COEFFICIENT INEQUALITIES FOR INTEGRAL OPERATOR CONTAINING FOX-WRIGHT FUNCTION

MASLINA DARUS* and RABHA W. IBRAHIM
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600, Selangor Darul Ehsan, Malaysia
e-mail: maslina@ukm.my
rabhaibrahim@yahoo.com

Abstract

In the present paper, we study the coefficient estimates for integral operator containing Fox-Wright function and concave univalent functions. The sharpness of these estimates is also investigated.

1. Introduction and Preliminaries

Let \mathcal{H} be the class of functions analytic in U and $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots$. Let \mathcal{A} be the subclass of \mathcal{H} consisting of functions of the form $f(z)=z+a_{2} z^{2}+\cdots$. For complex parameters $\alpha_{1}, \ldots, \alpha_{q}\left(\frac{\alpha_{j}}{A_{j}} \neq 0,-1,-2, \ldots ; j=1, \ldots, q\right)$ and $\beta_{1}, \ldots, \beta_{p}$ $\left(\frac{\beta_{j}}{B_{j}} \neq 0,-1,-2, \ldots ; j=1, \ldots, p\right)$, the Fox-Wright generalization ${ }_{q} \Psi_{p}[z]$ of the 2010 Mathematics Subject Classification: 30C45.
Keywords and phrases: meromorphic univalent functions, concave functions, convex set, integral operator, Fox-Wright function.
This work is supported by UKM-ST-06-FRGS0107-2009.
*Corresponding author
Received July 10, 2010
hypergeometric ${ }_{q} F_{p}$ function, studied by the authors in [6]:

$$
{ }_{q} \Psi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p} ; z\right]=\sum_{n=0}^{\infty} \frac{\prod_{j=1}^{q} \Gamma\left(\alpha_{j}+n A_{j}\right)}{\prod_{j=1}^{p} \Gamma\left(\beta_{j}+n B_{j}\right)} \frac{z^{n}}{n!},
$$

where $A_{j}>0$, for all $j=1, \ldots, q, \quad B_{j}>0$, for all $j=1, \ldots, p$ and $1+$ $\sum_{j=1}^{p} B_{j}-\sum_{j=1}^{q} A_{j} \geq 0$. For special case, when $A_{j}=1$, for all $j=1, \ldots, q$, and $B_{j}=1$, for all $j=1, \ldots, p$ we have the following relationship:

$$
\begin{aligned}
& { }_{q} F_{p}\left(\alpha_{1}, \ldots, \alpha_{q} ; \beta_{1}, \ldots, \beta_{p} ; z\right)=\Omega_{q} \Psi_{p}\left[\left(\alpha_{j}, 1\right)_{1, q} ;\left(\beta_{j}, 1\right)_{1, p} ; z\right] \\
& q \leq p+1 ; q, p \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, z \in U, \text { where } \Omega:=\frac{\Gamma\left(\beta_{1}\right) \cdots \Gamma\left(\beta_{p}\right)}{\Gamma\left(\alpha_{1}\right) \cdots \Gamma\left(\alpha_{q}\right)} .
\end{aligned}
$$

In [7], the authors introduced a function $\left(z_{q} \Psi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p} ; z\right]\right)^{-1}$ given by

$$
\begin{aligned}
& \left(z_{q} \Psi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p} ; z\right]\right) *\left(z_{q} \Psi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p} ; z\right]\right)^{-1} \\
= & \frac{z}{(1-z)^{\lambda+1}}
\end{aligned}
$$

and obtained the following integral operator:

$$
\begin{align*}
& I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z) \\
= & \left(z_{q} \Psi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p} ; z\right]\right)^{-1} * f(z) \tag{1}
\end{align*}
$$

where $f \in \mathcal{A}, \quad z \in U, \frac{\prod_{j=1}^{p} \Gamma\left(\beta_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\alpha_{j}\right)}=1$ and

$$
\begin{aligned}
& \left(z_{q} \Psi_{p}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p} ; z\right]\right)^{-1} \\
= & z+\sum_{n=2}^{\infty} \frac{\prod_{j=1}^{p} \Gamma\left(\beta_{j}+(n-1) B_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\alpha_{j}+(n-1) A_{j}\right)}(\lambda+1)_{n-1} z^{n} .
\end{aligned}
$$

