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Abstract 

Let [ )1,00 ∈x  be an irrational number with Lüroth series expansion 

[ ]...,, 210 iix =  and nt  be a nondecreasing sequence of natural numbers. 

Define the recurrence set of Lüroth transformation T as follows: 

( ) { [ ) ( ) ( ) },manyinfinitelyfor:1,0 00 nxIxTxxE
nt

n ∈∈=  

where ( )0xI nt  denotes nt th order cylinder of .0x  In this paper, the 

Hausdorff dimension of the set ( )0xE  is determined. 

1. Introduction 

For ( ],1,0∈x  notice that there is a unique ( ) N∈xa1  such that  

 ( ) ( ) .1
11

11 −
≤< xaxxa  (1.1) 
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Indeed, ( ) [ ] ,111 += xxa  where [ ]⋅  denotes the integer part. Define ( ]1,0:T  

( ]1,0→  by  

( ) ( ) ( )( )
( )

.11:
1

11 ⎟
⎠

⎞
⎜
⎝

⎛ −−=
xa

xxaxaxT  

Now, we introduce the sequence ( ) ,N∈kka  where  

( ) ( ( )),1
1 xTaxa k

k
−=  (1.2) 

where kT  denotes the kth iterate of ( ( ]).1,0
0 IdTT =  From (1.1) and (1.2), we 

notice that any ( ]1,0∈x  can be developed uniquely into infinite series expansion of 

the form 

( ) ( ) ( ) .11
1

1
11

112112111
""" +

−−
++

−
+=

−− nnn aaaaaaaaaax  (1.3) 

This series expansion, called Lüroth expansion, was introduced in 1883 by Lüroth 
[8]. We may denote the Lüroth series expansion of ( ]1,0∈x  by [ ( ),1 xax =  

( ) ]...,2 xa  for simplicity. 

The behavior of the sequence ( )xan  is of interest and the metric and ergodic 

properties of the sequence ( ){ }1, ≥nxan  and T have been investigated by a number 

of authors (see [1, 2, 3, 6, 7, 9]). 

In [5], Fernández and Melián have considered the quantitative recurrence 
properties in continued fraction dynamical system. In this paper, we consider the 
analogous problem for the Lüroth series expansion. We determine the Hausdorff 
dimensions of ( ).0xE  

Theorem 1.1. Let 
( ) ( )

,log
11log

inflim 11 Bn
iiii nn tt

n
=

−−

∞→

"
 if .1 ∞+<< B  

Then 
( ) ( ).dim 0 BsxEH =  

2. Preliminaries 

In this section, we collect some known facts and establish some elementary 
properties of Lüroth series that will be used later [3, 6]. 
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Lemma 2.1 [6]. The series in (1.2) is a Lüroth expansion of some ( ]1,0∈x  if 

and only if ,2≥na  for all .1≥n  

For any ,...,,, 21 N∈naaa  we call ( ) { [ ) ( ) ,:1,0...,,1 kknn axaxaaI =∈=  

}nk ≤≤1  an nth order cylinder. 

Lemma 2.2 [6]. The length of ( )nn aaI ...,,1  is equal to 

( ) ( ) ( ) ,11
1...,,

11
1 −−

=
nn

nn aaaaaaI "  (2.1) 

where ⋅  denotes the Euclidean length. 

Lemma 2.3. Let ( )Bs  be the unique solution of 

( ) ( )∑
∞

=

=⎟
⎠
⎞⎜

⎝
⎛

−
=

2

.11
1:

k

s
B kBksf  (2.2) 

Then ( )Bs  is continuous with respect to B. Furthermore, ( ) ,1lim
1

=
→

Bs
B

 ( )Bs
B ∞→
lim  

.21=  

 Proof. (i) Fix .0>B  For any ,0>ε  when ,1 ε+<′<< BBB  

( )

( )

( )

( )

∑ ∑
∞

=

∞

=

′

ε

ε+′

⎟
⎠
⎞

⎜
⎝
⎛

−
≤⎟

⎠
⎞

⎜
⎝
⎛

−
2 2

1
11

1
1

k k

BsBs

kBkBkBk
 

 
( )

.11
1 <
′

≤⎟
⎠
⎞

⎜
⎝
⎛ ′

= ε+

′

ε B
B

B
B

B

Bs
 

Notice that ( )⋅s  is monotonic decreasing with respect to B. We have ( ) ( )BsBs <′  

