

Far East Journal of Mathematical Sciences (FJMS)
Volume 42, Number 2, 2010, Pages 161-173
Published Online: September 9, 2010
This paper is available online at http://pphmj.com/journals/fjms.htm
© 2010 Pushpa Publishing House

:tionClassificaject Sub sMathematic 2010 05Cxx.
 Keywords and phrases: graph labeling, vertex-magic total labeling, mathematical

programming.

Received July 23, 2009; Revised December 2, 2009

AN APPLICATION OF MATHEMATICAL PROGRAMMING
IN VERTEX-MAGIC TOTAL LABELING PROBLEMS

PARHAM AZIMI

Islamic Azad University (Qazvin Branch)
No. 21, Shahid Fallahi St. (Zaferanieh)
Vali-e-Asr Ave.
Tehran, Iran
e-mail: p.azimi@setarehiran.com

Abstract

A labeling (or valuation) of a graph ()EVG ,= is a map that carries

graph elements to the special numbers (usually to the positive or non-
negative integers). There are some famous labeling methods such as
graceful labeling, harmonious labeling, magic-type total labeling,
antimagic-type labeling and the other miscellaneous labelings. Among
magic-type labelings, a well known one is vertex-magic total labeling. For
a graph (),, EVG = an injective mapping f from EV ∪ to the set

{ }EV +...,,2,1 is a vertex-magic total labeling if there is a constant

k, called the magic constant, such that for every vertex v, () ()vufvf Σ+

,k= where the sum is over all vertices u adjacent to v.

In this paper, at first, an integer programming model has been developed
for formulating a vertex-magic total labeling of a given graph and then
a branch and bound algorithm has been developed to solve the
correspondent problem for finding the vertex-magic total labeling of the

PARHAM AZIMI

162

graph. Finally, the algorithm has been extensively tested on a set of
randomly generated graphs in different classes.

1. Introduction

All graph labeling methods trace their origin to the one which was introduced
by Rosa [1] in 1967 or the one given by Graham and Sloane [2] in 1980. A labeling
(or valuation) of a graph G is a map that carries graph elements to some special
numbers (usually to the positive or non-negative integers). If we review all studies
from that time to the current time, we can find that major studies are focused on
proving a special labeling for different classes of graphs. For instance, we can refer
to the one that was collected by Gallian [3] which covers all studies conducted in the
field of graph labeling. But since the graph labeling problems have some
applications in industries [4], therefore some researches focused on how to label a
graph by using programming languages [5], i.e., constraint programming or
mathematical programming [6, 7]. In these studies, the researchers intended to
develop an algorithm to find a feasible solution of a special labeling for a given
graph. The aim of this paper is as the same as such works. However, in this section,
we try to overview the origin of graph labeling problems as well.

Rosa [1] called a function f, a β-valuation of a given graph (),, EVG = if f

is an injective from the V to the set { }V...,,2,1 such that we assign label

() ()vfuf − to the edge uv, then the resulting edge labels are distinct. The most

common choices of domain are the set of all vertices and edges (such a labeling is
called total labeling), the vertex-set alone (vertex-labeling), or the edge-set alone
(edge-labeling). Other domains are also possible. Golomb [8] called such a labeling
as graceful labeling.

Gallian [3] categorized all labelings into 5 groups and called them: Graceful
labeling, Harmonious labeling, Magic-type labeling, Antimagic-type labeling and
Miscellaneous labeling. Since the paper domain is magic-type labeling, so we
neglect other labelings, however, we may find the definitions and the recent
researches in [3].

Magic labeling motivated by the notion of magic squares in number theory but
magic labeling was introduced by Sedlàček [9] in 1963. Based on Sedlàček’s work,

AN APPLICATION OF MATHEMATICAL PROGRAMMING …

163

Stewart [10, 11] studied various ways to label the edges of a given graph in the mid
1960s. He defined “semi-magic” labeling of a connected graph if we can label the
edges with integers such that for each vertex v, the sum of the labels of all edges
incident to v is the same for all v. A semi-magic labeling is called “magic labeling” if
the edges are labeled with distinct positive integers. Stewart called a magic labeling
“supermagic” if the set of edge labels consists of consecutive positive integers.

