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Abstract 

We define the Lie algebra structure closest to a given algebra structure 
and give a procedure to find the closest Lie structure. Furthermore, we 
demonstrate our strategy for the 3-dimensional Lie algebras over the field 
of real numbers. 

1. Introduction 

Let R  be the field of real numbers and V be the finite dimensional vector space 

over R  with the fixed basis { }....,,1 nxx  A point ( )
3n

ijkc R∈  defines a multiplication 

on V by 

[ ] ( )∑
=

==
n

k
kijkji njixcxx

1

,...,,1,,,  

and we have an algebra ( ( ) [ ])−−= ,,, ijkcVA  with the underlying vector space V 

and the set of structure constants ( ).ijkc  
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For a pair of the sets ( )ijkc  and ( )ijka  of structure constants, we define the 

distance (( ) ( ))ijkijk acD ,  by 

(( ) ( )) ( )∑ −=
kji

ijkijkijkijk acacD
,,

22 .,  (1) 

If a set of structure constants gives a Lie algebra structure on V, then we have 
the following relations: 

( ),...,,1,,for nkjicc jikijk =−=  (2) 

( ) ( )....,,1,,,0
1
∑
=

==++
n

p
pjqkippiqjkppkqijp nqkjicccccc  (3) 

We denote by C  the algebraic set defined by the above polynomial equations (2) and 
(3). The closest structure ( )ijkc  to a given structure ( )ijka  stays at C  and minimizes 

(( ) ( ))., ijkijk acD  

In this paper, we demonstrate our idea for the 3-dimensional Lie algebras. We 
first express the algebraic set C  of the polynomials (2), (3) by the union of the seven 
algebraic sets represented by parameters, say, ....,, 71 CC  For a given point ( ),ijka  

we will find the point ( ) pijkc  of pC  which minimizes (( ) ( ))ijkpijk acD ,  for each 

7...,,1=p  and choose the point ( )0ijkc  among them with (( ) ,iijkcD ( ))ijka  

minimum. Then the set of Lie algebra structure constants ( )0ijkc  gives the closest 

structure to an algebra structure with the set ( )ijka  of structure constants. We employ 

Mathematica in several stages to find the desired points. 

2. Algebraic Set of 3-dimensional Lie Algebras 

By equations (2) and (3), we have 

,0311233232121313231122231 =+−− cccccccc  (4) 

,0122311313232121312233312 =+−− cccccccc  (5) 

.0233122121313232123311123 =+−− cccccccc  (6) 
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These polynomials of the left hand sides already consist a Groebner basis of the 
ideal generated by themselves, with an ordering on the monomials 

.313232121311233122312231123 ccccccccc >>>>>>>>  

In our previous paper [2], we discussed the closest associative algebra structures. To 
parameterize the algebraic set of associative algebras, we use the Groebner basis and 
the elimination-extension method. This method does not work in the Lie algebra 
case. We shall follow the Jacobson’s method of determination of the low 
dimensional Lie algebras [1, pp. 11-14]. 

Notations. The set of structure constants ( )ijkc=c  is of the form: 

( ,,,,,,,,, 313312311233232231123122121 ccccccccc  

,,,,,,,,, 333332331223222221113112111 ccccccccc  

)133132131323322321213212211 ,,,,,,,, ccccccccc  

staying on .27R  The first 9 entries determine all the entries of c, we write 

( ),,,...,, 313121 −−= ccc  

for short, here 

the first ( ),0...,,0”“ =−  

the second ( )....,,”“ 313121 cc −−=−  

Theorem 1. Let C  be the algebraic set defined by (2)-(3) in .27R  Then the 
elements ( )−−= ,,...,, 313121 ccc  of C  are expressed as 

;7654321 CCCCCCCC ∪∪∪∪∪∪=  

( ){ },,,,,,,,,,,,,,,1 R∈γβα|−−γβαγβαγβα= qpqqqpppC  

( ){ },,,,,,,,,,,,0,0,02 R∈γβα|−−γβαγβα= ppppC  

( ){ },,,,,,,,0,0,0,0,0,03 R∈γβα|−−γβα=C  

{( ,,,,,,,4 γ+αδδ+γγββ+αα= qppqpqC  

( ) ) },,,,,,,,,22 R∈δγβα|−−δ+βγ+δ+α+β qpqpqpqp  
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{( ) },,,,,,,,,,,,,,, 2
5 R∈δγβα|−−γδγαβααβα= ppppppC  

