
 

JP Journal of Algebra, Number Theory and Applications 
Volume 17, Number 2, 2010, Pages 97-116 
Published Online: September 6, 2010 
This paper is available online at http://pphmj.com/journals/jpanta.htm
© 2010 Pushpa Publishing House 

 

:tionClassificaject Sub sMathematic 2010 11M41. 
Keywords and phrases: L-functions, zeta functions, finite groups, semidirect products. 

Received March 1, 2010 

L-FUNCTIONS ATTACHED TO SEMIDIRECT PRODUCTS 
ARISING IN THE THEORY OF FIELDS 

A. E. ÖZLÜK and C. SNYDER 

Department of Mathematics and Statistics 
University of Maine 
Orono, ME 04469, U. S. A. 
e-mail: ali.ozluk@umit.maine.edu 

chip.snyder@umit.maine.edu 

Abstract 

We consider L-functions and zeta functions attached to finite groups. In 
particular, we study various semidirect products of the multiplicative 
group of a finite field acting on its additive group. We define L-functions 
and zeta functions with respect to number fields using the zeta and 
L-functions of groups attached to the residue class fields as factors in the 
Euler product. We then examine some of their analytic properties. 

1. Introduction 

This project was inspired by an idea of Cahit Arf (1910-1997). Arf’s plan was to 
start with a finite field and consider the representations of the semidirect product of 
its multiplicative group acting on its additive group by multiplication and then create 
some sort of “L-function” attached to these representations. Arf then thought of 
extending this procedure to local fields, in particular finite extensions of the p-adic 
rationals. Finally, he envisioned using the previous information to construct a zeta 
function of a global field, e.g. the field of rationals. 
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However, Arf never formalized this programme and, as far as we are aware, did 
not publish anything on this topic; see his collected works [1]. The purpose of this 
note is to take a modest first step in this programme in the case of finite fields. We 
consider all semidirect products of the multiplicative group of a finite field acting on 
its additive group and determine which, up to isomorphism, arise as the action of 
field multiplication. Using ideas in Artin’s papers on (non-abelian) L-functions, we 
then construct L-functions and zeta functions attached, first to arbitrary finite groups, 
and then to our semidirect products. For a different, more general, approach to 
L-series attached to finite groups, see Lang’s article, [4], and in his text, [5], Exercise 
8 of Chapter XVIII. 

At this point we come to the real novelty of this note. Again inspired by Artin’s 
works, we define a global zeta function as an Euler product of the (reciprocals of ) 
our zeta functions for finite fields. The reason for constructing these global zeta 
functions is that it takes into account the relation between multiplication and addition 
on the finite fields. We are then able to relate some analytic results about these zeta 
functions to information about the semidirect products. See the theorem below for 
more details. 

2. Some Semidirect Products 

For general information on semidirect products, see for example the nice 
presentation in Dummit and Foote’s text, [3]. 

Let p be a prime. Let ( )pCbH −= ~  and let ( ),1~ −−= pCaK  where ( )nC  

denotes any cyclic group of order n. (Unless otherwise noted, we shall write our 
groups multiplicatively.) Notice that the group of automorphisms of H, ( )HAut  

{ } ( )1~1...,,1 −−−=|ϑ= pCpjj  where ( ) .j
j bb =ϑ  But then there are 1−p  

homomorphisms from K into ( ) ,Aut H  namely ( )HKj Aut: →ϕ  given by ja ϑ  

for .1...,,1 −= pj  Each of these homomorphisms determines a semidirect product 

KH jϕ  with the presentation 

.,1, 11 jpp babababa ===| −−  

We now consider which of these 1−p  groups are isomorphic. To this end, we 

start with the following proposition. 
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Proposition 1. Let ,1H  ,2H  ,1K  2K  be groups and ( )iii HK Aut: →ϕ  
homomorphisms for .2,1=i  Suppose that 21: HHH →ψ  and 21: KKK →ψ  

are isomorphisms. Furthermore, let ( ) ( )12 AutAut: HHH →ψ∗  be given by 2ϑ  

.2
1

HH ψϑψ−  Then 

( ) 2211 21:, KHKHKH ϕϕ →ψψ  

given by 
( ) ( ) ( )( )khkh KH ψψ ,,  

is an isomorphism if and only if 

.21 KH ψϕΨ=ϕ ∗  

(The jϕ  in this proposition should not be confused with those in the previous 

paragraph.) 

The proof is straightforward and left to the reader. 