Stewart [9] proved the following: nK is magic for 2=n and all ;5≥n nnK , is

magic for all ;3≥n Fans nF are magic iff n is odd and ;3≥n Wheels nW are magic

for all ;3≥n and nW with one spoke deleted is magic for 4=n and for all .6≥n

He also proved that nK is supermagic iff 5>n and ().4mod0≠n We may find

the other researches in this field in [3].

In the literature of magic labeling, there are two different categories: edge-magic
total labeling and vertex-magic total labeling. For edge-magic total labeling or as an
abbreviation EMTL, one can find the details in [3] and [7].

But MacDougall et al. [12] introduced the notion of vertex-magic total labeling

in 1999. For a graph (),, EVG = an injective mapping f from EV ∪ to the set

{ }EV +...,,2,1 is a vertex-magic total labeling (VMTL) if there is a constant k,

called the magic constant, such that for every vertex v, () () ,kvufvf =Σ+ where

the sum is over all vertices u adjacent to v, however, some authors use the term
“vertex-magic” for this concept. They proved that the following graphs have vertex-

magic total labeling (VMTL): ;nC ();2>nPn ();1, >mK mm ()2, >− meK mm

and nK for n odd and they also proved that when ,1+> mn nmK , does not have

VMTL. They conjectured that 1, +mmK has a VMTL for all m and that nK has

VMTL for all .3≥n The latter conjecture was proved by Lin and Miller [13].

Finally, Gray et al. [14] have shown that all complete graphs are VMTL. In [15],
McQuillan introduced a technique for constructing VMTL of 2-regular graphs.

Specially, if m is a positive integer and J is any subset of { },...,,2,1 kI = then

() ()niJIiniJi mCmC −∈∈ ∪∪∪ has VMTL. The summary of VMTL of different

graphs has been shown in the following table:

PARHAM AZIMI

164

Table 1. The latest results of VMTL

Graph Conditions

nC [12]

nP 2>n [12]

eK mm −, 2>m [12]

nmK , Iff 1nm − [12, 16, 17]

nK
For n odd [12]
For (),4mod2≡n 2>n [13]

3nK Iff 2≠n [18-20]

nmK ,1≥m 4≥n [21]

Peterson ()knP , [22]

Prisms 2PCn × [23]

nW Iff 11≤n [12, 17]

nF Iff 10≤n [12, 17]

Meissner and Zwierzyński [24] used VMTL of graphs as a way to compare the
efficiency of parallel execution of a program versus sequential processing as an
application of VMTL. We can find more details about the latest results in Gallian
[3].

Now, we are ready to define the integer programming model and develop an
algorithm for solving it.

2. Integer Programming (0-1) Model of Vertex-magic
Total Labeling Problem

Denote the vertices of the graph ()EVG ,= by ,...,,, 21 nvvv which has n

vertices and m edges. Now, we define the decision variables of the model as follows:

ix The label of vertex ,iv ,,2,1 ni =

ijx The label of an edge (),, ji vv ,...,,2,1, nji = .ji ≠

k The magic constant.

AN APPLICATION OF MATHEMATICAL PROGRAMMING …

165

itw A 0-1 variable, where 1=itw implies that ,txi = ,...,,2,1 ni =

....,,2,1 nmt +=

ijtr A 0-1 variable, where 1=ijtr implies that ,txij = ,...,,2,1, nji =

,ji ≠ ,,2,1 nmt +=

The following 0-1 model has a feasible solution iff ()EVG ,= has vertex-

magic total labeling:

Problem VMTL

(1)
() ()

....,,2,1,
,
∑
∈

=∀=+
GEvv

iji
ji

nikxx

(2) ,,2,1,
1
∑
+

=
=∀=

nm

t
iti nitwx

(3) () ().,,1∑ +
=

∈∀=
nm

t jiijtij GEvvtrx

(4) ,,2,1,11∑ +
=

=∀=
nm

t it niw

(5) () ().,,11∑ +
=

∈∀=
nm

t jiijt GEvvr

(6) () ()∑ ∑= ∈
+=∀=+

n
i GEvv ijtit

ji
nmtrw1 ,,,2,1,1

(7) () ().,,...,,2,1,0,, GEvvnikxx jiiji ∈∀=∀≥

(8) { } ,...,,2,1,1,0, nirw ijtit =∀= () (),, GEvv ji ∈∀ ,,2,1 nmt +=∀

Since the aim is to find a feasible solution of the problem VMTL and no
optimization is required, problem VMTL has no objective function. As we may see,
since all labels for vertices and edges were defined based on some positive integers,
so this is a pure 0-1 programming model. In the above model, the first constraints are
related to the definition of a vertex-magic total labeling problem. The second and
third constraints define vertex and edge labels based on positive integers from 1 to