( ){ },,,,,,0,,,0,,,0,0,06 R∈δγβα|−−δγβα=C  

( ){ }.,,,,,,,,,,,,,,,7 R∈ζεδγβα|−−βζεαεδγβα=C  

Proof. Let V be the vector space over R  with a basis { }321 ,, xxx  and 

( ( ) [ ])−−= ,,, ijkcVL  be the 3-dimensional Lie algebra with the set of structure 

constants ( ).ijkc  We figure out the structure constants separately for the cases 

[ ] .3,2,1,dim =LL  

(1) [ ] :1,dim =LL  If [ ] ,0, 21 ≠xx  then we can write 

[ ] ( ),0, 31232122112121 ≠++= xcxcxcxx  

[ ] [ ],,, 2132 xxpxx =  

[ ] [ ],,, 2113 xxqxx =  

for some ., R∈qp  Then the Jacobi identity is automatically satisfied. By setting 

,121c=α  ,122c=β  ,123c=γ  we have .1C∈c  

If [ ] 0, 21 =xx  and [ ] ,0, 32 ≠xx  then we can write 

[ ] ,0, 21 =xx  

[ ] ( ),0, 32332232123132 ≠++= xcxcxcxx  

[ ] [ ]3213 ,, xxpxx =  

for some .R∈p  Then the Jacobi identity holds. We set ,231c=α  ,232c=β  

233c=γ  and have .2C∈c  When [ ] 0, 21 =xx  and [ ] ,0, 32 =xx  we must have 

[ ] .0, 13 ≠xx  These lead to .3C∈c  

(2) [ ] :2,dim =LL  Assume that [ ] .0, 21 ≠xx  If [ ]21, xx  and [ ]32 , xx  are 

linearly independent, then we can write 

[ ] ( ),0, 31232122112121 ≠++= xcxcxcxx  

[ ] ( ),0, 32332232123132 ≠++= xcxcxcxx  

[ ] [ ] [ ],,,, 322113 xxqxxpxx +=  
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for some ., R∈qp  The Jacobi identity [ ][ ] [ ][ ] [ ][ ]213132321 ,,,,,, xxxxxxxxx ++  

( )[ ] ( )[ ]3212112312221232233231 ,, xxqcpccxxcpcqc −−+−+=  gives us +231qc  

,0232233 =− cpc  .0122123121 =−+ cpcqc  By putting ,121c=α  ,123c=β  

,231c=γ  ,233c=δ  we have .4C∈c  If [ ]21, xx  and [ ]32 , xx  are linearly 

dependent, then [ ]21, xx  and [ ]13, xx  must be linearly independent and we may 

write [ ] [ ]2132 ,, xxpxx =  for some .R∈p  It follows from the Jacobi identity that 

.5C∈c  

Assume that [ ] .0, 21 =xx  We may write 

[ ] ,0, 21 =xx  

[ ] ( ),0, 32332232123132 ≠++= xcxcxcxx  

[ ] ( ).0, 33132312131113 ≠++= xcxcxcxx  

By the Jacobi identity [ ][ ] [ ][ ] [ ][ ] [ ] −=++ 13233213132321 ,,,,,,, xxcxxxxxxxxx  

[ ],, 32313 xxc  we have .0313233 == cc  It shows that .6C∈c  

(3) [ ] :3,dim =LL  It follows from the Jacobi identity 

[ ][ ] [ ][ ] [ ][ ]213132321 ,,,,,, xxxxxxxxx ++  

( ) [ ] ( ) [ ] ( ) [ ],,,, 131212333231312221232311 xxccxxccxxcc −+−+−=  

that ,232311 cc =  ,313122 cc =  .121233 cc =  This shows that .7C∈c   

3. Closest Lie Algebra Structures 

Let ( )ijka  be a point in .27R  This point gives us the multiplication on the 

vector space 321 xxx RRR ++  with a basis { } :,, 321 xxx  

( )∑
=

==
3

1

.3,2,1,,
k

kijkji jixaxx  

We shall find the point ( )ijkc  on C  closest to the point ( ),ijka  so that ( )ijkc  

minimizes the distance (( ) ( ))ijkijk acD ,  stated in the introduction. 
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Theorem 2. Let 71 ...,, CC  be the algebraic set given in Theorem 1 and ( )ijka  

in .27R  Then the point ic  on iC  closest to the point ( )ijka  is of the following forms: 

(1) .,,2,2,2,0,0,0,0,0,0 133313132312131311
3 ⎟

⎠
⎞

⎜
⎝
⎛ −−

−−−
=

aaaaaac  

(2) 

