ON THE LIE ALGEBRA STRUCTURES CLOSEST TO ALGEBRA STRUCTURES

FUMIYA SUENOBU and FUJIO KUBO

Department of Applied Mathematics
Graduate School of Engineering
Hiroshima University
Higashi Hiroshima 739-8527, Japan
e-mail: remakubo@amath.hiroshima-u.ac.jp

Abstract

We define the Lie algebra structure closest to a given algebra structure and give a procedure to find the closest Lie structure. Furthermore, we demonstrate our strategy for the 3-dimensional Lie algebras over the field of real numbers.

1. Introduction

Let \mathbb{R} be the field of real numbers and V be the finite dimensional vector space over \mathbb{R} with the fixed basis $\left\{x_{1}, \ldots, x_{n}\right\}$. A point $\left(c_{i j k}\right) \in \mathbb{R}^{n^{3}}$ defines a multiplication on V by

$$
\left[x_{i}, x_{j}\right]=\sum_{k=1}^{n} c_{i j k} x_{k}, \quad(i, j=1, \ldots, n)
$$

and we have an algebra $A=\left(V,\left(c_{i j k}\right),[-,-]\right)$ with the underlying vector space V and the set of structure constants $\left(c_{i j k}\right)$.

2010 Mathematics Subject Classification: 17B05.
Keywords and phrases: Lie algebras, closest structures.
Received March 24, 2010

For a pair of the sets $\left(c_{i j k}\right)$ and $\left(a_{i j k}\right)$ of structure constants, we define the distance $D\left(\left(c_{i j k}\right),\left(a_{i j k}\right)\right)$ by

$$
\begin{equation*}
D\left(\left(c_{i j k}\right),\left(a_{i j k}\right)\right)^{2}=\sum_{i, j, k}\left(c_{i j k}-a_{i j k}\right)^{2} \tag{1}
\end{equation*}
$$

If a set of structure constants gives a Lie algebra structure on V, then we have the following relations:

$$
\begin{align*}
& c_{i j k}=-c_{j i k} \quad(\text { for } i, j, k=1, \ldots, n) \tag{2}\\
& \sum_{p=1}^{n}\left(c_{i j p} c_{p k q}+c_{j k p} c_{p i q}+c_{k i p} c_{p j q}\right)=0 \quad(i, j, k, q=1, \ldots, n) . \tag{3}
\end{align*}
$$

We denote by \mathfrak{C} the algebraic set defined by the above polynomial equations (2) and (3). The closest structure $\left(c_{i j k}\right)$ to a given structure $\left(a_{i j k}\right)$ stays at \mathfrak{C} and minimizes $D\left(\left(c_{i j k}\right),\left(a_{i j k}\right)\right)$.

In this paper, we demonstrate our idea for the 3-dimensional Lie algebras. We first express the algebraic set \mathfrak{C} of the polynomials (2), (3) by the union of the seven algebraic sets represented by parameters, say, $\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{7}$. For a given point $\left(a_{i j k}\right)$, we will find the point $\left(c_{i j k}\right)_{p}$ of \mathfrak{C}_{p} which minimizes $D\left(\left(c_{i j k}\right)_{p},\left(a_{i j k}\right)\right)$ for each $p=1, \ldots, 7$ and choose the point $\left(c_{i j k}\right)_{0}$ among them with $D\left(\left(c_{i j k}\right)_{i},\left(a_{i j k}\right)\right)$ minimum. Then the set of Lie algebra structure constants $\left(c_{i j k}\right)_{0}$ gives the closest structure to an algebra structure with the set $\left(a_{i j k}\right)$ of structure constants. We employ Mathematica in several stages to find the desired points.

2. Algebraic Set of 3-dimensional Lie Algebras

By equations (2) and (3), we have

$$
\begin{align*}
& c_{231} c_{122}-c_{231} c_{313}-c_{121} c_{232}+c_{233} c_{311}=0 \tag{4}\\
& c_{312} c_{233}-c_{312} c_{121}-c_{232} c_{313}+c_{311} c_{122}=0 \tag{5}\\
& c_{123} c_{311}-c_{123} c_{232}-c_{313} c_{121}+c_{122} c_{233}=0 \tag{6}
\end{align*}
$$

These polynomials of the left hand sides already consist a Groebner basis of the ideal generated by themselves, with an ordering on the monomials

$$
c_{123}>c_{231}>c_{312}>c_{122}>c_{233}>c_{311}>c_{121}>c_{232}>c_{313} .
$$

In our previous paper [2], we discussed the closest associative algebra structures. To parameterize the algebraic set of associative algebras, we use the Groebner basis and the elimination-extension method. This method does not work in the Lie algebra case. We shall follow the Jacobson's method of determination of the low dimensional Lie algebras [1, pp. 11-14].