.nm + The fourth, fifth and sixth constraints cause the vertex and edge labels to be
distinct positive integers from 1 to .nm +

The total number of constraints (1)-(6) of problem VMTL is mn 34 + and the
total number of variables is () () .11 ++++ mnmn

PARHAM AZIMI

166

3. A Branching Method for Solving Graph Labeling Problems

It should be mentioned that the suggested algorithm is somehow similar to the
one that proposed by Eshghi and Azimi [7] with some modifications due to the
definition of VMTL of a graph. The modifications occurred in “Branching Strategy”
and “Separation Rule”, especially when there is a tie up. According to the
computational results, this version is much more powerful than the one in [7]. Since
the problem VMTL is a pure 0-1 programming model, a branch and bound algorithm
with some modifications has been developed to solve the model in suitable time. At
first, the algorithm starts with the relaxation of constraints (8). The resulting
submodel is a linear programming one and it is very easy to be solved. The
termination rule in the algorithm is defined as follows:

3.1. The termination rule

The algorithm terminates whenever the corresponding solution from the relaxed
subproblem satisfies the integrality constraints (8) or all nodes have been fathomed.
If a node has not any feasible solution or its optimum solution does not lie between
the upper and the lower bounds, then it should be fathomed. It should be mentioned
that in a branch and bound algorithm, defining efficient upper and lower bounds can
increase the efficiency of the algorithm, since it terminates faster. Therefore, the
bounds are defined as follows:

3.2. The upper bound

Since the model (VMLT) has not any objective function, it was defined a
dummy objective function to robust the branch and bound algorithm. So we redefine
the VMLT as follows:

Problem VMTL1

Max. KZ =

(1)
() ()
∑
∈

=∀=+
GEvv

iji
ji

nikxx
,

....,,2,1,

(2) ∑
+

=
=∀=

nm

t
iti nitwx

1
....,,2,1,

(3) () ().,,1∑ +
=

∈∀=
nm

t jiijtij GEvvtrx

AN APPLICATION OF MATHEMATICAL PROGRAMMING …

167

(4),,2,1,11∑ +
=

=∀=
nm

t it niw

(5) () ().,,11∑ +
=

∈∀=
nm

t jiijt GEvvr

(6) () ()∑ ∑= ∈
+=∀=+n

i GEvv ijtit
ji

nmtrw1 ,,,2,1,1

(7) () ().,,...,,2,1,0,, GEvvnikxx jiiji ∈∀=∀≥

(8) () (),,2,1,,,...,,2,1,1,0 nmtGEvvnirw jiijtit +=∀∈∀=∀≤≤

When problem VMTL1 is being relaxed from constraints (8) and solved, the
optimum solution of VMTL1 is an upper bound for k, i.e.,

Upper bound for ∗= 1VMTLZk or .VMTL1
∗≤ Zk

It should be mentioned that a given graph may not have only one vertex-magic
labeling. So the vertices, edges and the magic constant are not unique for a given
graph. Therefore, we can label a graph by different distinct positive integers. Finally,
knowing the maximum value of k is the most important issue for the upper bound.
According to Wallis [25], if a regular graph has a VMTL, then we can create a new

VMTL from it. Given the VMTL λ for a given graph, define the map λ́ on VE ∪

by:

() (),1´ vnmv λλ −++=

() (),1´ uvnmuv λλ −++=

so, ()vλ́ and ()uvλ́ are the new VMTL for each vertex and edge.