( ) .ε+′< Bs  

(ii) We prove that ( ) 1lim
1

=
→

Bs
B

 only, the second limits can be proved by the 

similar method. It is easy to see that ( ) 1≤Bs  for any .1>B  On the other hand, fix 

,0>ε  take ,20
ε=B  for all ,1 0BB <<  we have ( ) ,1 ε−>Bs  since 

( ) ( )∑ ∑
∞

=

∞

=

ε
ε−

>
−

≥⎟
⎠
⎞⎜

⎝
⎛

−
2 2

1
.11

121
1

k k
kBkkBk  � 
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3. Proof of Main Results 

Before proving Theorem 1.1, we state the mass distribution principle at first 
(see [4]), which will be applied to obtain the lower bound of ( ).dim 0xEH  

Lemma 3.1 [4]. Let E be a Borel set in [ ]1,0  and μ be a measure with 

( ) .0>μ E  If for any ,Ex ∈  

( )( ) ,log
,loginflim

0
sr

rxB
r

≥μ
→

 

where ( )rxB ,  denotes the open ball with center x and radius r, then .dim sEH ≥  

Proof of Theorem 1.1. First, we give an upper bound of ( ).dim 0xEH  

Notice that 

( ) { [ ) ( ) ( ) }nxIxTxxE nt
n manyinfinitelyfor:1,0 00 ∈∈=  

{ [ ) ( ) ( )}0
0

:1,0suplim xIxTx nt
n

n
∈∈=

→
 

{ [ ) ( ) ( )}∩ ∪
∞

= ≥

∈∈=
1

0:1,0
N Nn

t
n xIxTx n  

{ [ ) ( )∩ ∪ ∪
∞

= ≥

∈=∈=
1 ...,,1

,:1,0
N Nn aa

kk
n

axax N  

( ) }.1,;1 njixank jjn ≤≤=≤≤ +  

For any 0>ε  and ,0>τ  when n is large enough, we have ( ) ( )1111 −− nn tt iiii "  

( ) .nB ε−>  So 

( ) ( )( )0xEBs τ+ε−H  

( ) ( )∑ ∑
≥

τ+ε−
+

∞→
≤

Nn aa

Bs
tntn

N
n

nn iiiaaI
...,,

211

1

...,,,,...,,inflim  

( ) ( ) ( )

( )

∑ ∑
≥

τ+ε−

∞→ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−ε−
≤

Nn aa

Bs

nn
nN

n
aaaaB...,, 111

11
1inflim
"
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( ) ( ) ( ) ( )

( )

∑ ∑
≥

ε−

τ∞→ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−−ε−
≤

Nn aa

Bs

nn
nnN

n
aaaaB...,, 111

11
1

2
1inflim

"
 

( )∑
≥

τ∞→
==

Nn
nN

.0
2
1inflim  

So ( ) ( ) .dim 0 τ+ε−≤ BsxEH  Since 0>τ  and 0>ε  are arbitrary, from 

Lemma 2.3, we have ( ) ( ).dim 0 BsxEH ≤  

Now, we give a lower bound of ( ).dim 0xEH  

In this paper, we shall use  Γ  to denote the set { ,1...,,2,1, −+++ knkkkk tnnnn  

}1≥k  for convenience. 

Step I. In this part, we will construct a subset ( ) ( ).00 xExE ⊂α  

Fix { }1\N∈α  and a sequence { } N⊂kn  satisfying 
( ) ( )

k

tt

k n

iiii
knkn 11log

lim
11 −−

∞→

"
 

Blog=  and 

.1,1
1

11 ≥∀
+

<+++ + knktnn knk k"  (3.1) 

We may assume that 

( ) ( ) ( ) ( ) .1,1111 ≥∀ε+≤−−≤ε− kBiiiiB k
knkn

k n
tt

n "  

Let 

( ) { [ ) [ ] ;1,1,,...,...,,,:1,0 210 kk njjnn tjkixxxE ≤≤≥=σσσσ=∈= +α  

{ }}.1,...,,2,1,1 ≥+++∉α≤σ≤ ktnnnj knkkkj  

It is easy to see that ( ) ( ).00 xExE ⊆α  Let ( )Bsα  be the solution of 

( )∑
α

=
=⎟

⎠
⎞⎜

⎝
⎛

−
2

.11
1

k

s

kBk  Then we will prove that ( ) ( ).dim 0 BsxEH αα ≥  

For any ,1≥n  define 

{( ) ( ) ( ) };...,,:...,, 101 ∅≠σσ∈σσ= α nn
n

nn IxED ∩N  

( )∪
∞

=

∅==
0

0 .:,
n

n DDD  



SIKUI WANG and LAN ZHANG 70 

For any 1≥n  and ( ) ,...,,1 nn D∈σσ  we call 

( ) ( )∪
1

1111 ...,,:...,,
+σ

++ σσ=σσ

n

nnn clIJ  (3.2) 

a basic interval of order n with respect to ( ),0xEα  where the union in (3.2) is taken 

over all 1+σn  such that ( ) 111 ,...,, ++ ∈σσσ nnn D  and cl stands for the closure. 