Notations. The set of structure constants $\boldsymbol{c}=\left(c_{i j k}\right)$ is of the form:

$$
\begin{aligned}
& \left(c_{121}, c_{122}, c_{123}, c_{231}, c_{232}, c_{233}, c_{311}, c_{312}, c_{313}\right. \\
& c_{111}, c_{112}, c_{113}, c_{221}, c_{222}, c_{223}, c_{331}, c_{332}, c_{333} \\
& \left.c_{211}, c_{212}, c_{213}, c_{321}, c_{322}, c_{323}, c_{131}, c_{132}, c_{133}\right)
\end{aligned}
$$

staying on \mathbb{R}^{27}. The first 9 entries determine all the entries of \boldsymbol{c}, we write

$$
\boldsymbol{c}=\left(c_{121}, \ldots, c_{313},-,-\right)
$$

for short, here

$$
\begin{aligned}
& \text { the first "-" }=(0, \ldots, 0) \\
& \text { the second "-" }=\left(-c_{121}, \ldots,-c_{313}\right) \text {. }
\end{aligned}
$$

Theorem 1. Let \mathfrak{C} be the algebraic set defined by (2)-(3) in \mathbb{R}^{27}. Then the elements $\boldsymbol{c}=\left(c_{121}, \ldots, c_{313},-,-\right)$ of \mathfrak{C} are expressed as

$$
\begin{aligned}
\mathfrak{C}^{\prime}= & \mathfrak{C}_{1} \cup \mathfrak{C}_{2} \cup \mathfrak{C}_{3} \cup \mathfrak{C}_{4} \cup \mathfrak{C}_{5} \cup \mathfrak{C}_{6} \cup \mathfrak{C}_{7} ; \\
\mathfrak{C}_{1}= & \{(\alpha, \beta, \gamma, p \alpha, p \beta, p \gamma, q \alpha, q \beta, q \gamma,---) \mid \alpha, \beta, \gamma, p, q \in \mathbb{R}\}, \\
\mathfrak{C}_{2}= & \{(0,0,0, \alpha, \beta, \gamma, p \alpha, p \beta, p \gamma,-,-) \mid \alpha, \beta, \gamma, p \in \mathbb{R}\}, \\
\mathfrak{C}_{3}= & \{(0,0,0,0,0,0, \alpha, \beta, \gamma,-,-) \mid \alpha, \beta, \gamma \in \mathbb{R}\}, \\
\mathfrak{C}_{4}= & \{(\alpha, q \alpha+p \beta, \beta, \gamma, q \gamma+p \delta, \delta, p \alpha+q \gamma, \\
& \left.\left.p^{2} \beta+p q(\alpha+\delta)+q^{2} \gamma, p \beta+q \delta,-,-\right) \mid \alpha, \beta, \gamma, \delta, p, q \in \mathbb{R}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{C}_{5}=\left\{\left(p \alpha, \beta, \alpha, p^{2} \alpha, p \beta, p \alpha, p \gamma, \delta, \gamma,-,-\right) \mid \alpha, \beta, \gamma, \delta, p \in \mathbb{R}\right\}, \\
& \mathfrak{C}_{6}=\{(0,0,0, \alpha, \beta, 0, \gamma, \delta, 0,-,-) \mid \alpha, \beta, \gamma, \delta \in \mathbb{R}\}, \\
& \mathfrak{C}_{7}=\{(\alpha, \beta, \gamma, \delta, \varepsilon, \alpha, \varepsilon, \zeta, \beta,-,-) \mid \alpha, \beta, \gamma, \delta, \varepsilon, \zeta \in \mathbb{R}\} .
\end{aligned}
$$