.,,0,2,2,0,2,2,0,0,0 132312131311322232321231
6 ⎟

⎠
⎞

⎜
⎝
⎛ −−

−−−−
=

aaaaaaaac  

(3) ⎜
⎝
⎛ −−+−−+

= ,4,4
133212313122323211233121

7
aaaaaaaac  

,4,2,2
131322311232321231213123 aaaaaaaa −−+−−  

,4,4
131322311232323211233121 aaaaaaaa −−+−−+  

.,,4,2
133212313122132312 ⎟

⎠
⎞−−

−−+− aaaaaa  

(4) Real numbers α, β, γ, δ, p, q determining 5421 ,,, cccc  are chosen as 

follows: We denote by ( )XYYX ttr, =  for the square matrices X, Y. 

Step 1. Find ( ) ( )qpqpX ,,, b  in cases of 1C  and ,4C  and ( ) ( )ppX b,  in 

cases of 2C  and ,5C  by using 41 ...,, XX  given in the following table: 

( ) ( )ji XXqpX ,2:, =    for   ,, 41 CC  

( ) ( )ji XXpX ,2:=    for   ,, 52 CC  

( ) ( )iXAqp ,~:, =b    for   ,, 41 CC  

( ) ( )iXAp ,~:=b    for   ,, 52 CC  

here 
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⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−

−−−

=

313133312132311131

233323232322231321

123213122212121211
~

aaaaaa

aaaaaa

aaaaaa

A  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

010
000
000

10
000
000

000
00
010

000
0

10
0

10
000

0
01
000

0
000
10

0
000
01

00
100
000

00
010
000

00
001
000

00
00

100

00
00
010

00
00
001

2
5

22
4

2

1

4321

p
ppp

p
qpq

p
qq
q

pp

p

pqp

q
ppp

q
p

q
p

q
p

XXXX

C

C

C

C

 

Step 2. Express α, β, γ, δ in terms of p, q by 

( ) ( ) ( )qpqpXt ,, 1b−−=αβγ    for   ,1C  

( ) ( ) ( )ppXt b1−−=αβγ    for   ,2C  

( ) ( ) ( )qpqpXt ,, 1b−−=αβγδ    for   ,4C  

( ) ( ) ( )ppXt b1−−=αβγδ    for   .5C  

Step 3. Find p, q minimizing the following ( ),, qpf  ( ),pf  

( ) ( ) ( ) ( ) ,,,,, 1 KqpqpXqpqpf t +−= − bb  

( ) ( ) ( ) ( ) ,1 KppXppf t +−= − bb  

here ∑= kji ijkaK ,,
2 .  

Note. The explicit forms of ( )qpX ,  and ( )pX  are found in the proof. 
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Proof. The statements (1), (2) and (3) hold obviously. To prove (4), let us 
denote by 

,

313312311

233232231

123122121

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=+

aaa

aaa

aaa

A    ,

133132131

323322321

213212211

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=−

aaa

aaa

aaa

A  

,

333332331

223222221

113112111

0
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

aaa

aaa

aaa

A    .

313312311

233232231

123122121

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

=

ccc

ccc

ccc

C  

Then we have +− −= AAA~  and 

( ) 00
2 ,,,, AOAOACACACACD −−+−−−−+−−= −−++ac  

.,,,,2,2 00 AAAAAACAACC +++−+= −−+++−  

Let us consider the case of .1C  In terms of 321 ,, XXX  of the table above, we 

can write 

.321 XXX

qqq

pppC γ+β+α=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

γβα

γβα

γβα

=  

Then we have 

( ) ,

,,,

,,,

,,,

,

332313

322212

312111

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

γ

β

α

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

γβα=

XXXXXX

XXXXXX

XXXXXX

CC  

( ) ,,~,~,~, 321
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

γ

β

α

=− +− XAXAXACAA  

hence 

( ) ( ) ( ) ,,2,2 KqpqpX,D tt ++= xbxxac  
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here 
( ) ( )ji XXqpX ,2, =  

