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Abstract

We consider L-functions and zeta functions attached to finite groups. In
particular, we study various semidirect products of the multiplicative
group of a finite field acting on its additive group. We define L-functions
and zeta functions with respect to number fields using the zeta and
L-functions of groups attached to the residue class fields as factors in the
Euler product. We then examine some of their analytic properties.

1. Introduction

This project was inspired by an idea of Cahit Arf (1910-1997). Arf’s plan was to
start with a finite field and consider the representations of the semidirect product of
its multiplicative group acting on its additive group by multiplication and then create
some sort of “L-function” attached to these representations. Arf then thought of
extending this procedure to local fields, in particular finite extensions of the p-adic
rationals. Finally, he envisioned using the previous information to construct a zeta
function of a global field, e.g. the field of rationals.
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However, Arf never formalized this programme and, as far as we are aware, did
not publish anything on this topic; see his collected works [1]. The purpose of this
note is to take a modest first step in this programme in the case of finite fields. We
consider all semidirect products of the multiplicative group of a finite field acting on
its additive group and determine which, up to isomorphism, arise as the action of
field multiplication. Using ideas in Artin’s papers on (non-abelian) L-functions, we
then construct L-functions and zeta functions attached, first to arbitrary finite groups,
and then to our semidirect products. For a different, more general, approach to
L-series attached to finite groups, see Lang’s article, [4], and in his text, [5], Exercise
8 of Chapter XVIII.

At this point we come to the real novelty of this note. Again inspired by Artin’s
works, we define a global zeta function as an Euler product of the (reciprocals of)
our zeta functions for finite fields. The reason for constructing these global zeta
functions is that it takes into account the relation between multiplication and addition
on the finite fields. We are then able to relate some analytic results about these zeta
functions to information about the semidirect products. See the theorem below for
more details.

2. Some Semidirect Products
For general information on semidirect products, see for example the nice
presentation in Dummit and Foote’s text, [3].

Let p be a prime. Let H = (b) =C(p) and let K = (a) =C(p —1), where C(n)
denotes any cyclic group of order n. (Unless otherwise noted, we shall write our
groups multiplicatively.) Notice that the group of automorphisms of H, Aut(H)

={8jli=1 .., p-1=C(p-1) where 8j(b)= bl. But then there are p -1
homomorphisms from K into Aut(H ), namely ¢;:K — Aut(H) given by ar> 9;

for j =1, ..., p—1. Each of these homomorphisms determines a semidirect product
H Xg; K with the presentation
(a,blaP™t =bP =1, abat = bl).

We now consider which of these p —1 groups are isomorphic. To this end, we

start with the following proposition.



L-FUNCTIONS ATTACHED TO SEMIDIRECT PRODUCTS 99
Proposition 1. Let Hy, H,, Kj;, K, be groups and ¢; : K; — Aut(H;)
homomorphisms for i =1, 2. Suppose that yy : H; > Hy and yg : Ky - K,
are isomorphisms. Furthermore, let wi; : Aut(H,) — Aut(H;) be given by 9, —
Wiy h . Then
(WH, Wk )t Hp 2y K = Hp 2, Ky

given by
(h, k) = (wi (h), wg (k)

is an isomorphism if and only if
o1 = "Pf ° 02 oy
(The ¢; in this proposition should not be confused with those in the previous
paragraph.)
The proof is straightforward and left to the reader.

We apply this proposition to the examples above. Suppose that (wp, wi ) isan

isomorphism of H Xg; K onto H x, K. Say vk (a) = a" for some n relatively

prime to p—1, and yy(b) = b™ for some m relatively prime to p. Hence by the

proposition, bl = 9j(@)(b) = v 95w (a)(b). But

% n
vhoivk (@) (b) =b'
as can be see by a simple calculation. Since (n, p —1) =1, we see that i and j must
have the same order mod p and conversely.