3.3. The lower bound

As Wallis [25] explained in his works, if we label the edges with minimum
possible labels, then a lower bound can be found as follows:

.2
1

2
1

n

mnm

k
⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ ++

≥

These upper and lower bounds can be used in a branch and bound tree for fathoming

the current node, i.e., if the ∗Z denotes the optimum solution of the current node
and it does not meet the upper bound or the lower bound, then it can be fathomed
and we can continue from the next open node. According to the experimental results,

PARHAM AZIMI

168

the mentioned upper bound and lower bound are very effective, i.e., they are very
close to each other and this means that the branch and bound tree will be minimal
enough to reach to the feasible point.

3.4. Branching strategy

This strategy defines which node should be selected among the list of open
nodes. This strategy has great influence on branch and bound efficiency. Let N
denote the total number of variables of the corresponding problem VMTL1 in the
current node which are not feasible according to constraints (8) in model VMTL.

Furthermore, suppose that L denotes the total number of integer variables
corresponding to the vertex labels in the current node which generate different
values for vertex labels. In fact, N is a degree of infeasibility of the current node and
L shows that how many integer values of the set { }nm +...,,2,1 are generated by

the current node. If N is small and L is close to ,nm + then the current node is very
good to be selected. So in the suggested algorithm, the “Jumptracking Strategy” is
chosen as “Branching Strategy”, i.e., a node from the active list (open nodes) with
the maximum value of L is chosen to branch on. If there is a tie up, then a node with
minimum value of N is selected. Again if there is a tie up, then a node which has the
smallest sum of fractional part is chosen and finally if there is a tie up again, then a
node is selected randomly.

3.5. Separation rule

Separation rule means the selection of a variable in the selected node to separate
on. Assume to the “Jumptracking Strategy”, node j is selected. According to the
experimental research among more than 250 samples of different types of graphs, it
was shown that the potential effect of distinct vertex labels is more powerful than
that of distinct edge labels in a particular graph. Therefore, in “Separation Rule” of
the Branching Method, a variable corresponding to a vertex has the priority to the
other variables. Furthermore, when the “Branching Method” continues, many
branches on the same variable will be generated in different parts of the branching
tree. If a variable is chosen many times, then probably separation on this variable
will not lead us to a feasible solution. Thus in “Separation Rule” of the algorithm, at
first, variable in the selected node is chosen according to the priority. If there is a tie
up, then a variable which has been selected less than the others is chosen, again if
there is a tie up, then a variable with minimum fractional part is chosen and finally if
there is a tie up again, then a variable is selected randomly.

AN APPLICATION OF MATHEMATICAL PROGRAMMING …

169

Suppose variable x has been chosen from the current node, now we can separate
the current node into two new nodes. Each new node is a subproblem of VMTL1
with two new constraints:

Finally, the branch and bound algorithm for VMTL problem is as follows:

Step 0. Initializing

Suppose that a graph G with n vertices and m edges is given and we want to
know whether or not the graph G has VMTL and if it has VMTL, then we want to
know how to label the vertices and edges. Now, consider the problem VMTL1. A
node in a branching tree is active if its corresponding problem has not been either
solved or subdivided yet. Let A denote the current list of active nodes. Compute the
upper bound the lower bound.

Step 1. Branching

If A is empty, then stop, G has VMTL. Otherwise, select a node j from the
active list A, according to “Jumptracking Strategy” which was described in 3.4. If
the objective function of the current solution does not lie between the upper bound
and the lower bound, then fathom the current node and select the next node. If the
current solution satisfies constraints (8) in VMTL problem, then graph G has VMTL
and terminate the algorithm, otherwise, go Step 2.

Step 2. Selecting

Separate the current node into two subproblems according to “Separation Rule”
described before. In each new node, solve its corresponding problem. Add new
subproblems to A and go to Step 1.

4. Computational Results

In this section, the computational results are summarized. The branch and bound
algorithm coded with Visual Basic Language and the corresponding relaxation
problems in Step 1 run by OSL V.3.0 software. All computations were run on a

PARHAM AZIMI

170

Pentium IV, CPU 5.3 GHz, 500 GB H.D. with 2 GB of RAM. All graphs have been
generated randomly by “Naughty V. 2.2” software. In the following table, the
computational results of the algorithm have been shown among different classes of
graphs. In this table, the first column defines the graph type, the second column is
the number of edges, the third column is the number of vertices in the graph, the
fourth column is the number of variables in problem VMTL1, the fifth column is the
number of constraints in problem VMTL1, the sixth column specifies whether the
graph has VMTL or not and the last column is the CPU average time of
computations among all samples of that class.

