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Abstract 

This paper presents a computational technique for Volterra integral 
equations of the second kind type. The method is based on CAS wavelets. 
We give a general procedure of forming product operational matrix of 
CAS wavelets. CAS wavelets approximation method is utilized to reduce 
the Volterra integral equations to algebraic equations. Illustrative examples 
are included to demonstrate the validity and applicability of the technique. 

1. Introduction 

Wavelets theory is relatively new and an emerging area in mathematical 
research. Recently, wavelets have been applied in different fields of science and 
engineering. Wavelets permit the accurate representation of a variety of function and 
operator. Orthogonal functions and polynomial series have received considerable 
attention in solving various problems of dynamic systems. The main characteristic of 
this technique is that it reduces these problems to those of solving a system of 
algebraic equations, thus greatly simplifying the problem. The approach [2] is based 
on converting the underlying differential equations into integral equations through 
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integration, approximating various signals involved in the equation by truncated 
orthogonal series and using the operational matrix P of integration, to eliminate 
integral operations. The matrix P is given by 

( ) ( )∫ Φ≈′′Φ
t

tPtdt
0

,  

where ( ) [ ]Tnt 110 ...,,, −φφφ=Φ  and the matrix P can uniquely be determined on 

the basis of particular orthogonal functions. The elements 110 ...,,, −φφφ n  are the 

basic functions, orthogonal on the certain interval [ ]., ba  Special attention has 

been given to the application of Legendre wavelets [1] and the linear Legendre 
wavelets [2]. 

In this paper, we introduce a new numerical method to solve Volterra integral 
equations of the form 

( ) ( ) ( ) ( )∫+=
t

dssytsKtfty
0

,,    ,1,0 ≤≤ ts  (1) 

where ( ) [ ],1,02Ltf ∈  kernels ( ) ([ ] [ ])1,01,0, 2 ×∈ LtsK  and ( )ty  is an unknown 

function. This method reduces integral equations to a set of algebraic equations by 
expanding ( )ty  as CAS wavelets with unknown coefficients. In recent years, many 

different basic functions have been used to estimate the solution of (1), such as Haar 
wavelets [7] and Legendre wavelets. 

The paper is organized as follows: In Section 2, it describes the CAS wavelets. 
The CAS wavelets product operational matrix will be derived in Section 3. In 
Section 4, it describes the Volterra integrations of the second kind and the proposed 
method is used to approximate the unknown function ( ).ty  Finally, in Section 5, 

illustrative examples are given. 

2. Properties of CAS Wavelets 

2.1. Wavelets and CAS wavelets 

Wavelets constitute a family of functions constructed from the dilation and 
translation of a single function called the mother wavelet. When the dilation 
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parameter a and the translation parameter b vary continuously, the following family 
of continuous wavelets are obtained [5], 

,2
1

, ⎟
⎠
⎞⎜

⎝
⎛ −ϕ=ϕ −

a
btaba    .0,, ≠∈ aRba  

If the parameters a and b are restricted to discrete values as ,0
kaa −=  ,00

kanbb −=  

,10 >a  00 >b  and n, k are positive integers, then we have the following family of 

discrete wavelets 

( ),0020, nbtaa kk
nk −ϕ=ϕ  

where nk ,ϕ  forms a wavelet basis for ( ).2 RL  In particular, when 20 =a  and ,10 =b  

then nk ,ϕ  forms an orthonormal basis [5]. 

CAS wavelets ( ) ( )tnmktmn ,,,ϕ=ϕ  have four arguments, ,12...,,1,0 −= kn  

k can be any non-negative integer, m is any integer and t is the normalized time. 
They are defined in the interval [ )1,0  as [3], 

 ( ) ( )
⎪⎩

⎪
⎨
⎧ +≤≤−

=ϕ +

otherwise,,0

,
2

1
2

for,2CAS2 1
2

Kk
k

m
k

mn

ntnntt  (2) 

where 

( ) ( ) ( ).2sin2cosCAS tmtmtm π+π=  (3) 

The dilation parameter is ka −= 2  and translation parameter is .2 nb k−=  The set 

of CAS wavelets forms an orthonormal basis for ( ).2 RL  

2.2. Function approximation 

A function ( )tf  defined over [ )1,0  may be expanded as 

 ( ) ( )∑∑
∞

= ∈

ϕ=
1

,
n Zm

nmnm tctf  (4) 

where 

( ) ( )( ),, ttfc nmnm ϕ=  (5) 
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in which ( )⋅⋅,  denotes the inner product. If the infinite series in equation (3) are 

truncated, then equation (3) can be written as 

( ) ( ) ( )∑ ∑
−

= −=

ψ=ϕ
12

0
,

k

n

M

Mm

T
nmnm tCtctf  (6) 

where C and ( )tψ  are ( ) 1122 ×+Mk  matrices given by 

[ ( ) ( ) ( ) ( ) ( ) ( )] ,...,,...,,...,,,...,,
221100

T
MMMMMM kk ccccccC

−−−=  (7) 

