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Abstract

Let xg €[0,1) be an irrational number with Llroth series expansion
Xg = [i1, ip, ...] and t, be a nondecreasing sequence of natural numbers.

Define the recurrence set of Liroth transformation T as follows:
E(xp) = {x €[0,1): T"(x) € Iy_(xo) forinfinitely many n},
where Iy (xo) denotes tnth order cylinder of xo. In this paper, the

Hausdorff dimension of the set E(xg) is determined.
1. Introduction

For x e (0, 1], notice that there is a unique a;(x) € N such that
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Indeed, a;(x)=[1/x]+1, where [-] denotes the integer part. Define T : (0, 1]
—(0,1] by

T() = a(x) (aa(x) - 1>(x - i]

ay(x)

Now, we introduce the sequence (ay ), ., Where

3y () = ay (T (x)), (1.2)

where TX denotes the kth iterate of T (T0 = 1d(g,3)- From (1.1) and (1.2), we

notice that any x < (0, 1] can be developed uniquely into infinite series expansion of

the form

1 1 1
—_— + e — + ces +
a  (ag -1ay a (g —1ay---ap_g(ap_1 —1a,

X = + e (1.3)
This series expansion, called Liroth expansion, was introduced in 1883 by Liroth
[8]. We may denote the Liroth series expansion of x € (0,1] by x =[a;(x),

as(x), ...] for simplicity.

The behavior of the sequence a,(x) is of interest and the metric and ergodic
properties of the sequence {a,(x), n >1} and T have been investigated by a number
of authors (see [1, 2, 3, 6, 7, 9]).

In [5], Ferndndez and Melian have considered the quantitative recurrence
properties in continued fraction dynamical system. In this paper, we consider the
analogous problem for the Liroth series expansion. We determine the Hausdorff
dimensions of E(xp).

log iy (iy —1)-i, (i, —1
Theorem 1.1. Let liminf Qig(ly —1)-iy, (i, —1)

n—o n

=logB, if 1<B < +w.

Then
dimH E(Xo) = S(B)

2. Preliminaries

In this section, we collect some known facts and establish some elementary
properties of Liroth series that will be used later [3, 6].
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Lemma 2.1 [6]. The series in (1.2) is a Liroth expansion of some x e (0, 1] if

andonly if a, > 2, forall n > 1.

For any ay, ay, ..., ap € N, we call 1,(aq, ..., ay) = {x € [0, 1) : a (x) = a,

1 <k < n} an nth order cylinder.
Lemma 2.2 [6]. The length of 1,(ay, ..., a,) is equal to

1

[1h(ag, ..., ay)| = a(a —1)a(ar —1)’ (2.1)
where | -| denotes the Euclidean length.
Lemma 2.3. Let s(B) be the unique solution of
» 1 s
fg(s) = Z(mj -1 2.2)

k=2

Then s(B) is continuous with respect to B. Furthermore, lim s(B) =1, lim s(B)
Bl B—ow

=1/2.
Proof. (i) Fix B > 0. Forany € > 0, when 1< B < B' < B +¢,

0

1 s(B')+¢ 1 & 1 s(B")
- <= -
e @ k=2(Bk(k =

k=2
1 B! S(B,) B/
- _(_) < B
B¢\ B Bl+s
Notice that s(-) is monotonic decreasing with respect to B. We have s(B') < s(B)
<s(B') +e.

(ii) We prove that EIzimls(B) =1 only, the second limits can be proved by the
_)
similar method. It is easy to see that s(B) <1 for any B > 1. On the other hand, fix

g >0, take By = 2%, forall 1< B < By, we have s(B) >1- ¢, since

1-¢ °°
Z(m) 2za;m>l. 0

o0
k=2
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3. Proof of Main Results

Before proving Theorem 1.1, we state the mass distribution principle at first
(see [4]), which will be applied to obtain the lower bound of dimy E(xp).