Proof. Let V be the vector space over \mathbb{R} with a basis $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $L=\left(V,\left(c_{i j k}\right),[-,-]\right)$ be the 3-dimensional Lie algebra with the set of structure constants $\left(c_{i j k}\right)$. We figure out the structure constants separately for the cases $\operatorname{dim}[L, L]=1,2,3$.
(1) $\operatorname{dim}[L, L]=1:$ If $\left[x_{1}, x_{2}\right] \neq 0$, then we can write

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=c_{121} x_{1}+c_{122} x_{2}+c_{123} x_{3}(\neq 0),} \\
& {\left[x_{2}, x_{3}\right]=p\left[x_{1}, x_{2}\right],} \\
& {\left[x_{3}, x_{1}\right]=q\left[x_{1}, x_{2}\right],}
\end{aligned}
$$

for some $p, q \in \mathbb{R}$. Then the Jacobi identity is automatically satisfied. By setting $\alpha=c_{121}, \beta=c_{122}, \gamma=c_{123}$, we have $\boldsymbol{c} \in \mathfrak{C}_{1}$.

If $\left[x_{1}, x_{2}\right]=0$ and $\left[x_{2}, x_{3}\right] \neq 0$, then we can write

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=0,} \\
& {\left[x_{2}, x_{3}\right]=c_{231} x_{1}+c_{232} x_{2}+c_{233} x_{3}(\neq 0),} \\
& {\left[x_{3}, x_{1}\right]=p\left[x_{2}, x_{3}\right]}
\end{aligned}
$$

for some $p \in \mathbb{R}$. Then the Jacobi identity holds. We set $\alpha=c_{231}, \beta=c_{232}$, $\gamma=c_{233}$ and have $\boldsymbol{c} \in \mathfrak{C}_{2}$. When $\left[x_{1}, x_{2}\right]=0$ and $\left[x_{2}, x_{3}\right]=0$, we must have $\left[x_{3}, x_{1}\right] \neq 0$. These lead to $\boldsymbol{c} \in \mathfrak{C}_{3}$.
(2) $\operatorname{dim}[L, L]=2$: Assume that $\left[x_{1}, x_{2}\right] \neq 0$. If $\left[x_{1}, x_{2}\right]$ and $\left[x_{2}, x_{3}\right]$ are linearly independent, then we can write

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=c_{121} x_{1}+c_{122} x_{2}+c_{123} x_{3}(\neq 0),} \\
& {\left[x_{2}, x_{3}\right]=c_{231} x_{1}+c_{232} x_{2}+c_{233} x_{3}(\neq 0),} \\
& {\left[x_{3}, x_{1}\right]=p\left[x_{1}, x_{2}\right]+q\left[x_{2}, x_{3}\right],}
\end{aligned}
$$

for some $p, q \in \mathbb{R}$. The Jacobi identity $\left[\left[x_{1}, x_{2}\right], x_{3}\right]+\left[\left[x_{2}, x_{3}\right], x_{1}\right]+\left[\left[x_{3}, x_{1}\right], x_{2}\right]$ $=\left(q c_{231}+p c_{233}-c_{232}\right)\left[x_{1}, x_{2}\right]+\left(c_{122}-p c_{123}-q c_{121}\right)\left[x_{2}, x_{3}\right]$ gives us $q c_{231}+$ $p c_{233}-c_{232}=0, \quad q c_{121}+p c_{123}-c_{122}=0$. By putting $\alpha=c_{121}, \quad \beta=c_{123}$, $\gamma=c_{231}, \delta=c_{233}$, we have $\boldsymbol{c} \in \mathfrak{C}_{4}$. If $\left[x_{1}, x_{2}\right]$ and $\left[x_{2}, x_{3}\right]$ are linearly dependent, then $\left[x_{1}, x_{2}\right.$] and $\left[x_{3}, x_{1}\right]$ must be linearly independent and we may write $\left[x_{2}, x_{3}\right]=p\left[x_{1}, x_{2}\right]$ for some $p \in \mathbb{R}$. It follows from the Jacobi identity that $\boldsymbol{c} \in \mathfrak{C}_{5}$.