Table 2. The results of the algorithm for different classes of graphs

Graph type m n
Number of
variables

Number of
Constraints

VMTL?
Average time

in seconds

C15 15 15 931 105 Yes 23.26

C20 20 20 1,641 140 Yes 68.46

C25 25 25 2,551 175 Yes 452.45

C30 30 30 3,661 210 Yes 886.02

C35 35 35 4,971 245 Yes 1853.79

C40 40 40 6,481 280 Yes 4205.33

Cycles

C45 45 45 8,191 315 Yes 9541.12

P15 14 15 871 102 Yes 13.1

P20 19 20 1,561 137 Yes 54.23

P25 24 25 2,451 172 Yes 385.33

P30 29 30 3,541 207 Yes 745.00

P35 34 35 4,831 242 Yes 1643.89

P40 39 40 6,321 277 Yes 3965.21

Snakes

P45 44 45 8,011 312 Yes 9002.27

K10 45 10 3,081 175 Yes 645.21

K15 105 15 14,521 375 No 16544.73
Complete

graphs
K20 190 20 44,311 650 Yes 28747.45

AN APPLICATION OF MATHEMATICAL PROGRAMMING …

171

K5,5 25 10 1261 115 Yes 30.98

K5,10 50 15 4291 210 No 1698.43
Complete

bipartite graphs
K10,10 100 20 14521 380 Yes 15887.74

W10 20 11 993 104 Yes 29.31

W15 30 16 2163 154 No 311.08 Wheels

W20 40 21 3783 204 No 855.67

P(5,2) 15 10 651 85 Yes 14.25

P(8,4) 20 16 1333 124 Yes 76.20
Generalized

Peterson graphs
P(10,5) 25 20 2071 155 Yes 1034.53

H10 30 21 2653 174 No 557.32

H15 45 31 5853 259 No 3742.80 Helms

H20 60 41 10303 344 No 4907.44

Product graphs K4xP10 46 20 4423 218 Yes 17855.32

For comparison purposes, we could not find such an approach for solving
VMTL in the literature, but for showing the efficiency of the proposed algorithm, we
refer to the results presented by Redl [5]. He has developed two different approaches
for the graceful labeling problem which is almost similar to VMTL in terms of the
objective function and some similarities in variables and constraints definition. In the
first approach, he developed an integer programming model and in the second one,
he applied a constraint programming technique. In the implementation of these two
methods, three classes of graphs were tested at most: generalized Peterson graphs,
product graphs of the form nPK ×4 and double cones. According to his results, the

best one is the constraint programming approach and the largest graph tested was
P(10,5). The CPU time in seconds reported to solve P(10,5) was 10481,40 while
total constraints were 50 and total variables were 45 in his approach. As we may see,
this time is 1034.53 seconds in the proposed algorithm where total variables are
2071 and total constraints are 155 which shows that the proposed algorithm is
around 10 times faster with more constraints and variables.

For the second comparison, we may see the results reported by Eshghi and
Azimi [6], where they used a branch and bound algorithm for the graceful labeling
problem. They reported 2499.68 seconds for solving P(10,5), where their model had
810 variables.

PARHAM AZIMI

172

Therefore, in terms of speed and accuracy, the proposed algorithm is strong
enough to be compared with the other works even in large-scale problems.

5. Conclusions

Despite the large number of papers in graph labeling, there are a few researches
about developing an algorithm for finding the graph labels due to specified labeling.
In this paper, at first, we have developed a 0-1 programming model for vertex-magic
total labeling of a given graph, then a branch and bound algorithm was developed to
solve the model, i.e., the result of the algorithm specifies the labels of vertices and
edges based on vertex-magic total labeling. Finally, the algorithm which is the exact
one has been tested among a large number of randomly generated graphs in different
classes. The computational results show that the algorithm is powerful enough to
solve the vertex-magic total labeling in large size graphs. However, this paper can
help the researchers who are interested in the graph labeling problems but also it
provides a useful tool for those who are interested in applications.

References

 [1] A. Rosa, On certain valuation of the vertices of a graph, Proceedings of the
International Symposium in Theory of Graphs, Gordon and Breach, New York,
Dunod, Paris, 1967, pp. 349-355.