We apply this proposition to the examples above. Suppose that ( )KH ψψ ,  is an 

isomorphism of KH jϕ  onto .KH iϕ  Say ( ) n
K aa =ψ  for some n relatively 

prime to ,1−p  and ( ) m
H bb =ψ  for some m relatively prime to p. Hence by the 

proposition, ( ) ( ) ( ) ( ).babab KiHj
j ψϕψ=ϕ= ∗  But 

( ) ( )
ni

KiH bba =ψϕψ∗  

as can be see by a simple calculation. Since ( ) ,11, =−pn  we see that i and j must 

have the same order mod p and conversely. 

This argument shows that if i and j are not of the same order mod p, then there is 
no isomorphism of the type given in Proposition 1 between KH iϕ  and .KH jϕ  

However, we have not as yet ruled out the possibility of a more general type of 
isomorphism between these two groups. 

We now claim that this possibility cannot occur. For suppose that KH iϕψ :  

KH jϕ→  is an isomorphism. Then notice that ( ) ,11 ×=×ψ HH  since 

1×H  is the unique p-Sylow subgroup of the two semidirect products, for recall 

that this subgroup is normal in the two semidirect products. The next theorem then 
shows that there exists an isomorphism of the type described in Proposition 1. 
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Proposition 2. Suppose that 2211 21: KHKH ϕϕ →ψ  is an isomorphism 

such that  ( ) .11 21 ×=×ψ HH  Then there exist isomorphisms 21: HHH →ψ  

and 21: KKK →ψ  such that the mapping ( ) 2211 21:, KHKHKH ϕϕ →ψψ  

given by ( ) ( ) ( ) ( )( )1111 ,,, khkh KHKH ψψ=ψψ  is an isomorphism. 

Once again we leave the proof to the reader. 

As above let ( )pCbH −= ~  and ( )1~ −−= pCaK  for p a prime. Let g be a 

primitive root modulo p. Let ( )HK Aut: →ϕ  be the group homomorphism given 

by ,aa ϕ  where ( ) ,
mg

a bb =ϕ  for some { }.1...,,1 −∈ pm  Let d be a positive 

divisor of .1−p  Finally, let 

.,1, 11 dgpp
d babababaKHHKG ===|=== −−  

Notice that we have interpreted this construction as an internal semidirect 
product. However, we shall also consider this product externally as 

{( ) },...,,1,1...,,1, ppabKH d =ν−=μ|= μν  

where the group operation is given by 

( ) ( ) ( )( ),,,, α′αβ′βϕ=α′β′∗αβ a  

with ( ) .
dg

a bb =ϕ  

In particular, if pF  is the prime field of order p, then 

,~ 1 KHpp −×
μ

+ FF  

where μ is the homomorphism given by the field multiplication, i.e., →μ ×
pF:  

( )+pFAut  with ( ) ( ) .αβ=βαμ  (Notice  that we have characterized ×
μ

+
pp FF  in the 

family of all semidirect products of the form ).×
ϕ

+
pp FF  

On the other hand, we see 

( )( ).1~~1 −−⊕−− ppCKHKH p  
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More generally we now determine the isomorphism classes of semidirect 
products of the additive and multiplicative groups of an arbitrary finite field, qF  of 

order ,mp  p is a prime. To this end, let H be isomorphic to .+qF  Hence ( ) ,~ mpCH −  

