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Abstract 

In the present paper, we study the coefficient estimates for integral 
operator containing Fox-Wright function and concave univalent functions. 
The sharpness of these estimates is also investigated. 

1. Introduction and Preliminaries 

Let H  be the class of functions analytic in U and [ ]na,H  be the subclass of H  
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hypergeometric pq F  function, studied by the authors in [6]: 
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,1=jB  for all pj ...,,1=  we have the following relationship: 
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In [7], the authors introduced a function ( [( ) ( ) ]) 1
,1,1 ;,;, −βαΨ zBAz pjjqjjpq  

given by 

( [( ) ( ) ]) ( [( ) ( ) ]) 1
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( ) 11 +λ−
=
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and obtained the following integral operator: 

[( ) ( ) ] ( )zfBAI pjjqjj ,1,1 ,;, βαλ  
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For some computation, we have 

[( ) ( ) ] ( )zfBAI pjjqjj ,1,1 ,;, βαλ  
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where ( )na  is the Pochhammer symbol. Note that operator (2) is a generalization of 

the one introduced by Noor [9]. 

In the theory of univalent functions the most important question is to find the 
coefficient estimates for 

 ( ) ( )∑
∞

=

+=
2n

n
n zfAzzf  (3) 

that are analytic and univalent in the unit disk { }.1:: <= zzU  Let ( )pCo  be      

the family of functions ,: CUf →  where ( )1,0∈p  that satisfy the following 

assumption: 

Assumption (A): 

  (i) f is meromorphic in U and has a simple pole at the point p. 

 (ii) ( ) ( ) .0100 =−′= ff  

(iii) f maps U conformally onto a set whose complement with respect to C  is 
convex. 

The family ( )pCo  has been investigated recently in [1-4, 10]. In [8], Livingston 

introduced a necessary and sufficient condition for a function f to be in ( ):pCo  
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In [4], Avkhadiev and Wirths proved that for each ( )pCof ∈  with the 

expansion in (3): 
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is valid. Equality is attained if and only if 
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In [5], Bhowmik and Pommerenke obtained certain coefficient estimates for 
functions 
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In this paper, we determine some estimates the real part of ( )fAn  for 2≥n  

and na  for 1,0=n  and .2≥n  For this purpose, we need the following result: 

Theorem 1.1 [10]. For each ( ),pCof ∈  there exists a function ω holomorphic 

in U such that ( ) UU ⊂ω  and 
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2. Coefficient Estimates 

In this section, we introduce some coefficient estimates for the integral operator 
(1). Denoted by 
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Theorem 2.1. Let ( )1,0∈p  and [( ) ( ) ] ( ) ( )p,;, ,1,1 CozfBAI pjjqjj ∈βαλ  

have the Laurent expansion 
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Proof. Let [( ) ( ) ] ( ) ( ).p,;, ,1,1 CozfBAI pjjqjj ∈βαλ  Then by Theorem 1.1, 

there exist a function ( )zω  holomorphic in U and ( ) UU ⊂ω  satisfying (6). Assume 

that 
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Comparing the coefficient of ( ) 1−− pzz  on both sides of (10), yields 
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we pose the assertion (7). 

Theorem 2.2. Let ( ( ) )215,0 −∈p  and [( ) ( ) ] ( )zfBAI pjjqjj ,1,1 ,;, βαλ  

( )pCo∈  have the Laurent expansion (7). Then 
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Proof. By using [5, Theorem 1.1] and Theorem 2.1. 
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For ,3≥n  we have the following result: 

Theorem 2.3. Let ( )1,0∈p  and [( ) ( ) ] ( ) ( )pCozfBAI pjjqjj ∈βαλ ,1,1 ,;,  

have the Laurent expansion (7). Then 
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Proof. By using [5, Theorem 1.2] and Theorem 2.1. 

Theorem 2.4. Let ( ( ) )215,0 −∈p  and [( ) ( ) ] ( )zfBAI pjjqjj ,1,1 ,;, βαλ  

( )pCo∈  have the Laurent expansion (7). Then for ,3≥n  
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where 

( [( ) ( ) ] ( )) .:,;, 1,1,1 nnpjjqjjn aHzfBAI −λ =βαA  

Proof. Equating the right sides of (2) and (7), assuming 1<z  and <− pz  

.1 p−  Then applying Theorems 2.1, 2.2 and 2.3. 

Corollary 2.1. Let the assumptions of Theorem 2.4 hold. Then ,3≥n  
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Next we consider the class I  of all functions F of the form (2) and belongs to 
the family ( ),pCo  where ( ).1,0∈p  

Let F and G be analytic in the unit disk U. Then the function F is subordinate to 
G, written ,GF ≺  if G is univalent, ( ) ( )00 GF =  and ( ) ( ).UGUF ⊂  In more general 

case, given two functions ( )zF  and ( ),zG  which are analytic in U, the function 

( )zF  is said to be subordination to ( )zG  in U if there exists a function ( ),zρ  

analytic in U with ( ) 00 =ρ  and ( ) 1<ρ z  such that ( ) ( )( ).zGzF ρ=  

Let ϕ be analytic in U of the form (2) and subordinate to the function 
( ).pCof ∈  Then we have the following result: 

Theorem 2.5. Let ( ).1,0∈p  If I∈F  and ,F≺ϕ  where ϕ has the form (2), 

then 
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Proof. Since ,F≺ϕ  there exists a function ( )zρ  satisfies ( ) ,00 =ρ  ( ) ,1<ρ z  

holomorphic in U and ( ) ( )( ).zFz ρ=ϕ  Also, since ( ),pCoF ∈  by Theorem 1.1, F 

satisfies (6). Now replacing z by ( )zρ  in (6), putting ( ) ( )( )zFz ρ=ϕ  and using the 

fact that ( )( ) ez <ρω  with ,1=z  yield the assertion (16). 
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