Assume that $\left[x_{1}, x_{2}\right]=0$. We may write

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=0} \\
& {\left[x_{2}, x_{3}\right]=c_{231} x_{1}+c_{232} x_{2}+c_{233} x_{3}(\neq 0),} \\
& {\left[x_{3}, x_{1}\right]=c_{311} x_{1}+c_{312} x_{2}+c_{313} x_{3}(\neq 0)}
\end{aligned}
$$

By the Jacobi identity $\left[\left[x_{1}, x_{2}\right], x_{3}\right]+\left[\left[x_{2}, x_{3}\right], x_{1}\right]+\left[\left[x_{3}, x_{1}\right], x_{2}\right]=c_{233}\left[x_{3}, x_{1}\right]-$ $c_{313}\left[x_{2}, x_{3}\right]$, we have $c_{233}=c_{313}=0$. It shows that $\boldsymbol{c} \in \mathfrak{C}_{6}$.
(3) $\operatorname{dim}[L, L]=3$: It follows from the Jacobi identity

$$
\begin{aligned}
& {\left[\left[x_{1}, x_{2}\right], x_{3}\right]+\left[\left[x_{2}, x_{3}\right], x_{1}\right]+\left[\left[x_{3}, x_{1}\right], x_{2}\right] } \\
= & \left(c_{311}-c_{232}\right)\left[x_{1}, x_{2}\right]+\left(c_{122}-c_{313}\right)\left[x_{2}, x_{3}\right]+\left(c_{233}-c_{121}\right)\left[x_{3}, x_{1}\right],
\end{aligned}
$$

that $c_{311}=c_{232}, c_{122}=c_{313}, \quad c_{233}=c_{121}$. This shows that $\boldsymbol{c} \in \mathfrak{C}_{7}$.

3. Closest Lie Algebra Structures

Let $\left(a_{i j k}\right)$ be a point in \mathbb{R}^{27}. This point gives us the multiplication on the vector space $\mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}$ with a basis $\left\{x_{1}, x_{2}, x_{3}\right\}:$

$$
x_{i} x_{j}=\sum_{k=1}^{3} a_{i j k} x_{k}, \quad(i, j=1,2,3)
$$

We shall find the point $\left(c_{i j k}\right)$ on \mathfrak{C} closest to the point $\left(a_{i j k}\right)$, so that $\left(c_{i j k}\right)$ minimizes the distance $D\left(\left(c_{i j k}\right),\left(a_{i j k}\right)\right)$ stated in the introduction.

Theorem 2. Let $\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{7}$ be the algebraic set given in Theorem 1 and $\left(a_{i j k}\right)$ in \mathbb{R}^{27}. Then the point \boldsymbol{c}_{i} on \mathfrak{C}_{i} closest to the point $\left(a_{i j k}\right)$ is of the following forms:
(1) $\boldsymbol{c}_{3}=\left(0,0,0,0,0,0, \frac{a_{311}-a_{131}}{2}, \frac{a_{312}-a_{132}}{2}, \frac{a_{313}-a_{133}}{2},-,-\right)$.
(2)

$$
\begin{aligned}
& \boldsymbol{c}_{6}=\left(0,0,0, \frac{a_{231}-a_{321}}{2}, \frac{a_{232}-a_{322}}{2}, 0, \frac{a_{311}-a_{131}}{2}, \frac{a_{312}-a_{132}}{2}, 0,-,-\right) . \\
& \text { (3) } \boldsymbol{c}_{7}=\left(\frac{a_{121}+a_{233}-a_{211}-a_{323}}{4}, \frac{a_{122}+a_{313}-a_{212}-a_{133}}{4},\right. \\
& \frac{a_{123}-a_{213}}{2}, \frac{a_{231}-a_{321}}{2}, \frac{a_{232}+a_{311}-a_{322}-a_{131}}{4}, \\
& \frac{a_{121}+a_{233}-a_{211}-a_{323}}{4}, \frac{a_{232}+a_{311}-a_{322}-a_{131}}{4}, \\
&\left.\frac{a_{312}-a_{132}}{2}, \frac{a_{122}+a_{313}-a_{212}-a_{133}}{4},-,-\right) .
\end{aligned}
$$

(4) Real numbers $\alpha, \beta, \gamma, \delta, p, q$ determining $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{4}, \boldsymbol{c}_{5}$ are chosen as follows: We denote by $\langle X, Y\rangle=\operatorname{tr}\left({ }^{t} X Y\right)$ for the square matrices X, Y.