the direct sum of m copies of ( ).pC  Moreover, let ( ) .~1~ ×−−−= qqCaK F  

Next, let ( ) ( ) ,~Aut: pmGLHK F−→ϕ  be a homomorphism and let the 

semidirect product of H with K with respect to ϕ be .KH ϕ  Finally, if M and 

N  are subgroups of some group G, we write NM ~  to mean that M and N are 

conjugate subgroups, i.e., 1−= gMgN  for some .Gg ∈  

Proposition 3. Let ( )mpCH −~  and ( ),1~ −− mpCK  say ,aK =  for some 

prime p. Let ( )HKj Aut: →ϕ  be homomorphisms for .2,1=j  Then 

( ) ( ) .~~ 2121 aaiffKHKH ϕϕ− ϕϕ  

Proof. Suppose KHKH 21: ϕϕ →ψ  is an isomorphism. Since H is the 

unique p-Sylow subgroup in the semidirect product, we see ( ) .HH =ψ  Hence by 

Proposition 2 there are automorphisms Hψ  and Kψ  of H and K such that 

( ) KHKHKH 21:, ϕϕ →ψψ  is an isomorphism. But then .21 KH ψϕψ=ϕ ∗  

This implies ( ) ( )( ) ( )( ) ( ) ,2
1

2
1

21 H
k

HHKHKH aaaa ψϕψ=ψψϕψ=ψϕψ=ϕ −−∗  for 

some ( ) .11, =−mpk  Therefore, ( ) ( ) .~ 21 aa ϕϕ  

The converse follows by reversing the argument. ~ 

We now determine which homomorphisms on K yield semidirect products 

isomorphic to ,×μ
+

qq FF  where μ is given by multiplication in .qF  

Proposition 4. Let qF  be a finite field of order ,mpq =  p be a prime. Let 

( )+× →μ qq FF Aut:  be the homomorphism determined by multiplication in the field. 

Moreover, assume ( )+× →ϕ qq FF Aut:  is any homomorphism. Then 

×
μ

+×
ϕ

+ − qqqq FFFF ~  

if and only if ( ) ,1−=ϕ qa  where a is any generator of .×qF  
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Proof. For starters notice that ( ) .1−=μ qa  Hence by the previous proposition 

( ) .1−=ϕ qa  Now let us identify ( )+qFAut  with ( ).pmGL F  It suffices to show that 

all cyclic subgroups A  of order 1−q  in ( )pmGL F  are conjugate. To this end, let 

( ) ( )AIxxpA −= det  be the characteristic polynomial of A. Hence ( )xpA  is a 

polynomial in [ ]xpF  of degree m. But since ,1−= qA  we claim that ( )xpA  is 

irreducible in [ ]xpF  for otherwise ( ) ( )∏ =
=

r
i

n
iA ixpxp 1  for some N∈inr,  and 

irreducible ( ) [ ]xxp pi F∈  of degree .mmi <  Notice then that ∑= i iimnm .  Now 

let iα  be a root of ( ).xpi  Hence A is similar to the matrix (( ( ) ) ),i
i

n
m

j
i Iα  where 

( ( ) ) i
i

n
m

j
i Iα  is the block diagonal matrix with in  copies of ( )

im
j

i Iα  on the main 

diagonal, with 
( )

im
j

i Iα  the im  by im  diagonal matrix for which ( )j
iα  are on the main 

diagonal and where 
( )j
iα  are the conjugates of iα  over .pF  Since conjugate elements 

have the same multiplicative order, we see that ( )....,,1:lcm riA i =α=  Hence 

( )∏ ∏
= =

=−<−≤α≤
r

i

r

i

mm
i AppA i

1 1
11  

a contradiction. Thus ( )xpA  is irreducible. If β is a root of this polynomial, then 

.qF∈β  Since pq FF  is a Galois extension, ( )xpA  splits in distinct factors in [ ].xqF  

Hence A is conjugate to a diagonal matrix with an element (and all its conjugates) of 

order 1−q  in .×qF  Now, if A and A′  are two matrices of order ,1−q  then A and A′  

are conjugate to diagonal matrices with the element nα  and ,n′α  respectively in the 

upper left corner, where here n and n′  are relatively prime to 1−q  and where α is 

some fixed primitive st1−q  root of unity. But then the subgroups A  and A′  are 

conjugate, as desired. ~ 

3. L-functions and the Zeta-function of a Finite Group 

Let G be a finite group of order .Gn =  Let  be a complex linear 

representation of G of finite degree, .deg  See [3] or [6] for background on linear 

representations. We define the L-function of G with respect to  by 
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( ) ( ( ) )∏
∈

−=
Gg

G
gG xgIXL ,det, 1  

where ( )( )xgI −det  is the characteristic polynomial of ( )g  and == GXX  

( ) Gggx ∈  is an n-tuple of independent variables. This definition is motivated by 

Artin’s work on L-functions, see [2]. 

Moreover, we define the zeta function of G by 

( ) ( ) ( )∏
∈

=ζ
G

GG XLX
ˆ

deg ,,  

where Ĝ  is a maximal set of inequivalent irreducible representations of G. 