Lemma 3.1 [4]. Let E be a Borel set in [0,1] and p be a measure with

W(E) > 0. If forany x € E,

liminf log n(B(x, r)) >s,
r>0 ogr

where B(x, r) denotes the open ball with center x and radius r, then dimy E > s.
Proof of Theorem 1.1. First, we give an upper bound of dim E(Xg).
Notice that

E(xg)=1{xe[0,1):T"(x) e Iy, (xo) forinfinitely many n}

= limsup{x € [0,1): T"(x) € |tn(Xo)}

n—0

ﬁ Jixelon: 100 e 1y, 000)}

N=1 n>N

0

- U U (xel0,1):a(x)=a eN,

N=1 nx=N ay,...,a,
1<k<nay,j(x)=ij1<j<n}
For any & >0 and t >0, when nislarge enough, we have iy (iy —1)---i_(iy, —1)
> (B-¢)". So

H¥E=7(E(xp))

< liminf Z Z | |nthn (ag, .y @, i, ip, o, itn) |S(B—£)+r

N —o0
n>N ag,..., ap

s(B—g)+t
L. 1
Stmint 2, 2 [<B o ay(a —1)an(ay —1)J

n>=N ag,..., ap
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s(B—¢)
o 1
<l f E E
'Nm_lg ( )T {(B — 8) a-j_(a]_ -1)- an(an - 1)]
1

= liminf = 0
N —o0 SN (2 )

So dimy E(Xp) < s(B—¢)+t. Since t>0 and ¢ >0 are arbitrary, from

Lemma 2.3, we have dimy E(xg) < s(B).
Now, we give a lower bound of dimy E(xg).

In this paper, we shall use I to denote the set {ny, n +1, n +2, ..., n +1t, -1,

k > 1} for convenience.

Step 1. In this part, we will construct a subset E, (xg) = E(Xg).

logiy(iy =1)---it,, (i, —2)
Nk

Fix o € N\{1} andasequence {ny } = N satisfying I(Iim
—0
=log B and
1
N+t N+t < K1 ke vk > 1. (3.1)
We may assume that
(B-¢&)™ <iy(y —1)---itnk (itnk ~1)<(B+e)%, Vvk=>1.
Let
Eo(x) ={x€[0,1):x=[oy, 02, ..., O, ]y O =0, k2L 1< <ty ;
I<oj<a, je{ny +Ln+2, ., m +t, , k=1

It is easy to see that E,(Xg) < E(xg). Let s,(B) be the solution of

o S
Z(;) = 1. Then we will prove that dimy E, (Xg) > S, (B).
2\ Bk(k 1)

Forany n >1, define

Dp =1{(61, ., 6n) € N" 1 E (%) N 1n(oy, .. Op) # D
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Forany n >1 and (o, ..., 6,) € D,,, we call
J(Gl, veny Gn) = UC“nJrl(Gl, ey Gn+1) (32)
On+1

a basic interval of order n with respect to E, (Xg), where the union in (3.2) is taken
over all o, such that (oq, ..., o, 6n41) € Dpy1 and cl stands for the closure.

Then it follows

Ea(xo):ﬂ U 3(61, oy Op). (3.3)

n>1 (o1,...,0p)ebDy

From Lemma 2.2, if n ¢ I, then we have

|J(o1, v on) | = 1 (l—lj. (3.4)

a(y —1)-ap(ay - 1) o

Step Il. For the lower bound, we define a probability measure supported on
E(x(XO)-

Let mg =ng —ng_q —t,

.y With k>1 and ny =t, =0. Now, we define a

set function u: {J(c), o € D\Dy} — R™ given as follows. In this paper, we always

use G, to denote

anj_1+tnj71+l(anj_1+tnj71+l _1)”'anj(anj -1, jeN
Forany n>1 and (o, ..., o) € D;,, let

r(J(oy, - on))

S (B+€)

k
H_ ; v dfne{ngne+Lne +2,0 g+t k21,
i g, (B +)"

Z nI (o, .y on ), if g+t <n<ny, forsomek >1.

25041, Oy SQ

(3.5)
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Until now, the set function u : {J(c), c € D\Dy} — R* is well defined. It is

easy to check that forany n >1 and (oy, ..., 6,,) € D,,, we have
1361, - on)) = Y 13(0L, s Ony1)),
On+1

where the summation is taken over all o4 such that (oq, ..., o, 6n41) € Dpyt-

Notice that

D, MOy o)) =t

by Kolmogorov extension theorem, the set function p can be extended into a
probability measure supported on E (Xp), which is still denoted by p.

Step I11. We now give the estimation of w(J(oq, ..., o)) for each (o, ..., o)

e D,.

sq(B+g)—t
2

Fix0<t<s,(B+eg), take t = . We claim that there is an integer

Nsuchthat n > N and (oy, ..., o) € Dy, implies

-2
u(3(oy, oy op)) < €+ I(07, o o) [T, (3.6)
where ¢ > 0 is an absolute constant.

