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Abstract 

The main objective of this paper is to establish a class of new nonlinear 
difference inequality with two variables, which provides explicit bounds 
on unknown functions. This inequality given here can be used as tools in 
the study of partial difference equations with the initial and boundary 
conditions. 
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1. Introduction 

Being important tools in the study of difference equations, some discrete 
versions of integral inequalities (e.g., in [1, 2, 4, 6, 8, 10, 12] and some references 
therein) have attracted great interests of many mathematicians. Some recent works 
can be found (e.g., in [3, 5, 7-9, 11, 13] and some references therein). Pachpatte [8] 
obtained an upper bound on the following inequality: 
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However, the bound given on such inequality in [8] is not directly applicable in the 
study of certain difference equations. It is desirable to establish new inequalities of 
the above type, which can be used more effectively in the study of certain classes of 
difference equations. 

In this paper, we establish a new difference inequality 
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2. Main Result 

Throughout this paper, 1010 ,,, nnmm  are given natural numbers. =:N  

{ },...,3,2,1,0  { },...,3,2,1:=+N  [ ] ,,: 10 += N∩mmI  [ ] ,,: 0 += N∩mmIm  =:J  

[ ] ,, 10 +N∩nn  [ ] ,,: 0 += N∩nnJn  [ ).,0: ∞=+R  For functions ( ),, nmz  ,, N∈nm  

its first-order differences are defined by ( ) ( ) ( ).,,1,1 nmznmznmz −+=Δ  
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( )1H  ( )++∈ψ RR ,C  is a strictly increasing function with ( ) 00 =ψ  and 

( ) ∞→ψ t  as ;∞→t  

( )2H  ( )∞→× ,0:, 21 JIcc  are nondecreasing in each variable; 

( )3H  ( )++∈ϕ RR ,C  is nondecreasing with ( ) 0>ϕ r  for ;0>r  

( )4H  ( ) .2,1,, =×∈ + iJICfi R  

Theorem 1. Suppose that ( ) ( )41 H-H  hold and ( )nmu ,  is a nonnegative and 

continuous function on JI ×  satisfying (1.1). Then we obtain 

( ) ( ( ( )( ))),,, 111 nmAnmu −−− ΩΦψ≤  (2.1) 
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11, −− Φψ  and 1−Ω  denote the inverse functions of ψ, Φ and Ω, respectively, and 

JNIM ∈∈ 11 ,  satisfy 

( ) ( ) ( )( ) ( ).,,, 1
11

11
11
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Proof. From assumption ( )2H  and the inequality (1.1), we have 
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for all ( ) ,, JInm M ×∈  where 10 MMm ≤≤  is chosen arbitrarily, 1M  is defined 

by (2.6). Define a function ( )nm,η  by the right hand side of (1.1), i.e., 
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Clearly, ( ) ( ) ( ) ,0,,, 210 >=η nMcnMcnm  ( )nm,η  is a positive and nondecreasing 

function in each variable. From the above equality (2.8) and by making use of the 
formula 
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and using the fact that  
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for all ( ) ., JInm M ×∈  From (2.9), we get 
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On the other hand, for arbitrarily given ( ) ( ) ,,1,, JInmnm M ×∈+  by the 

Mean Value Theorem for integrals, there exists ξ in the open interval ( )( ,, nmη  
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where Φ is defined by (2.2). From (2.10) and (2.11), we have 
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for ( ) ( ) .,1,, JInmnm M ×∈+  Keep n fixed, let ms =  in (2.12) and then, taking 

the sum on both sides of (2.12) over ,1...,,2,1, 000 −++= mmmms  we get 
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Define the function ( )nm,Θ  by the right hand side of (2.13). Clearly, ( )nm,Θ  
is a positive and nondecreasing function in each variable, ( ) ( ) .0,,0 >=Θ nMDnm  
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Using ( ) ( )( ),,, 1 nmnm ΘΦ≤η −  by the definition ( ),, nmΘ  we obtain 
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for all ( ) 1,, 1 NJInm NM ×∈  is defined by (2.6). From (2.15), we have 
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Similar to (2.10) to (2.13), we obtain 
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Using the fact ( ) ( )( )nmnmu ,, 1 ηψ≤ −  and ( ) ( )( ),,, 1 nmnm ΘΦ≤η −  from (2.17), 

we obtain 
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for all ( ) ., 1NM JInm ×∈  Since 1MIM ∈  is arbitrary, from (2.19), we get the 

required estimation (2.1). 
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