( ) [ ( ) ( ) ( ) ( ) ( ) ( )] ....,,...,,...,,,...,,
221100

T
MMMMMM kkt ϕϕϕϕϕϕ=ψ

−−−  (8) 

3. CAS Wavelets Operational Matrix 

3.1. CAS wavelets operational matrix of integration 

The operational matrix of integration P has been derived in [4]. First for the 
66 ×  matrix P and 1=M  and .1=k  The six basis functions are given by 

( )( ) ( ) ( )( )
( )
( ) ( ) ( )( )

,2
10

4sin4cos2
2

4sin4cos2

01

00

10
<≤

⎪
⎭

⎪
⎬

⎫

π+π=ϕ
=ϕ

π−π=ϕ −

t
tmtmt

t
tmtmt

 (9) 

( )( ) ( ) ( )( )
( )
( ) ( ) ( )( )

.12
1

4sin4cos2
2

4sin4cos2

11

10

11
<≤

⎪
⎭

⎪
⎬

⎫

π+π=ϕ
=ϕ

π−π=ϕ −

t
tmtmt

t
tmtmt

 (10) 

By integrating (7) and (8) from 0 to t and using (4), it can be obtained 

( )( )
( ) ( )( )

∫ ⎪
⎩

⎪
⎨

⎧

<≤

<≤−π+π
π=′′ϕ −

t

t

ttmtm
tdt

0
10

12
1,0

2
10,14sin4cos4

2
 

( ) ( )( ) ,0,0,0,4
1,4

1,04
1

60100 ψ⎥⎦
⎤

⎢⎣
⎡

ππ
−=ϕ+ϕ−

π
tt  

( )∫ ⎪
⎩

⎪
⎨

⎧

<≤

<≤
=′′ϕ

t

t

tt
tdt

0
00

12
1,2

2
2
10,2
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( )( ) ( ) ( ) ( )tttt 10010010 2
1

4
1

4
1

4
1 ϕ+ϕ

π
−ϕ

π
+ϕ

π −  

( ).0,2
1,0,4

1,4
1,4

1
6 tψ⎥⎦

⎤
⎢⎣
⎡

π
−

π
=  

Similarly we have 

( ) ( ( )( ) ( )) ( )∫ ψ⎥⎦
⎤

⎢⎣
⎡

ππ
=ϕ+ϕ

π
′′ϕ −

t
ttttdt

0
6001001 ,0,0,0,0,4

1,4
1

4
1  

( )( ) ( ( ) ( )) ( )∫ ψ⎥⎦
⎤

⎢⎣
⎡

ππ
−=ϕ+ϕ−

π
′′ϕ −

t
ttttdt

0
6111011 ,4

1,4
1,0,0,0,04

1  

( ) ( )( ) ( ) ( ) ( )∫ ψ⎥⎦
⎤

⎢⎣
⎡

π
−

π
=ϕ

π
−ϕ+ϕ

π
′′ϕ −

t
tttttdt

0
611101110 ,4

1,4
1,4

1,0,0,04
1

4
1

4
1  

( ) ( ( )( ) ( )) ( )∫ ψ⎥⎦
⎤

⎢⎣
⎡

ππ
=ϕ+ϕ

π
′′ϕ −

t
ttttdt

0
6101111 .4

1,4
1,0,0,0,04

1  

Thus 

( ) ( )∫ ψ=′′ψ ××
t

tPtdt
0

66616 ,  (11) 

where 

( ) [ ( ) ( ) ]Tt 1110110100106 ,,,,, ϕϕϕϕϕϕ=ψ −−  

and 

.