( ),1,1,1diag2 222222 qpqpqp ++++++=  

( ) ( ),,~,~,~, 321 XAXAXAqp t=b  

( ),γβα= tx  

.,,, 00 AAAAAAK ++= −−++  

Since ( )qpX ,  is positive definite for any real numbers p, q, (( ) ( ))2, ijkijk acD  has 

the minimum value at ( )qp,xx =  such that ( ) ( ) ( ) 0=+ qpqpqpX ,,, bx  for 

each p, q. Such an ( )qp,x  satisfies 

(( ) ( )) ( ) ( ) ( ) ( ) ( ) KqpqpqpqpXqpacD tt
ijkijk ++= ,,2,,,, 2 xbxx  

( ) ( ) Kqpqpt += ,, bx  

( ) ( ) ( ) KqpqpXqpt +−= − ,,, 1bb  

( )., qpf=  

We can find ,2c  4c  and 5c  by using the same procedure as above. Here we 

give only the list of ( ) ( ).,, pXqpX  In the cases of 42, CC  and ,5C  

( ) ( ),1,1,1diag2 222 ppppX +++=  

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

,

1111

111

111

1111

2,

222222

222222

222222

222222

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

++++

+++

+++

++++

=

qpqpqppqqp

qpqqqpqpq

ppqqppppq

qpqpqppqqp

qpX  

( ) (( ) ),1,1,1,1diag2 2222 ppppX +++=  

respectively.   
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4. Examples (Demonstration) 

Recall that a point ( )ijka  in 27R  gives us the multiplication on the vector space 

321 xxx RRR ++  with a basis { } ∑ =
=

3
1321 .:,, k kijkji xaxxxxx  

Example 1. Our point ( )ijka=a  in 27R  is ( ,0,0,1,0,0,0,1,1,1,0,1 −−=a  

)1,0,0,0,1,1,1,0,1,0,0,0,0,0,0,0 −−−  and the corresponding multiplication 

table is 

.0

,0

,0

331331313

2232232132

1121123121

=−==

=−=+−=

=−=−=

xxxxxxxxx

xxxxxxxxxx

xxxxxxxxxx

 

This multiplication does not satisfy the Jacobi identity, that is, ( ) ( ) 132321 xxxxxx +  

( ) .2213 xxxx −=+  By Theorem 2, we have the following point ic  on iC  closest to 

the point a and the minimum value ( ) :, 2aciD  

(

( )

)

.

,,349292.0,193842.0,43556.0

50604.3,;,629402.0,349292.0,784851.0

,784851.0,43556.0,978694.0
2

1

1

−−−

=−

−−=

ac

c

D  

( ) ( ) .6,;,.,0.,0.,0.,0.,1.,1.,0.,0.,0 2
22 =−−−= acc D  

( ) ( ) .8,;,,1,0,0,0,0,0,0,0,0 2
33 =−−= acc D  

(

( )

)

.

,,741678.0,434549.0,0525276.0

727296.0,;,152996.0,741678.0,02323.1

,02323.1,0525276.0,10653.1
2

4

4

−−−−

=−−

−−=

ac

c

D  

(

) ( ) .5.3,;,,5.0.,0,5.0

,75.0,5.0,75.0,75.0,5.0,75.0
2

5

5

=−−−

−−−=

ac

c

D
 

( ) ( ) .6,;,,0,0,0,0,1,1,0,0,0 2
66 =−−−= acc D  

( ) ( ) .3,;,,21,0,21,21,21,1,1,21,21 2
77 =−−−−= acc D  
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We find 5421 ,,, cccc  by using Mathematica. Since ( )ac ,4D  is the smallest 

among the ( ) ,s’, aciD  the closest point to a is 4c  and the corresponding 

multiplication table is 

[ ] ,02323.10525276.010653.1, 32121 xxxxx −−=  

[ ] ,152996.0741678.002323.1, 32132 xxxxx −+−=  

[ ] .741678.0434549.00525276.0, 32113 xxxxx +−−=  

Example 2. This example presents the scheme: 

(1) Take a point ( )−−−= ,,0,0,1,0,1,0,0,0,0c  on .6C  

(2) Choose a perturbed point 

( )1.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1.0,0,0,0,0,0,0,0,0 −+= ca  

in .27R  

(3) Find the closest point c′  on C  to a. We note that c′  is on .5C  

( )

[ ]

[ ]

[ ]

( )

01.0

0

00

2of

,

,

0,

1of

33313113

2222332

111221

113

232

21

=+=−=

=−=−=

==−=
⇒

=

−=

=

xxxxxxxx

xxxxxxx

xxxxxx

xxx

xxx

xx

ac

 

( )

[ ]

[ ]

[ ] .05025.000249.1,

9974942.0,

0499994.0,

3of

3113

232

221

xxxx

xxx

xxx

+=′

−=′
−=′

′

⇒

c
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