Now notice that for representations ( )2,1=ii  of G we have 

( ) ( ) ( ),,,, 2121 XLXLXL GGG =⊕  

because ( ) ( )( ) ( )( ) ( )( ).detdetdet 2121 xgIxgIxgI −−=⊕−  

Therefore, we have the following relation 

( ) ( ),, regXLX GG =ζ  

where reg  is the regular representation on G, because ( )∑ ∈
= Ĝreg .deg  

We now write ( ),log XLG  in terms of the character χ=χ  of .  To this end 

consider  as a matrix representation of degree d; we thus have (up to conjugation) 

( ) ,
0

01

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ε

ε
=

d

g  

where the iε  are the eigenvalues of ( )g  and hence nth-roots of unity. Thus for 

each Gg ∈  letting gg zx =  be a complex number of modulus less than 1, we have 

( ( ) ) ( )∑ ∑∑
= =

∞

=

ε−=ε−=−
d

j

d

j m

m
g

m
jgjg z

m
zzgI

1 1 1

11logdetlog  

( )∑ ∑∑
∞

=

∞

==

χ−=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ε−=

1 11
.11

m m

m
g

mm
g

d

j

m
j zg

m
z

m
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Therefore, 

( ) ( )∑∑
∈

∞

=

χ−=
Gg m

m
g

m
G xg

mG
XL

1
.11,log  

We now have the following result. 

Proposition 5. Let G be a finite group of order .Gn =  Then 

( ) ( )∏
∈

−=ζ
Gg

gg
gG xX .1

1

 

Proof. Recall that 

( )
⎪⎩

⎪
⎨
⎧ =

=χ
otherwise.,0

,1if,
reg

gn
g  

Without loss of generality we assume ,gg zx =  where gz  is complex of modulus 

less than 1. Then 

( ) ( ) ( ) ∑ ∑∑∑
∈

∞

=∈

∞

=
=

−=χ−==ζ
Gg m

m
g

Gg m

m
g

m
GG

mg

z
m

zg
mn

XLX

1
11

regreg
111,loglog  

( ) ( )∑∑ ∑ ∏
∈

∞

= ∈ ∈

−=−−=
Gg t Gg Gg

gg
g

g
g

tg
g zz

g
z

tg
1

1 ,1log1log11  

which proves the result. ~ 

We isolate another result which is analogous to the classical case of Artin 
L-functions, see [2]. 

Proposition 6 (Restriction). Suppose HG →η :  is an epimorphism of finite 

groups. Let  be a representation on H. Then 

( ) ( ),,, ηη= GGHH XLXL  

where ( ( ) ) .GggG xX ∈η=η  

Proof. This follows since 

( ) ( ( )( ) ( ) ) ( ( ) )[ ]∏ ∏
∈ ∈

η −=η−=ηη
Gg Hh

HG
hg

G
GG xhIxgIXL .detdet, :  ~ 
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4. The Zeta Function of Some Groups Associated with Finite Fields 

We now come to the computation of the zeta function of some groups associated 
with finite fields. In particular we consider the semidirect products considered 
earlier; but first some general observations. We let ,xxg =  for all Gg ∈  and thus 

have 

( ) ( ( ) ) ( ) ( )∏ ∏
∈ ∈

−=ζ−=
Gg Gg

gg
G

G
G xxxgIxL .1,det, 11  

Hence, if  is the trivial representation, ,1=  then 

( ) .11, xxLG −=  

In order to compute the zeta function of a finite group, we need only determine 
the number of elements of the group of any given order. We first consider some 
simple examples. 

Let ( )nCG =  be any cyclic group of order n. Then for each divisor l of n, there 

are ( )lϕ  elements in G of order l. Hence the zeta function attached to G is given by 

( )( ) ( )
( )

∏
|

ϕ
−=ζ

nl
l
ll

nC xx .1  

In particular if ( ) ,1~ −−= × qCG qF  then the zeta function attached to G is given by 

( ) ( )
( )

∏
−|

ϕ
−=ζ ×

1
.1

ql
l
llxx

qF
 

As another simple example, consider ,+= qG F  with ,mpq =  p is a prime. 

Hence ( ) .~ mpCG −  Then notice that for each qa F∈  

⎪⎩

⎪
⎨
⎧ =

=
otherwise.,

,0if,1

p

a
a  

Thus the zeta function is given by 

( ) ( ) ( ) .11
1

p
qpxxx

q

−
−−=ζ +F  
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Next, we now carry this computation out for the various semidirect products 
which we have associated with :pF  

( ) ( )
dgpp

pdpd babababapCpCG ===|==−= −−×+ 11 ,1,1 FF  

{ },1...,,1;...,,1 −==|= pjpiab ji  

for gp =×Z  and .1−| pd  

We start with a lemma. 