110000

111000

110000

000011
020111
000110

4
1

66

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ππ

π
−

π

ππ

ππ

π
−

π

ππ
−

=×P  
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In (8), the subscript of 66×P  and 6ψ  denotes the dimensions. In (8), the matrix 66×P  

can be written as 

,
0 3333

3333
66

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

××

××
×

L

FL
P  

where 

,

011

111

110

33

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ππ

π
−

π

ππ
−

=×L    .
000
020
000

33
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=×F  

In general, we have 

( ) ( )∫ ψ=′′ψ
t

tPtdt
0

,  (12) 

where ( )tψ  is given in equation (6) and P is a ( ) ( )122122 +×+ MM kk  matrix 

given by 

,

000

00

00

0

2
1

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= +

L

FL

F

FFL

FFFL

P k  

where F and L are ( ) ( )1212 +×+ MM  matrix given by 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0

2

0

F  
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and 

( ) ( )

( ) ( )

.

0001001

0001
101

10

0001100

1111111
0011000

01
101

1000

1001000

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ππ

π−π−

ππ

ππππππ

ππ
−

π−π−
−

ππ
−

=

MM

MM

MM

MM

L  

3.2. The product operational matrix of CAS wavelets 

Let 
( ) ( ) ( ),~ tCtt T ψψψ  (13) 

where C~  is a ( ) ( )122122 +×+ MM kk  product operational matrix. The 66 ×  

product operational matrix was given in [3]. In this paper, a general procedure of 
forming product operational matrix is proposed. In general, by using the vector C in 

equation (7), the ( ) ( )122122 +×+ MM kk  matrix C~  is 

,
~

~
~

2~

2

2

1

2

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

kC

C
C

C k  

where ,~
iC  12...,,1 −= ki  are ( ) ( )1212 +×+ MM  matrices given by 

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

.

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

0

~

202

11111

11111

0

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

ϕϕϕ

ϕ+ϕ−ϕϕ−ϕ

ϕ−ϕϕϕ+ϕ

ϕϕ

=

−+−

−+−−−+−

−+−−

−

MiiMi

MiMiiMiMi

iiMiii

Mii

iC  
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4. Solution of the Volterra Integral Equations 

Consider the Volterra integral equations given in equation (1). We first 
approximate ( )ty  as 

( ) ( ),tCty Tψ=    ( ) ( ),tXtf Tψ=    ( ) ( ) ( ),, sKttsK T ψψ=  

where C and ( )tψ  are defined similarly to (7) and (8). K is ( ) ( )122122 +×+ MM kk  

matrix where the elements of K calculate as follows: 

( ) ( ) ( )∫ ∫ −=−=ψψ
1

0

1

0
....,,,,12...,,0,,, MMjilndtdsstKst k

ljni  

Then 

( ) ( ) ( ) ( ) ( )∫ ψψψ+ψ=ψ
t TTTT CdsssKttXtC
0

.  (14) 

Thus with equation (12) and equation (13), we have 

( ) ( ) ( ) ( ).~ tPCKttXtC TTT ψψ+ψ=ψ  (15) 

Equation (15) is a linear system in terms of C by using collocating method. 

5. Illustrative Examples 

Example 1.1. Consider the Volterra integral equation 

( ) ( ) ( ) ( )∫ −++π−π=
t

dssytstty
0

2 .12cos14  (16) 

The exact solution of this problem is ( ) ( ).2cos4 2 tty ππ=  

Equation (16) can be solved using the method with 0=k  and 1=M  in 
Section 4, we have 

( ) ( )
T

X ⎥⎦
⎤

⎢⎣
⎡ −π−−π= 142

1,1,142
1 22  

and 
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,

02
10

2
102

1
02

10

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

π

ππ
−

π
=K  

and then [ ] .2,0,2 22 TC ππ=  Therefore 

( ) ( ) ( ).2cos4 2 ttCty T ππ=ψ=  

Example 1.2. Consider the Volterra integral equation 

 ( ) ( ) ( ) ( )∫ −−−=
t

dssyststtty
0

.coscos  (17) 

The exact solution of this problem is ( ) ( ( ) ).13cos2
3
1 += tty  

Table 1. Comparison of CAS wavelets method and the method in [6] 

 ,2=k  1=M  ,3=k  2=M  

X yy ~−  yy ~−  

0.1 2.43117832e-02 1.11008211e-03 

0.2 1.59182044e-02 4.68651323e-04 

0.3 5.55352592e-03 5.08730892e-04 

0.4 5.93105645e-02 7.55356316e-03 

0.5 6.63233072e-02 2.31888592e-02 

0.6 4.03928772e-02 1.09551714e-02 

0.7 5.41201624e-03 1.04133232e-03 

0.8 3.43154135e-02 6.94512700e-04 

0.9 1.32045209e-02 1.00043250e-03 

We solve equation (17) using the method with ,2=k  1=M  and ,3=k  2=M  

in Section 4, respectively. Table 1 shows the numerical result of the example. 
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