This argument shows that if i and j are not of the same order mod p, then there is
no isomorphism of the type given in Proposition 1 between H X K and H X K.

However, we have not as yet ruled out the possibility of a more general type of
isomorphism between these two groups.

We now claim that this possibility cannot occur. For suppose that v : H Xy K
— H iy, K is an isomorphism. Then notice that y(H x (1)) = H x (1), since

H x (1) is the unique p-Sylow subgroup of the two semidirect products, for recall

that this subgroup is normal in the two semidirect products. The next theorem then
shows that there exists an isomorphism of the type described in Proposition 1.



100 A.E.OZLUK and C. SNYDER

Proposition 2. Suppose that y : Hy X, K3 — Hy %, Kj is an isomorphism
such that w(H; x (1)) = H, x (1). Then there exist isomorphisms yy : H; — H,
and yi : Ky — Ky such that the mapping (yy, wi ): Hy %o, Ki = Hp g, Ky

given by (v, wi) (e, k) = (wiy (), wic (ky)) is an isomorphism.
Once again we leave the proof to the reader.

As above let H = (b) =C(p) and K = (a) =C(p —1) forpaprime. Letgbea

primitive root modulo p. Let ¢ : K — Aut(H) be the group homomorphism given
by a— ¢4, where ¢,(b) = bgm, for some m e {1, ..., p—1}. Let d be a positive
divisor of p —1. Finally, let
d
G=HK =H xg K=(abjlaP? =bP =1, abat =p?9 ).

Notice that we have interpreted this construction as an internal semidirect
product. However, we shall also consider this product externally as

Hxg K={b",a")|lpu=1.,p-Lv=1 .. p},
where the group operation is given by

(B, o) * (B a') = (Bpa(P), aa’),
. d
with @4(b) = b9 .
In particular, if IF, is the prime field of order p, then
IE‘;; XHF;:H X K,

where p is the homomorphism given by the field multiplication, i.e., p: ]FE -
Aut(Fy) with p(a)(B) = of. (Notice that we have characterized Fy x,, Fy in the
family of all semidirect products of the form IF; Xy ]FS).

On the other hand, we see

H xp 1 K= H @K =C(p(p-1)).
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More generally we now determine the isomorphism classes of semidirect
products of the additive and multiplicative groups of an arbitrary finite field, I, of

order p™, p is a prime. To this end, let H be isomorphic to IFJ. Hence H =C(p)™,

the direct sum of m copies of C(p). Moreover, let K = (a) = C(q - 1) = Fg.

Next, let ¢:K — Aut(H)=GLy(F,), be a homomorphism and let the
semidirect product of H with K with respect to ¢ be H x, K. Finally, if M and
N are subgroups of some group G, we write M ~ N to mean that M and N are

conjugate subgroups, i.e., N = gMg_l for some g € G.

Proposition 3. Let H =C(p)™ and K =C(p™ -1), say K =(a), for some
prime p. Let ¢ : K — Aut(H) be homomorphisms for j =1, 2. Then

H 3y K =H xp, K iff (01(a)) ~ (92(2).

Proof. Suppose v : H x, K — H x,, K is an isomorphism. Since H is the

unique p-Sylow subgroup in the semidirect product, we see y(H) = H. Hence by

Proposition 2 there are automorphisms vy and yy of H and K such that
(WH, Wk )1 H Xy K = H x, K isan isomorphism. But then @ =y} © @ o W
. . . * _ — k

This implies @1(a) = w02 (wk (@) = Wide2 (W @)y = viiea(2) wy, for
some (k, p™ —1) = 1. Therefore, (@1(a)) ~ (p2(a)).

The converse follows by reversing the argument. O

We now determine which homomorphisms on K yield semidirect products
isomorphic to IFq+ X, IFJ where p is given by multiplication in .

Proposition 4. Let F, be a finite field of order ¢ = p™, p be a prime. Let
u: IF; — Aut(IFq+) be the homomorphism determined by multiplication in the field.