We will distinguish two cases to establish this. Choose kg sufficiently large
such that

1

EooMe - Loome wis k. 3.7)
Nk [0}

t+1

Take ¢g = oMo (B + &)™ *"*Mko). Then we have

ko 1 Smj,(B+s)(0‘) ko . t
_ <1l<g¢ _. (3.8)
]j:][ qu (B +8)mj g qu(B +8)nl

Forany n > ng and (o, ..., o) € Dy, we estimate p(J(oy, ..., op))-
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Casel. ne{ng, ng +1 ng +2, .., n +1t,, } for some k > ko,

n(J (o1, - on))

Sq.(B+e)

=~

1
= — (by (3.5))
g Qmj (B + S)mj

Ko Sq(B+e) K { JSQ(B+8)
H 1 . 1

3 G (B + )™ bl am, (B + &)™

ko t K t+1
1 1
<c —_— S ——— (by (3.8))
Og{qmj(BJ’_a)nj H {qmj(BJ’_S)mJ

j=k0+l

ko t k t Kk t
1 1 1
< — = . — - —= | (by@37
<ol | m; (B +2)" H{%j] 11 <B+e)”JJ v

j=1 j=k0+l j=k()+1
K t
1 t—1
=Cy ———— | <c¢g| IOy, .y © ) (by (3.4) and (3.7))
lj_:! Qmj (B + s)nl | 1 N +tny |
< ol I(oq, v o) [T, (3.9)

where g = o3(c1 —1)- oy, (o, — 1)

Case ll. ng_5 +t < n < ny forsome k > kq.

Nk—1

Let ¢ = n, — n. By the definition of p, similar to the proof of (3.9), we have
u(J(o1, ...y on))

= Z 1(I(G1, - On, Opsay = Opy )

250741, Opy <A

k-1 So (B+e) So.(B+e)
_ 1 1
H(qu(B-{—g)m]] < Z K S [qu(B+8)mk]

j-1
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S (B+e)
< Co _ Z {;ﬁ

(ay(a 1) an(@y ~1) 7, —4 (B +e) ap

Sq (B+e)

C o
) (q(ag —1)---a(ay, —1)'" {Z((B +2)qy )

k=2

= o
(al(al - 1) an (an - :I-))t_T

< ¢l I(oq, v o) 727 (by (3.4) and (3.7)), (3.10)
where g, = o1(oy —1)---op(cy —1).
Step 1V. In this part, we will estimate the measure of B(X, r).
Forany x € E,(X), there exists an infinite sequence {oy, 63, ..} with o _;

=ij, k21 1< j<ty; 1<oj <o, je{n +1n +2 .., n +t, , k>1} such

that x € J(oq, ..., o), forall n > 1. Let ry = min |J(c)|. Then, forany 0 <r
ce an

< Ip, there exists an integer n > ny such that
|J(o1, o Ony Ons1) | <17 <[ I(og, o0y 01) - (3.11)
Now, we distinguish two cases to estimate the measure of B(x, r).

Casel.neT, ie, ng <n<n+ty, forsome k >1.

In this case, the ball B(x, r) can intersect only one basic interval of order n,
which is just J(oy, ..., 6,) and can intersect at most one basic interval of order

n + 1. From the dimension of the measure p and (3.6), we have
n(B(x, 1) < n(I(oy, .., on)) = u(J(o1, - On11))
< Col (01w Opyn) 727 <o F [N, (3.12)

Casell. ngT.

The ball B(x, r) can intersect at most three basic intervals of order n.
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By the dimension of the measure u, for any £ =ne{l, 2, .., a}, we have

M3y, - @n, 8) _ 2 o

n( (@, - ap, )~

1(3(61, - Oy Opsr)) > %MJ(% e 5

From (3.6) and (3.11), we obtain

H(B(x, 1) < 30°u(I (o1, s Ons1))

<3¢y - 0% I(0y, oy Opa1) 727 < Bcgad - rE (3.13)

Combining these two cases with Lemma 3.1, we can get

dimy E,(Xg) 2t -2t =2t —s,(B +¢).

Since t < s, (B + ¢) is arbitrary, we have

dimy E(Xg) = dimy E,(Xg) = s,(B + €).

Notice that lim s, (B + &) = s(B + ¢) and Lemma 2.3, Theorem 1.1 is proved. [
o—>0
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