Step 1. Find $X(p, q), \boldsymbol{b}(p, q)$ in cases of \mathfrak{C}_{1} and \mathfrak{C}_{4}, and $X(p), \boldsymbol{b}(p)$ in cases of \mathfrak{C}_{2} and \mathfrak{C}_{5}, by using X_{1}, \ldots, X_{4} given in the following table:

$$
\begin{aligned}
& X(p, q):=2\left(\left\langle X_{i}, X_{j}\right\rangle\right) \text { for } \mathfrak{C}_{1}, \mathfrak{C}_{4} \\
& X(p):=2\left(\left\langle X_{i}, X_{j}\right\rangle\right) \text { for } \mathfrak{C}_{2}, \mathfrak{C}_{5} \\
& \boldsymbol{b}(p, q):=\left(\left\langle\tilde{A}, X_{i}\right\rangle\right) \text { for } \mathfrak{C}_{1}, \mathfrak{C}_{4} \\
& \boldsymbol{b}(p):=\left(\left\langle\tilde{A}, X_{i}\right\rangle\right) \text { for } \mathfrak{C}_{2}, \mathfrak{C}_{5}
\end{aligned}
$$

here

$$
\tilde{A}=\left(\begin{array}{lll}
a_{211}-a_{121} & a_{212}-a_{122} & a_{213}-a_{123} \\
a_{321}-a_{231} & a_{322}-a_{232} & a_{323}-a_{233} \\
a_{131}-a_{311} & a_{132}-a_{312} & a_{133}-a_{313}
\end{array}\right)
$$

	X_{1}	X_{2}	X_{3}	X_{4}
\mathfrak{C}_{1}	$\left(\begin{array}{lll}1 & 0 & 0 \\ p & 0 & 0 \\ q & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & p & 0 \\ 0 & q & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & p \\ 0 & 0 & q\end{array}\right)$	
\mathfrak{C}_{2}	$\left(\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ p & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & p & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & p\end{array}\right)$	
\mathfrak{C}_{4}	$\left(\begin{array}{ccc}1 & q & 0 \\ 0 & 0 & 0 \\ p & p q & 0\end{array}\right)$	$\left(\begin{array}{ccc}0 & p & 1 \\ 0 & 0 & 0 \\ 0 & p^{2} & p\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 1 & q & 0 \\ q & q^{2} & 0\end{array}\right)$	$\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & p & 1 \\ 0 & p q & q\end{array}\right)$
\mathfrak{C}_{5}	$\left(\begin{array}{ccc}p & 0 & 1 \\ p^{2} & 0 & p \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & p & 0 \\ 0 & 0 & 0\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ p & 0 & 1\end{array}\right)$	$\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$

Step 2. Express $\alpha, \beta, \gamma, \delta$ in terms of p, q by

$$
\begin{aligned}
& { }^{t}(\alpha \beta \gamma)=-X(p, q)^{-1} \boldsymbol{b}(p, q) \text { for } \mathfrak{C}_{1}, \\
& { }^{t}(\alpha \beta \gamma)=-X(p)^{-1} \boldsymbol{b}(p) \text { for } \mathfrak{C}_{2}, \\
& { }^{t}(\alpha \beta \gamma \delta)=-X(p, q)^{-1} \boldsymbol{b}(p, q) \text { for } \mathfrak{C}_{4}, \\
& { }^{t}(\alpha \beta \gamma \delta)=-X(p)^{-1} \boldsymbol{b}(p) \text { for } \mathfrak{C}_{5} .
\end{aligned}
$$

Step 3. Find p, q minimizing the following $f(p, q), f(p)$,

$$
\begin{aligned}
& f(p, q)=-^{t} \boldsymbol{b}(p, q) X(p, q)^{-1} \boldsymbol{b}(p, q)+K, \\
& f(p)=-^{t} \boldsymbol{b}(p) X(p)^{-1} \boldsymbol{b}(p)+K,
\end{aligned}
$$

here $K=\sum_{i, j, k} a_{i j k}^{2}$.
Note. The explicit forms of $X(p, q)$ and $X(p)$ are found in the proof.