Lemma 1. Let .×+= pdpG FF  Then for any integers ,,, μji  

( )
( ) ( )

⎪⎩

⎪
⎨
⎧ −≡/=

μμ

μ−−
μ

μ

.

,1mod011

otherwiseab

pdjifab
ab

ji

jggi
ji

jdjd

 

Proof. Let .1−= pde  Notice that .iigeie bbaba
de

==−  Hence ,Zae ∈  the 

center of G. Thus ( ) ,ejieji abab μμμ =  which establishes the lemma for mod0≡dj  

.1−p  Now suppose .1mod0 −≡/ pdj  Notice the lemma is trivially true for .1=μ  

Suppose it is true for .1−μ  Then 

( ) ( ) ( ( ) ) ( ) ( ) jijggijijiji ababababab
jdjd 1111 1 −μ−−−μμ −μ

==  

( ( ) ) ( ) ( ) ( ) jjijggi aabab
jdjd μ−μ−−μ−−−μ

= 11111
 

( ( ) ) ( ) ( ) ( ) ( ) ,1111 11 jggijigggi abab
jdjdjdjdjd μ−−μ+−− μ−μ−μ

==  

as desired. ~ 

From this we further obtain the following 

Lemma 2. Let .×+= pdpG FF  Then 

( )
( )

( ) ( )⎪
⎩

⎪
⎨

⎧

≡−≡−≡/−
−

−≡≡/−
−

=
.mod0,1mod01mod0,

1,
1

,1mod0,mod0,
1,
1

pipdjorpdjif
pj

p

pdjpiif
pj
pp

ab ji  
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Proof. Suppose .1 djp |−  Then ( ) .μμμ = jiji abab  Hence if ( ) ,1=μjiab  then 

either (i) ,ip  ,μ|p  and ,1 μ|− jp  or (ii) ip |  and .1 μ|− jp  For (i), =jiab  

( )
( ) ,1,

1
−
−

pj
pp  and for (ii), ( ) .1,

1
−

−= pj
pab ji  

Now, suppose .1 djp −  If ( ) ( ) ( ) ,111 == μ−−μ μ jggiji abab
djdj

 then .1 jp μ|−  

Hence ( ) .1,
1
−

−= pj
pab ji  ~ 

From this result we have 

Lemma 3. Let .×+= pdpG FF  Then the following table gives the orders of all 

the elements of G and the number of elements of a given order: 

lorder =  pdlif |  dlplif ,1−|  

no. of elements ( )lϕ  ( )lpϕ  

Proof. As before, let .1−= pde  Notice from the previous lemma that if ip  

and ,je |  then 

( ) ., dej
pdab ji =  

Otherwise ( ) .
1,

1
−
−

=
pj

pab ji  Hence if ,pdl |  then there are ( )lϕ  elements with 

order l. If, on the other hand, 1−| pl  but ,dl  then there are ( )lpϕ  such 

elements. ~ 

From this we have the following proposition. 

Proposition 7. Let ,×+= pdpG FF  where .1−| pd  Then 

( ) ( )
( )

( )
( )

∏ ∏
| −|

ϕϕ
−=−=ζ

pdl
dl

pl
l

lpll
ll

G xxx
1

.11  

In particular, for ( ) ( ),11 −== ×
μ

+ pCpCG pp FF  

( ) ( ) ( ) ( )
( )

∏
−|≠

ϕ−
−−−=ζ

11

1
,111

pl
l

lplp
pp

G xxxx  
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whereas if ( ) ( ),11 −⊕== ×
−

+ pCpCG ppp FF  then 

( ) ( )
( )

( )
∏

−|

ϕ
−=ζ

1
.1

ppl
l
ll

G xx  

We now compute the zeta function of a semidirect product of the additive and 

multiplicative groups of an arbitrary finite field qF  of order q, where ,mpq =  p is 

a prime. Then the additive group +
qF  is isomorphic to ( ) ;mpCH =  while Kq −+ ~F  

( ).1−= qC  We shall present ( )mpCH =  multiplicatively as 

,...,,1,,,1:...,,1 mjibbbbbbbH ijji
p

im ====  

and K generated by a, say. 