 [2] R. L. Graham and N. J. A. Sloane, On additive bases and harmonious graphs, SIAM J.
Algebraic Discrete Methods 1(4) (1980), 382-404.

 [3] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (1998),
Dynamic Survey 6, pp. 43 (electronic).

 [4] G. S. Bloom and S. W. Golomb, Application of numbered undirected graphs,
Proceedings of the IEEE 65(4) (1985), 562-570.

 [5] T. A. Redl, Graceful graphs and graceful labelings: two mathematical programming
formulations and some other new results, Proceedings of the Thirty-fourth
Southeastern International Conference on Combinatorics, Graph Theory and
Computing, Congr. Numer. 164 (2003), 17-31.

 [6] K. Eshghi and P. Azimi, Applications of mathematical programming in graceful
labeling of graphs, J. Appl. Math. 1 (2004), 1-8.

 [7] K. Eshghi and P. Azimi, An algorithm for finding a feasible solution of graph labeling
problems, Util. Math. 72 (2007), 163-174.

AN APPLICATION OF MATHEMATICAL PROGRAMMING …

173

 [8] S. W. Golomb, How to Number a Graph, Graph Theory and Computing, R. C. Read,
ed., Academic Press, New York, 1972, pp. 23-37.

 [9] J. Sedlàček, Problem 27, Theory of Graphs and its Applications, Proc. Symposium
Smolenice, June 1963, 163-167.

 [10] B. M. Stewart, Magic graphs, Canad. J. Math. 18 (1966), 1031-1059.

 [11] B. M. Stewart, Supermagic complete graphs, Canad. J. Math. 19 (1967), 427-438.

 [12] J. A. MacDougall, M. Miller, Slamin and W. D. Wallis, Vertex magic total labelings
of graphs, Proceedings Australasian Workshop Combin. Algorithm, 1999, pp. 222-229.

 [13] Y. Lin and M. Miller, Vertex-magic total labelings of complete graphs, Bull. Inst.
Combin. Appl. 33 (2001), 68-76.

 [14] I. D. Gray, J. MacDougall and W. D. Wallis, On vertex-magic total labeling of
complete graphs, Bull. Inst. Combin. Appl. 38 (2003), 42-44.

 [15] D. McQuillan, A technique for constructing magic labelings of 2-regular graphs,
preprint.

 [16] N. C. K. Philips, R. S. Rees and W. D. Wallis, Personal Communication.

 [17] J. A. MacDougall, M. Miller and W. D. Wallis, Vertex-magic total labelings of wheels
and related graphs, Util. Math. 62 (2002), 175-183.

 [18] R. M. Figueroa-Centeno, R. Ichishima and F. A. Muntaner-Batle, The place of super
edge-magic labelings among other classes of labelings, 17th British Combinatorial
Conference (Canterbury, 1999), Discrete Math. 231(1-3) (2001), 153-168.

 [19] R. Figueroa-Centeno, R. Ichishima and F. Muntaner-Batle, On super edge-magic
graphs, Ars Combin. 64 (2002), 81-95

 [20] D. McQuillan and J. McQuialln, Magic labelings of triangles, Discrete Math., to
appear.

 [21] D. McQuialln and K. Smith, Vertex-magic total labeling of odd complete graphs.
Discrete Math. 305(1-3) (2005), 240-249.

 [22] M. Bača, M. Miller and Slamin, Vertex-magic total labeling of generalized Petersen
graphs, 11th Australasian Workshop on Combinatorial Algorithms (Hunter Valley,
2000), Int. J. Comput. Math. 79(12) (2002), 1259-1263.

 [23] Slamin and M. Miller, On two conjectures concerning vertex-magic total labelings of
generalized Petersen graphs, Bull. Inst. Combin. Appl. 32 (2001), 9-16.

 [24] A. Meissner and K. Zwierzyński, Vertex-magic total labeling of a graph by distributed
constraint solving in the Mozart system, Parallel Processing and Applied Mathematics,
Lecture Notes in Computer Science, 3911, Springer, Berlin, Heidelberg, 2006.

 [25] W. D. Wallis, Magic Graphs, Birkhäuser, Inc., Boston, 2001.