Proof. The statements (1), (2) and (3) hold obviously. To prove (4), let us denote by

$$
\begin{aligned}
& A_{+}=\left(\begin{array}{lll}
a_{121} & a_{122} & a_{123} \\
a_{231} & a_{232} & a_{233} \\
a_{311} & a_{312} & a_{313}
\end{array}\right), \quad A_{-}=\left(\begin{array}{lll}
a_{211} & a_{212} & a_{213} \\
a_{321} & a_{322} & a_{323} \\
a_{131} & a_{132} & a_{133}
\end{array}\right), \\
& A_{0}=\left(\begin{array}{lll}
a_{111} & a_{112} & a_{113} \\
a_{221} & a_{222} & a_{223} \\
a_{331} & a_{332} & a_{333}
\end{array}\right), \quad C=\left(\begin{array}{lll}
c_{121} & c_{122} & c_{123} \\
c_{231} & c_{232} & c_{233} \\
c_{311} & c_{312} & c_{313}
\end{array}\right) .
\end{aligned}
$$

Then we have $\tilde{A}=A_{-}-A_{+}$and

$$
\begin{aligned}
D(\boldsymbol{c}, \boldsymbol{a})^{2} & =\left\langle C-A_{+}, C-A_{+}\right\rangle+\left\langle-C-A_{-},-C-A_{-}\right\rangle+\left\langle O-A_{0}, O-A_{0}\right\rangle \\
& =2\langle C, C\rangle+2\left\langle A_{-}-A_{+}, C\right\rangle+\left\langle A_{+}, A_{+}\right\rangle+\left\langle A_{-}, A_{-}\right\rangle+\left\langle A_{0}, A_{0}\right\rangle
\end{aligned}
$$

Let us consider the case of \mathfrak{C}_{1}. In terms of X_{1}, X_{2}, X_{3} of the table above, we can write

$$
C=\left(\begin{array}{ccc}
\alpha & \beta & \gamma \\
p \alpha & p \beta & p \gamma \\
q \alpha & q \beta & q \gamma
\end{array}\right)=\alpha X_{1}+\beta X_{2}+\gamma X_{3}
$$

Then we have

$$
\begin{aligned}
& \langle C, C\rangle=(\alpha \beta \gamma)\left(\begin{array}{ccc}
\left\langle X_{1}, X_{1}\right\rangle & \left\langle X_{1}, X_{2}\right\rangle & \left\langle X_{1}, X_{3}\right\rangle \\
\left\langle X_{2}, X_{1}\right\rangle & \left\langle X_{2}, X_{2}\right\rangle & \left\langle X_{2}, X_{3}\right\rangle \\
\left\langle X_{3}, X_{1}\right\rangle & \left\langle X_{3}, X_{2}\right\rangle & \left\langle X_{3}, X_{3}\right\rangle
\end{array}\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right), \\
& \left\langle A-A_{+}, C\right\rangle=\left(\left\langle\tilde{A}, X_{1}\right\rangle\left\langle\tilde{A}, X_{2}\right\rangle\left\langle\tilde{A}, X_{3}\right\rangle\right)\left(\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right)
\end{aligned}
$$

hence

$$
D(\boldsymbol{c}, \boldsymbol{a})^{2}={ }^{t} \boldsymbol{x} X(p, q) \boldsymbol{x}+2^{t} \boldsymbol{b}(p, q) \boldsymbol{x}+K
$$

here

$$
\begin{aligned}
& X(p, q)=2\left(\left\langle X_{i}, X_{j}\right\rangle\right) \\
& \quad=2 \operatorname{diag}\left(1+p^{2}+q^{2}, 1+p^{2}+q^{2}, 1+p^{2}+q^{2}\right) \\
& \boldsymbol{b}(p, q)={ }^{t}\left(\left\langle\tilde{A}, X_{1}\right\rangle\left\langle\tilde{A}, X_{2}\right\rangle\left\langle\tilde{A}, X_{3}\right\rangle\right) \\
& \boldsymbol{x}={ }^{t}(\alpha \beta \gamma) \\
& K=\left\langle A_{+}, A_{+}\right\rangle+\left\langle A_{-}, A_{-}\right\rangle+\left\langle A_{0}, A_{0}\right\rangle .
\end{aligned}
$$