Now, let ( )HK Aut: →ϕ  be a group homomorphism, determined by .aa ϕ  

Since ( ) ( ),~Aut pmGLH F−  we identify aϕ  with a matrix ( )pmGLA F∈  given as 

follows: 

Write ,1
1

mmbbb ννν =  where ( ) ;...,,1
m
p

t
m F∈νν=ν  then ( ) .νν =ϕ A

a bb  

Now, let KHKHG A== ϕ  with H and K as above. Hence G can be presented 

as 

.,,1,...,, 11
1

ν−ν− ====|= A
ijji

qp
im bababbbbababbG  

Next, we study some properties of the matrix A. First notice that the order of A, 
,A  divides .1−q  Now factor the characteristic polynomial ( ) ( )AIxxpA −= det  

( )∏ =
=

r
i

n
i ixp1  for some positive integers r, in  and ( )xpi  distinct irreducible 

polynomials in [ ]xpF  and with the degree of ( )xpi  equal to ,im  say. We know that 

( )xpA  factors into linear factors in ,pF  an algebraic closure of .pF  Hence 

( ) ( ( ) )∏
=

α−=
im

j

j
ii xxp

1
,  

where ( )ipimp
α= FF  and ( )j

iα  range over all the conjugates of iα  over .pF  

But  then A is similar to the diagonal matrix (( ( ) )( ) ) ( ),pm
n

m
j

i GLI i
i F∈α  where 
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(( ( ) )( ) )i
i

n
m

j
i Iα  is as above. Hence ( ).lcm iA α=  In particular, iα  divides 

,A  and therefore, .×∈α qi F  From this we see that A is similar to a diagonal matrix 

in ( ).qmGL F  

Now, for some notation. If ( ),pmGLM F∈  then let ( )MN  be the null space of 

M, i.e., ( ) { }.0=ν|∈ν= MM m
pFN  In particular, if μ is an integer, then let =μd  

( ) ( ),dim IAd −=μ μN  where A is given above. Hence ( )μd  is the dimension of 

the eigenspace of μA  in m
pF  associated with the eigenvalue 1. 

We now compute the orders of the elements in .KHG A=  First notice that 

since ,1 ν−ν = Ababa  we have 

.ν
μμ−νμ = Ababa  

Therefore, 

( ) ( ( ) ) ,
1 nAAIn abab

n μν+++μν −μμ
=  

for any positive integer n, as can easily be seen by induction on n. 

Next, let ⋅⋅,  be the standard inner product on .m
pF  For any integer μ, we may 

decompose m
pF  as 

( ) ( ) .⊥μμ −⊕−= IAIAm
p NNF  

Thus, if ,m
pF∈ν  then ν′+ν=ν 1  for unique N∈ν1  and .⊥∈ν′ N  Using this 

decomposition of ,ν  notice that 

( ) ( ( ) ) ,
1

1 nAAInn abbab
n μν′+++νμν −μμ

=  

since ( ),1 IA −∈ν μN  and thus .11 ν=νμA  

From this we can prove the following 

Lemma 4. 

( ) ( ).0,1mod01 1
m
p

n innqniffab F=ν−≡μ=μν  
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Proof. Suppose ( ) .1=μν nab  From above we then have 

( ) ( ( ) ) .1
1

1 nAAInn abbab
n μν′+++νμν −μμ

==  

This implies in particular that .1mod0 −≡μ qn  But now we show that for 

,1mod0 −≡μ qn  

( ( ) ) .1
1

=ν′+++ −μμ nAAIb  

To see this, recall from above that A is similar to a diagonal matrix 

( ).qmGLD F∈  Hence we see that BDBA μ−μ = 1  for some B, where 

( )
,

0

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′
=

μμ

D

I
D

d
 

where D′  is diagonal with elements of the form ,1≠βμi  for some ,qi F∈β  on the 

main diagonal. From this we see 

( ) ( )

( ( ) )
B

nI
BAAI

ij
n

ii

dn
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

δβ++β+
=+++ −μμ

μ−−μμ
1

11

10

0
 

( )
( )

,
00

0

1

1
0

0
11 B

nI
BB

nI

B
d

ij
i

n
i

d

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

δ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−β

−β=
μ−

μ

μ
μ

−  

when .1mod0 −≡μ qn  But then again for ,1mod0 −≡μ qn  we have 

( ( ) ) ( ) ν′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=ν′+++ μ−−μμ B

nI
BAAI dn

00

011  

( )
( ( ) ) ,0...,,,0...,,0

00

0
1

1 =′′⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= +μ

μ− t
md

d
vv

nI
B  

as desired. 