Moreover, assume ¢ : Fq — Aut(Fy ) is any homomorphism. Then

+ X ~ Mt X
IE‘q m(p]Fq —]Fq N”Fq

ifand only if | p(a) | = q -1, where a is any generator of Fy.
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Proof. For starters notice that | i(a) | = q — 1. Hence by the previous proposition
|o(a)|=q—-1. Now let us identify Aut(Fy) with GLy(Fp). It suffices to show that
all cyclic subgroups (A) of order g —1 in GLy,(F,) are conjugate. To this end, let
pa(x) = det(Ix — A) be the characteristic polynomial of A. Hence pa(x) is a
polynomial in Fp[x] of degree m. But since | A|=q -1, we claim that pa(x) is
irreducible in Fp[x] for otherwise pa(x) = H::l p;(x)" for some r, n; e N and
irreducible p;(x) e Fp[x] of degree m; < m. Notice then that m = Zi n;m;. Now
let o be aroot of p;(x). Hence A is similar to the matrix ((oci(j)lmi ), where
(ocgj)lmi )i is the block diagonal matrix with n; copies of oci(j)lmi on the main
diagonal, with oci(j)lmi the m; by m; diagonal matrix for which ocgj) are on the main
diagonal and where oci(j) are the conjugates of o; over [F,. Since conjugate elements

have the same multiplicative order, we see that | A| = lem(| o | : i =1, ..., r). Hence

r r
A< [leil<]]P™ -D<p™-1=|A|
i=1 i=1

a contradiction. Thus pa(x) is irreducible. If B is a root of this polynomial, then
B € Fy. Since Fy /I, is a Galois extension, pa(x) splits in distinct factors in g [x].
Hence A is conjugate to a diagonal matrix with an element (and all its conjugates) of

order g—1in ]Fg. Now, if Aand A’ are two matrices of order g —1, then Aand A’

are conjugate to diagonal matrices with the element o." and o, respectively in the
upper left corner, where here n and n’ are relatively prime to g —1 and where a is
some fixed primitive g —1st root of unity. But then the subgroups (A) and (A’) are
conjugate, as desired. O

3. L-functions and the Zeta-function of a Finite Group

Let G be a finite group of order n=|G|. Let o be a complex linear
representation of G of finite degree, deg o. See [3] or [6] for background on linear
representations. We define the L-function of G with respectto o by
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Lo (X, 0) = | ] det(t - a(g)xg)¥1®,

geG
where det(l — o(g)x) is the characteristic polynomial of o(g) and X = Xg =

(xg)geG is an n-tuple of independent variables. This definition is motivated by
Artin’s work on L-functions, see [2].
Moreover, we define the zeta function of G by
Co(¥) = [ JLe(x, o),
0€G
where G is a maximal set of inequivalent irreducible representations of G.

Now notice that for representations o; (i =1, 2) of G we have
Lo (X, 01 @ 02) = Lg(X, 21) L (X, 02).

because det(l — (o1 ® 02)(9)x) = det(l — 01(g)x)det(l - 02(9)x).

Therefore, we have the following relation
Ee(X) = La(X, Qreg):
where oreq is the regular representation on G, because oreq = Zoeé (deg 0)o.

We now write log Lg (X, ¢) in terms of the character y = %o Of 0. To thisend

consider o as a matrix representation of degree d; we thus have (up to conjugation)

€1 0
o(9) = ,
0 €q
where the g; are the eigenvalues of g(g) and hence nth-roots of unity. Thus for
each g € G letting x4 = z4 be a complex number of modulus less than 1, we have

0

d d
1
log det(1 - o(9)2g) = Y loglL—&jz) ==Y > —&fzf
j=1 j=1m=1
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Therefore,

log L (X, 9>—-?ZZ 2(9™)xg

geGm
We now have the following result.
Proposition 5. Let G be a finite group of order n = |G |. Then

1

o) = Ja-xeh's!

geG
Proof. Recall that
n, ifg=1
Areg(9) = .
0, otherwise.