Then it follows 

( ) ( )
( )

∩ ∪
1 ...,,

10

1

....,,
≥ ∈σσ

α σσ=
n D

n

nn

JxE  (3.3) 

From Lemma 2.2, if ,Γ∉n  then we have 

( ) ( ) ( ) .1111
1...,,

11
1 ⎟

⎠
⎞⎜

⎝
⎛

α
−

−−
=σσ

nn
n aaaaJ "  (3.4) 

Step II. For the lower bound, we define a probability measure supported on 
( ).0xEα  

Let 11 −
−−= − knkkk tnnm  with 1≥k  and .0:00 == ntn  Now, we define a 

set function ( ){ } +→∈σσμ R0\,: DDJ  given as follows. In this paper, we always 

use jmq  to denote  

( ) ( ) .,1111 1111 N∈−−++++ −−−−
jaaaa jjjnjjnj nntntn "  

For any 1≥n  and ( ) ,...,,1 nn D∈σσ  let 

( )( )nJ σσμ ...,,1  

( )

( )

{ }

( ( ))
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≥<<+σαμ

≥+++∈
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
=

−

+

α

−
α≤σσ≤

=

ε+

∑

∏

.1somefor,if,...,,

,1,...,,2,1,if,1

:

1
1

1
...,,2

1

1

knntnJ

ktnnnnn
Bq

knkn

nkkkk
k

j

Bs

m
m

k

knn
k

kj
j  

 (3.5) 
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Until now, the set function ( ){ } +→∈σσμ R0\,: DDJ  is well defined. It is 

easy to check that for any 1≥n  and ( ) ,...,,1 nn D∈σσ  we have 

( )( ) ( )( )∑
+σ

+σσμ=σσμ

1

,...,,...,, 111

n

nn JJ  

where the summation is taken over all 1+σn  such that ( ) .,...,, 111 ++ ∈σσσ nnn D  

Notice that 

( ( ))
( )
∑

∈σσ

=σσμ

111
1

...,,
1 ,1...,,

nn D
nJ  

by Kolmogorov extension theorem, the set function μ can be extended into a 
probability measure supported on ( ),0xEα  which is still denoted by μ. 

Step III. We now give the estimation of ( )( )nJ σσμ ...,,1  for each ( )nσσ ...,,1  

.nD∈  

Fix ( ),0 ε+<< α Bst  take ( ) .2
tBs −ε+

=τ α  We claim that there is an integer 

N such that Nn ≥  and ( ) nn D∈σσ ...,,1  implies 

( )( ) ( ) ,...,,...,, 2
11

τ−σσ⋅≤σσμ t
nn JcJ  (3.6) 

where 0>c  is an absolute constant. 

We will distinguish two cases to establish this. Choose 0k  sufficiently large 

such that 

.,211, 0kkn
m

t
t kn

k
k >∀≤

α
−≤

τ+
τ  (3.7) 

Take ( )( ).0102
0 kk nnn Bc ++ε+α= "  Then we have 

( )

( )( )

( )∏ ∏
= =

α

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
≤≤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+

ε+0 0,

1 1
0 .111

k

j

k

j

t

n
m

s

m
m j

j

Bjm

j
j Bq

c
Bq

 (3.8) 

For any 0knn >  and ( ) ,...,,1 nn D∈σσ  we estimate ( )( )....,,1 nJ σσμ  
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Case I. { }knkkkk tnnnnn +++∈ ...,,2,1,  for some ,0kk ≥  

( )( )nJ σσμ ...,,1  

( )

( )

∏
=

ε+α

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
=

k

j

Bs

m
m j

j Bq1

1    (by (3.5)) 

( )

( )

( )

( )

∏ ∏
= +=

ε+ε+ αα

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
=

0

01 1

11
k

j

k

kj

Bs

m
m

Bs

m
m j

j
j

j BqBq
 

( ) ( )∏ ∏
= +=

τ+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
≤

0

01 1
0

11
k

j

k

kj

t

m
m

t

n
m j

j
j

j BqBq
c    (by (3.8)) 