Summarizing we have that if ( ) ,1=μν nab  then 1mod0 −≡μ qn  and .11 =νnb  

Therefore, 1mod0 −≡μ qn  and .01 =νn  

The converse follows easily from this argument. ~ 
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From this we immediately obtain 

Proposition 8. Let ( ) ( )1−= qCpCG A
m  be as above. Then 

( )
( )

( )
( )⎪

⎪
⎩

⎪⎪
⎨

⎧

=ν
−μ

−

≠ν
−μ
−

=μν

,01,
1

,01,
1

1

1

ifq
q

ifq
qp

ab  

where '1 ν+ν=ν  with ( )IA −∈ν μN1  and ( ) .' ⊥μ −∈ν IAN  

Now, we can finally count the number of elements in G of any given order. To 
this end, let ( )kN  be the number of elements of G of order k. Then we have 

Proposition 9. Let ( ) ( )1−= qCpCG A
m  be as above. Then the order of any 

element divides ( ).1−qp  Moreover, if ,1−| ql  then 

( ) ( ) ( (( ) ) )lqdmm pplplN 1−−−ϕ=  and ( ) ( ) ( (( ) ) ),1 lqdmpllN −−ϕ=  

where ( ) ( ).dim IAd −=μ μN  

Proof. By the previous proposition notice that for any given μ 

( ) ( )μ−−=⎟
⎠
⎞

⎜
⎝
⎛

−μ
− dmm pp

q
qpN

1,
1  and ( )

( ).
1,

1 μ−=⎟
⎠
⎞

⎜
⎝
⎛

−μ
− dmp
q

qN  

Also, notice that if ( ) ( ),1,1, −μ′=−μ qq  then ( ) ( ).μ′=μ dd  Moreover, 

{ ( ) ( )} ( ) .
1,

11,1,1mod# ⎟
⎠
⎞

⎜
⎝
⎛

−μ
−

ϕ=−μ′=−μ|−μ′
q

qqqq  

Hence if ( ) ,1,
1 lq

q =
−μ

−  then the cardinality of the above set is ( ).lϕ  From this 

and the above arguments the proposition follows easily. ~ 

From this we immediately obtain the following 

Proposition 10. Let ( ) ( ).1−= qCpCG A
m  Then 

( ) ( )
( ) ( (( ) ) ) ( )

( ) ( (( ) ) )∏
−|

ϕ−ϕ −−−−
−−=ζ

1
,11

11

ql

pl
llpppl

lpl
G

lqdmlqdmm
xxx  

with ( ) ( ).dim IAd −=μ μN  
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In particular, if ,×μ
+= qqG FF  then 

( ) ( ) ( ) ( )
( )

∏
−|≠

ϕ−
−−−=ζ

11

1
,111

ql
l

lqlp
qp

G xxxx  

whereas if ,×+ ⊕= qqG FF  then 

( ) ( )
( ) ( ) ( )

( )
∏

−|

ϕ−ϕ
−−=ζ

1

1 .11
ql

l
llqpl

lpl
G xxx  

We note in passing that ( )x
q
×ζF  and ( )x

q
+ζF  are both factors of the zeta function 

( )xGζ  given in Proposition 10. 

5. L-functions and Zeta Functions 

In order to define our main families of L-functions and zeta functions, let K 
denote a number field. For each maximal ideal p  of ,o  the ring of integers of K, let 

pG  be some finite group associated with the residue class field po  and let p  be a 

complex linear representation on .pG  We formally define 

( { } ) ( ) { }( ) ( )∏ ∏ −−−− ζ=ζ=
p p

ppp pp
p

p
p

,,,, 11 s
G

G
K

s
GK NsNLsL  

for C∈s  and where p  ranges over all the maximal ideals of o  and so po  is a 

finite residue class field with pN  elements. 

In particular, notice that if each ,1=p  then 

( { }) ( ) ( )∏ ζ=−= −−

p

p ,11, 1 sNsL K
s

K  

the Dedekind zeta function of K, since ( ) ,11, xxLG −=
p

 as we have already seen 

above. 