Since $X(p, q)$ is positive definite for any real numbers $p, q, D\left(\left(c_{i j k}\right),\left(a_{i j k}\right)\right)^{2}$ has the minimum value at $\boldsymbol{x}=\boldsymbol{x}(p, q)$ such that $X(p, q) \boldsymbol{x}(p, q)+\boldsymbol{b}(p, q)=\mathbf{0}$ for each p, q. Such an $x(p, q)$ satisfies

$$
\begin{aligned}
D\left(\left(c_{i j k}\right),\left(a_{i j k}\right)\right)^{2} & ={ }^{t} \boldsymbol{x}(p, q) X(p, q) \boldsymbol{x}(p, q)+2^{t} \boldsymbol{b}(p, q) \boldsymbol{x}(p, q)+K \\
& ={ }^{t} \boldsymbol{x}(p, q) \boldsymbol{b}(p, q)+K \\
& ={ }^{t} \boldsymbol{b}(p, q) X(p, q)^{-1} \boldsymbol{b}(p, q)+K \\
& =f(p, q)
\end{aligned}
$$

We can find $\boldsymbol{c}_{2}, \boldsymbol{c}_{4}$ and \boldsymbol{c}_{5} by using the same procedure as above. Here we give only the list of $X(p, q), X(p)$. In the cases of $\mathfrak{C}_{2}, \mathfrak{C}_{4}$ and \mathfrak{C}_{5},

$$
\begin{aligned}
& X(p)=2 \operatorname{diag}\left(1+p^{2}, 1+p^{2}, 1+p^{2}\right) \\
& X(p, q)=2\left(\begin{array}{cccc}
\left(1+p^{2}\right)\left(1+q^{2}\right) & p q\left(1+p^{2}\right) & p q\left(1+q^{2}\right) & p^{2} q^{2} \\
p q\left(1+p^{2}\right) & \left(1+p^{2}\right)^{2} & p^{2} q^{2} & p q\left(1+p^{2}\right) \\
p q\left(1+q^{2}\right) & p^{2} q^{2} & \left(1+q^{2}\right)^{2} & p q\left(1+q^{2}\right) \\
p^{2} q^{2} & p q\left(1+p^{2}\right) & p q\left(1+q^{2}\right) & \left(1+p^{2}\right)\left(1+q^{2}\right)
\end{array}\right), \\
& X(p)=2 \operatorname{diag}\left(\left(1+p^{2}\right)^{2}, 1+p^{2}, 1+p^{2}, 1\right),
\end{aligned}
$$

respectively.

4. Examples (Demonstration)

Recall that a point $\left(a_{i j k}\right)$ in \mathbb{R}^{27} gives us the multiplication on the vector space $\mathbb{R} x_{1}+\mathbb{R} x_{2}+\mathbb{R} x_{3}$ with a basis $\left\{x_{1}, x_{2}, x_{3}\right\}: x_{i} x_{j}=\sum_{k=1}^{3} a_{i j k} x_{k}$.

Example 1. Our point $\boldsymbol{a}=\left(a_{i j k}\right)$ in \mathbb{R}^{27} is $\boldsymbol{a}=(1,0,-1,-1,1,0,0,0,1,0,0$, $0,0,0,0,0,0,0,-1,0,1,1,-1,0,0,0,-1)$ and the corresponding multiplication table is

$$
\begin{array}{lll}
x_{1} x_{2}=x_{1}-x_{3} & x_{2} x_{1}=-x_{1} x_{2} & x_{1} x_{1}=0 \\
x_{2} x_{3}=-x_{1}+x_{2} & x_{3} x_{2}=-x_{2} x_{3} & x_{2} x_{2}=0 \\
x_{3} x_{1}=x_{3} & x_{1} x_{3}=-x_{3} x_{1} & x_{3} x_{3}=0 .
\end{array}
$$

This multiplication does not satisfy the Jacobi identity, that is, $\left(x_{1} x_{2}\right) x_{3}+\left(x_{2} x_{3}\right) x_{1}$ $+\left(x_{3} x_{1}\right) x_{2}=-x_{2}$. By Theorem 2, we have the following point \boldsymbol{c}_{i} on \mathfrak{C}_{i} closest to the point \boldsymbol{a} and the minimum value $D\left(\boldsymbol{c}_{i}, \boldsymbol{a}\right)^{2}$:

$$
\begin{aligned}
& c_{1}=(0.978694,-0.43556,-0.784851 \text {, } \\
& \text {-0.784851, 0.349292, 0.629402, } \quad ; \quad D\left(\boldsymbol{c}_{1}, \boldsymbol{a}\right)^{2}=3.50604 \text {. } \\
& \text {-0.43556, 0.193842, 0.349292, -, -) } \\
& \boldsymbol{c}_{2}=(0 ., 0 ., 0 .,-1 ., 1 ., 0 ., 0 ., 0 ., 0 .,-,-) \quad ; \quad D\left(\boldsymbol{c}_{2}, \boldsymbol{a}\right)^{2}=6 . \\
& \boldsymbol{c}_{3}=(0,0,0,0,0,0,0,0,1,-,-) \quad ; \quad D\left(\boldsymbol{c}_{3}, \boldsymbol{a}\right)^{2}=8 . \\
& \boldsymbol{c}_{4}=(1.10653,-0.0525276,-1.02323 \text {, } \\
& \text {-1.02323, 0.741678, -0.152996, } \quad ; \quad D\left(\boldsymbol{c}_{4}, \boldsymbol{a}\right)^{2}=0.727296 . \\
& -0.0525276,-0.434549,0.741678,-,-) \\
& \boldsymbol{c}_{5}=(0.75,-0.5,-0.75,-0.75,0.5,0.75 \text {, } \\
& -0.5,0 ., 0.5,-,-) \quad ; \quad D\left(\boldsymbol{c}_{5}, \boldsymbol{a}\right)^{2}=3.5 . \\
& \boldsymbol{c}_{6}=(0,0,0,-1,1,0,0,0,0,-,-) \quad ; \quad D\left(\boldsymbol{c}_{6}, \boldsymbol{a}\right)^{2}=6 . \\
& \boldsymbol{c}_{7}=(1 / 2,1 / 2,-1,-1,1 / 2,1 / 2,1 / 2,0,1 / 2,-,-) ; \quad D\left(\boldsymbol{c}_{7}, \boldsymbol{a}\right)^{2}=3 .
\end{aligned}
$$

We find $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{4}, \boldsymbol{c}_{5}$ by using Mathematica. Since $D\left(\boldsymbol{c}_{4}, \boldsymbol{a}\right)$ is the smallest among the $D\left(\boldsymbol{c}_{i}, \boldsymbol{a}\right)$'s, the closest point to \boldsymbol{a} is \boldsymbol{c}_{4} and the corresponding multiplication table is

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=1.10653 x_{1}-0.0525276 x_{2}-1.02323 x_{3}} \\
& {\left[x_{2}, x_{3}\right]=-1.02323 x_{1}+0.741678 x_{2}-0.152996 x_{3}} \\
& {\left[x_{3}, x_{1}\right]=-0.0525276 x_{1}-0.434549 x_{2}+0.741678 x_{3} .}
\end{aligned}
$$

Example 2. This example presents the scheme:
(1) Take a point $\boldsymbol{c}=(0,0,0,0,-1,0,1,0,0,-,-)$ on \mathfrak{C}_{6}.
(2) Choose a perturbed point
$\boldsymbol{a}=\boldsymbol{c}+(0,0,0,0,0,0,0,0,0.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-0.1)$
in \mathbb{R}^{27}.
(3) Find the closest point \boldsymbol{c}^{\prime} on \mathfrak{C} to \boldsymbol{a}. We note that \boldsymbol{c}^{\prime} is on \mathfrak{C}_{5}.

$$
\begin{aligned}
& \boldsymbol{c} \text { of (1) } \quad \boldsymbol{a} \text { of (2) }
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{c}^{\prime} \text { of (3) } \\
& \Rightarrow \begin{array}{l}
{\left[x_{1}, x_{2}\right]^{\prime}=-0.0499994 x_{2}} \\
{\left[x_{2}, x_{3}\right]^{\prime}=-0.9974942 x_{2}}
\end{array} \\
& {\left[x_{3}, x_{1}\right]^{\prime}=1.00249 x_{1}+0.05025 x_{3} .}
\end{aligned}
$$

Acknowledgement

The second author gratefully wishes to acknowledge Professor Murray Gerstenhaber for his hospitality and the valuable comments on their research project during the visit to University of Pennsylvania in December 2007.

References

[1] N. Jacobson, Lie Algebras, Interscience, New York, 1962.
[2] F. Kubo and F. Suenobu, On the associative algebra structures closest to algebra structures, submitted.