( ) ( )∏ ∏ ∏
= += +=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ε+
⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
≤

0

0 01 1 1
0

111
k

j

k

kj

k

kj

t

n

t

m

t

n
m jjj

j BqBq
c    (by (3.7)) 

( )
( )∏

=

τ−
+σσ≤

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
=

k

j

t
tn

t

n
m

knkj
j

Jc
Bq

c
1

100 ...,,1    (by (3.4) and (3.7)) 

( ) ,...,,10
τ−σσ≤ t

nJc  (3.9) 

where ( ) ( ).1111 −σσ−σσ= kkk nnnq "  

Case II. knk nntn k <<+
−− 11  for some .0kk ≥  

Let .nnk −=′A  By the definition of μ, similar to the proof of (3.9), we have 

( )( )nJ σσμ ...,,1  

( ( ))∑
α≤σσ≤

+

+

σσσσμ=

knn
knnnJ

...,,2
11

1

...,,,...,,  

( )

( )

( )

( )

∏ ∑
−

= α≤σσ≤

ε+ε+

+

αα

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ε+⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

ε+
=

1

1 ...,,2 1

11
k

j

Bs

m
m

Bs

m
m

knn
k

k
j

j BqBq
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( ) ( )( ) ( )

( )

∑
α≤≤

ε+

′
′τ−

′

α

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

ε+−−
≤

A A
A" aa

Bs

t
nn qBaaaa

c

...,,211

0

1

1
11

 

( ) ( )( ) ( )
( ) A

A"

′α

=

ε+

′τ− ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛

ε+−−
= ∑

α

211

0 1
11 k

Bs

t
nn

qBaaaa
c  

( ) ( )( ) τ−−−
= t

nn aaaa
c

1111

0

"
 

( ) τ−σσ≤ 2
10 ...,, t

nJc    (by (3.4) and (3.7)), (3.10) 

where ( ) ( ).1111 −σσ−σσ= ′′′ AAA "q  

Step IV. In this part, we will estimate the measure of ( )., rxB  

For any ( ),0xEx α∈  there exists an infinite sequence { }...,, 21 σσ  with jnk +σ  

,ji=  ,1≥k  ;1 kntj ≤≤  ,1 α≤σ≤ j  { }1,...,,2,1 ≥+++∉ ktnnnj knkkk  such 

that ( ),...,,1 nJx σσ∈  for all .1≥n  Let ( ) .min
0

0 σ=
∈σ

Jr
knD

 Then, for any r<0  

,0r<  there exists an integer 0knn ≥  such that 

( ) ( ) ....,,,...,, 111 nnn JrJ σσ<≤σσσ +  (3.11) 

Now, we distinguish two cases to estimate the measure of ( )., rxB  

Case I. ,Γ∈n  i.e., ,knkk tnnn +<≤  for some .1≥k  

In this case, the ball ( )rxB ,  can intersect only one basic interval of order n, 

which is just ( )nJ σσ ...,,1  and can intersect at most one basic interval of order 

.1+n  From the dimension of the measure μ and (3.6), we have 

( )( ) ( )( ) ( )( )111 ...,,...,,, +σσμ=σσμ≤μ nn JJrxB  

( ) ....,, 2
0

2
110

τ−τ−
+ ≤σσ≤ tt

n rcJc  (3.12) 

Case II. .Γ∉n  

The ball ( )rxB ,  can intersect at most three basic intervals of order n. 
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By the dimension of the measure μ, for any { },...,,2,1 α∈η≠ξ  we have 

( )( )
( )( ) .,...,,

,...,, 2

1
1 α≤

ημ
ξμ

n
n

aaJ
aaJ  So 

( )( ) ( )( )....,,1,...,, 1311 nnn JJ σσμ
α

≥σσσμ +  

From (3.6) and (3.11), we obtain 

( )( ) ( )( )11
5 ...,,3, +σσμα≤μ nJrxB  

( ) .3...,,3 25
0

2
11

5
0

τ−τ−
+ ⋅α≤σσα⋅≤ tt

n rcJc  (3.13) 

Combining these two cases with Lemma 3.1, we can get 

( ) ( ).22dim 0 ε+−=τ−≥ αα BsttxEH  

Since ( )ε+< α Bst  is arbitrary, we have 

( ) ( ) ( ).dimdim 00 ε+≥≥ αα BsxExE HH  

Notice that ( ) ( )ε+=ε+α∞→α
BsBslim  and Lemma 2.3, Theorem 1.1 is proved. � 
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