Here is an example of a zeta function. Let ( ) ,+= popG  the additive group of 

the residue class field .ppo NF=  Then 



L-FUNCTIONS ATTACHED TO SEMIDIRECT PRODUCTS 

 

113 

{ }( ) ( )∏ −−
+ζ=ζ

p

p
p

p 1sG
K Ns

NF
 

( ) ( ) ( ) ( )∏ ∏
−−−

−−−−− −ζ=−−=
p p

pp
ppp ,111

111
p

Nps
Kp

Npss NsNN  

which is regular for ( ) 1Re >=σ s  with a simple pole at ,1=s  since ( )sKζ  is 

regular on 1>σ  with a simple pole at 1=s  and ( ) ( )∏
−−−∗ −=ζ

p

p
p p

NpsNs
1

1  

converges absolutely and uniformally on compact subsets of .0>σ  To see this last 
claim, notice that 

( ) ,111log
1

∑∑
≥

∗ −=ζ
p p

p

m
mpsmNp

Ns  

uniformly on compact subsets of .0>σ  Thus, we have 

{ }( ) ( ) ( { }),,Res 1
+

= κ=ζ
+

p
p

NKs KcKsN FF  

where ( )Kκ  is the residue of ( )sKζ  at 1=s  and 

( { }) ( )∏
−−−+ −=

p

p

p p .1,
1

p
Np

N NKc F  

We note, too, that since ( )s∗ζ  is an absolutely convergent product for ,0>σ  the 

zeros of { }( )sN
K

+
ζ pF  with positive real part are precisely those of ( ).sKζ  If we let 

,Q=K  then notice that 

{ }( ) ( ) ( )∏
−−−−ζ=ζ

+

p
p

ppspssp ,1
1F

Q  

where ( )sζ  is the Riemann zeta function. Hence its residue at 1=s  is the constant 

( )∏
−−−−

p
p

ppp .1
1
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Now, we come to a (perhaps) more important example of a zeta function of an 

algebraic number field K. This time let ×+= qAq
AG FF

p
p
p  for pNq =  and where 

pA  is some matrix (as before) for which its order pA  divides .1−q  Then 

{ } ( ) ( )∏ −−ζ=ζ
p

p
pp

p

p
p .1s

G

G
K Ns A

A

 

In light of Proposition 10, it is not hard to see that this zeta function converges 
for .1>σ  

Instead of carrying this out in general we now consider the case where .Q=K  

Let ×+= pdp
d
p p

pG FF  with some .1−| pd p  Then 

{ }( ) ( ) ( )∏ ∏ −−−−
×+ζ=ζ=ζ

p p

ss
G

G pps
ppdppd

p

pd
p ,11

FFQ  

and so by Proposition 7, 

{ }( ) ( )
( )

( )
( )

∏ ∏ ∏
| −|

ϕ
−−

ϕ−− −−=ζ
p pdl

dl
pl

l
lplsl

llsG

p
p

pd
p pps

1

.11Q  

We now have the following theorem. 

Theorem 1. For each prime p let ×+= pdp
d
p p

pG FF  with some .1−| pd p  

Then the zeta function { }( )s
pd

pG
Qζ  converges to a meromorphic function on 

( ) 0Re >=σ s  which is regular except for a pole at .1=s  This pole is simple if 

and only if 

∑
pd

p
p

2

1  

converges. If the sum diverges, then the order of the pole is equal to 2. 
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In particular, { }( )spp
×+ ⊕

ζ
FF

Q  has a simple pole at ,1=s  whereas { }( )spp
×

μ
+

ζ
FF

Q  

has a double pole at .1=s  

Sketch of the Proof. By Proposition 7, 

{ }( ) ( ) ( )
( )

( )
( )

∏ ∏ ∏ ∏
|≠ −|≠

ϕ−−
ϕ−−−− −−−=ζ

p p pdl
dl
pl

l
lplsl

llssG

p
p

pd
p ppps

1 11

.1 111Q  

The first product is ( ),sζ  the Riemann zeta function, which has a simple pole at 

.1=s  Moreover, for ( )sRe=σ  

{ }( )
( )

( ) ( )∑ ∑ ∑ ∑ ∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
ϕ+ϕ=

σζ

σζ

|≠ ≥ −| ≥
−σσ

p pdl m
dl

pl m
mlml

G

p
p

pd
p

mpl
l

mpl
l

1 1 1 1
1

11log Q  

( )∑ +=
−σ

pd
p

O
p

2

12 ,11
2
1  

where the implicit constant depends on σ. The rest of the proof follows immediately.  

 ~ 

Notice that the parity of pd  determines how 1−  acts on +
pF  in the semidirect 

product ;×+
pdp p FF  namely, 1−  acts trivially if and only if pd  is even. Thus the 

theorem shows that the action of 1−  in the semidirect products radically influences 

the behavior of the zeta function near .1=s  
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