

Proof. Equating the right sides of (2) and (7), assuming |z| < 1 and |z - p| < 1 - p. Then applying Theorems 2.1, 2.2 and 2.3.

Corollary 2.1. Let the assumptions of Theorem 2.4 hold. Then $n \ge 3$,

$$|a_{n}(f)| \leq \left| \frac{p^{2}}{(1+p^{2})(1-p)} + \frac{p}{1-p^{4}} + (1-p)^{n} \right| \times \left[\frac{p}{(1-p^{4})(1-p)^{n-1}} \left| 1 - \left(\frac{1-p^{4}}{p^{4}} \right)^{2} \left(\frac{p^{2}}{1+p^{2}} + \frac{p^{2}}{1-p^{4}} \right)^{2} \right| \right] \right] / H_{n-1}. \quad (15)$$

Next we consider the class \mathcal{I} of all functions F of the form (2) and belongs to the family Co(p), where $p \in (0, 1)$.

Let F and G be analytic in the unit disk U. Then the function F is *subordinate* to G, written $F \prec G$, if G is univalent, F(0) = G(0) and $F(U) \subset G(U)$. In more general case, given two functions F(z) and G(z), which are analytic in U, the function F(z) is said to be *subordination* to G(z) in U if there exists a function $\rho(z)$, analytic in U with $\rho(0) = 0$ and $|\rho(z)| < 1$ such that $F(z) = G(\rho(z))$.

Let φ be analytic in U of the form (2) and subordinate to the function $f \in Co(p)$. Then we have the following result:

Theorem 2.5. Let $p \in (0, 1)$. If $F \in \mathcal{I}$ and $\phi \prec F$, where ϕ has the form (2), then

$$|a_n(\varphi)| < \frac{(1+p)^2 + p\left[1 + \frac{4p}{1+p^2}\right]}{(1+p)^2 H_{n-1}}, \quad \forall n \ge 2.$$
 (16)

Proof. Since $\varphi \prec F$, there exists a function $\rho(z)$ satisfies $\rho(0) = 0$, $|\rho(z)| < 1$, holomorphic in U and $\varphi(z) = F(\rho(z))$. Also, since $F \in Co(p)$, by Theorem 1.1, F satisfies (6). Now replacing z by $\rho(z)$ in (6), putting $\varphi(z) = F(\rho(z))$ and using the fact that $|\varphi(\rho(z))| < e$ with |z| = 1, yield the assertion (16).

References

- [1] F. G. Avkhadiev and K. J. Wirths, Convex holes produce lower bounds for coefficients, Complex Variables 47 (2002), 553-563.
- [2] F. G. Avkhadiev, C. Pommerenke and K. J. Wirths, On the sufficient of concave univalent functions, Math. Nachr. 271 (2004), 3-9.
- [3] F. G. Avkhadiev and K. J. Wirths, On a conjecture of Livingston, Mathematica (Cluj) 46(69) (2004), 19-23.
- [4] F. G. Avkhadiev and K. J. Wirths, A proof of Livingston conjecture, Forum Math. 19 (2007), 149-158.
- [5] B. Bhowmik and C. Pommerenke, Coefficient inequalities for concave and meromorphically starlike univalent functions, Ann. Polon. Math. 93(2) (2008), 177-186.

- [6] M. Darus and R. W. Ibrahim, On Cesro means for Fox-Wright functions, J. Math. Statist. 4(3) (2008), 156-160.
- [7] R. W. Ibrahim and M. Darus, New classes of analytic functions involving generalized Noor integral operator, J. Inequal. Appl. 2008 (2008), pp. 14, Article ID 390435.
- [8] A. E. Livingston, Convex meromorphic mappings, Ann. Polon. Math. 59 (1994), 275-291.
- [9] K. Noor, Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput. 182 (2006), 1872-1881.
- [10] K. J. Wirths, On the residuum of concave univalent functions, Serdica Math. J. 32 (2006), 209-214.