For some computation, we have

$$
\begin{align*}
& I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z) \\
= & z+\sum_{n=2}^{\infty} \frac{\prod_{j=1}^{p} \Gamma\left(\beta_{j}+(n-1) B_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\alpha_{j}+(n-1) A_{j}\right)}(\lambda+1)_{n-1} a_{n} z^{n}, \tag{2}
\end{align*}
$$

where $(a)_{n}$ is the Pochhammer symbol. Note that operator (2) is a generalization of the one introduced by Noor [9].

In the theory of univalent functions the most important question is to find the coefficient estimates for

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} A_{n}(f) z^{n} \tag{3}
\end{equation*}
$$

that are analytic and univalent in the unit disk $U:=\{z:|z|<1\}$. Let $\operatorname{Co}(p)$ be the family of functions $f: U \rightarrow \bar{C}$, where $p \in(0,1)$ that satisfy the following assumption:

Assumption (A):

(i) f is meromorphic in U and has a simple pole at the point p.
(ii) $f(0)=f^{\prime}(0)-1=0$.
(iii) f maps U conformally onto a set whose complement with respect to \bar{C} is convex.

The family $C o(p)$ has been investigated recently in [1-4, 10]. In [8], Livingston introduced a necessary and sufficient condition for a function f to be in $\operatorname{Co}(p)$:

$$
\mathfrak{R}\left\{-\left(1+p^{2}\right)+2 p z-\frac{(z-p)(1-p z) f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad \forall z \in U
$$

In [4], Avkhadiev and Wirths proved that for each $f \in C o(p)$ with the expansion in (3):

$$
\left|A_{n}(f)-\frac{1-p^{2 n+2}}{p^{n-1}\left(1-p^{4}\right)}\right| \leq\left|\frac{p^{2}\left(1-p^{2 n-2}\right)}{p^{n-1}\left(1-p^{4}\right)}\right|
$$

is valid. Equality is attained if and only if

$$
\begin{equation*}
f(z)=\frac{z-\frac{p}{1+p^{2}}\left(1+e^{i \theta}\right) z^{2}}{\left(1-\frac{z}{p}\right)(1-z p)} \tag{4}
\end{equation*}
$$

In [5], Bhowmik and Pommerenke obtained certain coefficient estimates for functions

$$
\begin{equation*}
f(z)=\sum_{n=-1}^{\infty} a_{n}(f)(z-p)^{n}, \quad z \in \Delta \tag{5}
\end{equation*}
$$

where $\Delta:=\{z \in C:|z-p|<1-p\}$ and $p \in(0,1)$,

$$
\left|a_{n-2}-\frac{\left(1-p^{2} a_{n-1}\right)}{p}\right| \leq \frac{p}{\left(1-p^{4}\right)(1-p)^{n-1}}\left[1-\left(\frac{1-p^{4}}{p^{4}}\right)\left|a_{-1}+\frac{p^{2}}{1-p^{4}}\right|^{2}\right], n \geq 3
$$

In this paper, we determine some estimates the real part of $A_{n}(f)$ for $n \geq 2$ and a_{n} for $n=0,1$ and $n \geq 2$. For this purpose, we need the following result:

Theorem 1.1 [10]. For each $f \in C o(p)$, there exists a function ω holomorphic in U such that $\omega(U) \subset \bar{U}$ and

$$
\begin{equation*}
f(z)=\frac{z-\frac{p}{1+p^{2}}(1+\omega(z)) z^{2}}{\left(1-\frac{z}{p}\right)(1-z p)}, \quad z \in U \tag{6}
\end{equation*}
$$

2. Coefficient Estimates

In this section, we introduce some coefficient estimates for the integral operator (1). Denoted by

$$
H_{n-1}:=\frac{\prod_{j=1}^{p} \Gamma\left(\beta_{j}+(n-1) B_{j}\right)}{\prod_{j=1}^{q} \Gamma\left(\alpha_{j}+(n-1) A_{j}\right)}(\lambda+1)_{n-1}
$$

Theorem 2.1. Let $p \in(0,1)$ and $I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z) \in C o(\mathrm{p})$ have the Laurent expansion

$$
\begin{equation*}
I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z)=\sum_{n=-1}^{\infty} \mathbf{a}_{n}(f)(z-p)^{n} \tag{7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\mathbf{a}_{-1}\right| \leq \frac{p^{2}}{1+p^{2}} \tag{8}
\end{equation*}
$$

Proof. Let $I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z) \in C o(\mathrm{p})$. Then by Theorem 1.1, there exist a function $\omega(z)$ holomorphic in U and $\omega(U) \subset \bar{U}$ satisfying (6). Assume that

$$
\begin{equation*}
\omega(z)=\sum_{n=0}^{\infty} c_{n}(z-p)^{n}, \quad z \in \Delta \tag{9}
\end{equation*}
$$

with $\left|c_{0}\right|<1$. By using these two expansions (7) and (9),

$$
\begin{equation*}
\left(1+p^{2}\right)\left(z-\frac{1}{p}\right) \sum_{n=-1}^{\infty} \mathbf{a}_{n}(z-p)^{n}=\left(1+\frac{p}{z-p}\right)\left[1+p^{2}-p z \sum_{n=0}^{\infty} c_{n}(z-p)^{n}\right] . \tag{10}
\end{equation*}
$$

Comparing the coefficient of $z(z-p)^{-1}$ on both sides of (10), yields

$$
\begin{equation*}
\mathbf{a}_{-1}=\frac{-p^{2}}{1+p^{2}} c_{0} \tag{11}
\end{equation*}
$$

we pose the assertion (7).
Theorem 2.2. Let $p \in(0,(\sqrt{5}-1) / 2)$ and $I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z)$ $\in \operatorname{Co}(p)$ have the Laurent expansion (7). Then

$$
\begin{equation*}
\left|\mathbf{a}_{0}\right| \leq \frac{p}{1-p^{4}} . \tag{12}
\end{equation*}
$$

Proof. By using [5, Theorem 1.1] and Theorem 2.1.

For $n \geq 3$, we have the following result:
Theorem 2.3. Let $p \in(0,1)$ and $I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z) \in \operatorname{Co}(p)$ have the Laurent expansion (7). Then

$$
\begin{align*}
& \left|\mathbf{a}_{n-2}-\frac{\left(1-p^{2} \mathbf{a}_{n-1}\right)}{p}\right| \\
\leq & \frac{p}{\left(1-p^{4}\right)(1-p)^{n-1}}\left|1-\left(\frac{1-p^{4}}{p^{4}}\right)^{2}\left(\frac{p^{2}}{1+p^{2}}+\frac{p^{2}}{1-p^{4}}\right)^{2}\right| \tag{13}
\end{align*}
$$

Proof. By using [5, Theorem 1.2] and Theorem 2.1.
Theorem 2.4. Let $p \in(0,(\sqrt{5}-1) / 2)$ and $I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z)$ $\in \operatorname{Co}(p)$ have the Laurent expansion (7). Then for $n \geq 3$,

$$
\begin{align*}
& \left|\mathbf{A}_{n}\left(I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z)\right)\right| \\
\leq & \frac{p^{2}}{\left(1+p^{2}\right)(1-p)}+\frac{p}{1-p^{4}} \\
& +(1-p)^{n}\left[\frac{p}{\left(1-p^{4}\right)(1-p)^{n-1}}\left|1-\left(\frac{1-p^{4}}{p^{4}}\right)^{2}\left(\frac{p^{2}}{1+p^{2}}+\frac{p^{2}}{1-p^{4}}\right)^{2}\right|\right] \tag{14}
\end{align*}
$$

where

$$
\mathbf{A}_{n}\left(I_{\lambda}\left[\left(\alpha_{j}, A_{j}\right)_{1, q} ;\left(\beta_{j}, B_{j}\right)_{1, p}\right] f(z)\right):=H_{n-1} a_{n}
$$

Proof. Equating the right sides of (2) and (7), assuming $|z|<1$ and $|z-p|<$ $1-p$. Then applying Theorems 2.1, 2.2 and 2.3.

Corollary 2.1. Let the assumptions of Theorem 2.4 hold. Then $n \geq 3$,

$$
\begin{align*}
\left|a_{n}(f)\right| \leq & {\left[\frac{p^{2}}{\left(1+p^{2}\right)(1-p)}+\frac{p}{1-p^{4}}+(1-p)^{n}\right.} \\
& \left.\times\left[\frac{p}{\left(1-p^{4}\right)(1-p)^{n-1}}\left|1-\left(\frac{1-p^{4}}{p^{4}}\right)^{2}\left(\frac{p^{2}}{1+p^{2}}+\frac{p^{2}}{1-p^{4}}\right)^{2}\right|\right]\right] / H_{n-1} . \tag{15}
\end{align*}
$$

Next we consider the class \mathcal{I} of all functions F of the form (2) and belongs to the family $C o(p)$, where $p \in(0,1)$.

Let F and G be analytic in the unit disk U. Then the function F is subordinate to G, written $F \prec G$, if G is univalent, $F(0)=G(0)$ and $F(U) \subset G(U)$. In more general case, given two functions $F(z)$ and $G(z)$, which are analytic in U, the function $F(z)$ is said to be subordination to $G(z)$ in U if there exists a function $\rho(z)$, analytic in U with $\rho(0)=0$ and $|\rho(z)|<1$ such that $F(z)=G(\rho(z))$.

Let φ be analytic in U of the form (2) and subordinate to the function $f \in C o(p)$. Then we have the following result:

Theorem 2.5. Let $p \in(0,1)$. If $F \in \mathcal{I}$ and $\varphi \prec F$, where φ has the form (2), then

$$
\begin{equation*}
\left|a_{n}(\varphi)\right|<\frac{(1+p)^{2}+p\left[1+\frac{4 p}{1+p^{2}}\right]}{(1+p)^{2} H_{n-1}}, \quad \forall n \geq 2 \tag{16}
\end{equation*}
$$

Proof. Since $\varphi \prec F$, there exists a function $\rho(z)$ satisfies $\rho(0)=0,|\rho(z)|<1$, holomorphic in U and $\varphi(z)=F(\rho(z))$. Also, since $F \in C o(p)$, by Theorem 1.1, F satisfies (6). Now replacing z by $\rho(z)$ in (6), putting $\varphi(z)=F(\rho(z))$ and using the fact that $|\omega(\rho(z))|<e$ with $|z|=1$, yield the assertion (16).

References

[1] F. G. Avkhadiev and K. J. Wirths, Convex holes produce lower bounds for coefficients, Complex Variables 47 (2002), 553-563.
[2] F. G. Avkhadiev, C. Pommerenke and K. J. Wirths, On the sufficient of concave univalent functions, Math. Nachr. 271 (2004), 3-9.
[3] F. G. Avkhadiev and K. J. Wirths, On a conjecture of Livingston, Mathematica (Cluj) 46(69) (2004), 19-23.
[4] F. G. Avkhadiev and K. J. Wirths, A proof of Livingston conjecture, Forum Math. 19 (2007), 149-158.
[5] B. Bhowmik and C. Pommerenke, Coefficient inequalities for concave and meromorphically starlike univalent functions, Ann. Polon. Math. 93(2) (2008), 177-186.
[6] M. Darus and R. W. Ibrahim, On Cesro means for Fox-Wright functions, J. Math. Statist. 4(3) (2008), 156-160.
[7] R. W. Ibrahim and M. Darus, New classes of analytic functions involving generalized Noor integral operator, J. Inequal. Appl. 2008 (2008), pp. 14, Article ID 390435.
[8] A. E. Livingston, Convex meromorphic mappings, Ann. Polon. Math. 59 (1994), 275-291.
[9] K. Noor, Integral operators defined by convolution with hypergeometric functions, Appl. Math. Comput. 182 (2006), 1872-1881.
[10] K. J. Wirths, On the residuum of concave univalent functions, Serdica Math. J. 32 (2006), 209-214.