Without loss of generality we assume xq = z4, where z4 is complex of modulus

less than 1. Then

1 - 1 i 1
109 £6(X) =109 La (X, oreg) =~ D D 7treg (0725 == D v7f

geGm=1 geG m=1
gM=1
1
geG t=1 gt geG geG
which proves the result. O

We isolate another result which is analogous to the classical case of Artin
L-functions, see [2].

Proposition 6 (Restriction). Suppose n: G — H is an epimorphism of finite

groups. Let o be a representation on H. Then
Ly (X, 0) = Lg(nXg, 2o m),
where nXg = (Xn(g))geG'

Proof. This follows since

Le(mXg, 0om) ® = T ] detl - otn(g))xy(q)) = [ det(r = e(h)x,)®H. O

geG heH
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4. The Zeta Function of Some Groups Associated with Finite Fields

We now come to the computation of the zeta function of some groups associated
with finite fields. In particular we consider the semidirect products considered
earlier; but first some general observations. We let x4 = x, forall g € G and thus

have

Lo(x o) = | [ det(t = o(@)0"®), ¢o(x)= [ J@-x9I¥ol

geG geG
Hence, if o is the trivial representation, ¢ =1, then
Lg(x, 1) =1- x.

In order to compute the zeta function of a finite group, we need only determine
the number of elements of the group of any given order. We first consider some
simple examples.

Let G = C(n) be any cyclic group of order n. Then for each divisor | of n, there

are (1) elements in G of order |. Hence the zeta function attached to G is given by

0]
Cem) = [Ja-xrT.

I|n
In particular if G = ]FJ = C(q -1), then the zeta function attached to G is given by

o(h)
L0=TTa-xHT.
L ) I]‘[( )
lq-1

As another simple example, consider G = F;, with q = p™, p is a prime.
Hence G = C(p)™. Then notice that for each a e Fy
1, ifa=0,

lal= _

p, otherwise.

Thus the zeta function is given by

g (0= =00~ x")
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Next, we now carry this computation out for the various semidirect products
which we have associated with F,:

d
G =C(p) xqg C(p_l):F; xg Fp = (a, bjaP™ =bP =1 aba~* = b¢ )
=plalli=1,.,pj=1.,p-1,
for 2% = (g) and d| p - 1.

We start with a lemma.

Lemmal. Let G = IE‘E X IE‘;. Then for any integers i, j, W,

(blal) = bi(e*" /(@ Dar it dj 2 0mod p -1,
biMgH otherwise.

. . d .
Proof. Let de = p —1. Notice that a®b'a™® = b' ® b, Hence a° e Z, the

center of G. Thus (b'a®)* = b™a"®, which establishes the lemma for dj = 0 mod
p —1. Now suppose dj = 0mod p —1. Notice the lemma is trivially true for p = 1.

Suppose it is true for p — 1. Then
(blal }* = (biai ) Thial = pi0™ ™ -0/(a" DD jpig]
b )1 1) (1) i (02 g
— pi(e® I 0)/(g 1 -aprigh DI i ieH -/ (g7 -DH
as desired. O

From this we further obtain the following

Lemma 2. Let G = Fy x4 Fj. Then

p(p-1)
|bial | = (J,p-1)
%, if dj£0modp-1 or (dj =0mod p -1, i=0mod p).

if i=0modp,dj=0modp-1,



L-FUNCTIONS ATTACHED TO SEMIDIRECT PRODUCTS 107

Proof. Suppose p —1|dj. Then (b'al)* = b™al*. Hence if (b'al " =1, then

either (i) p +i, plw and p—1|ju, or (i) p|i and p —1] ju. For (i), |b'al | =

p(p-1) N hiad p-1
and for (ii), | b'a’ | = ——.
(., p-1’ . | | (Jp-1
. o udi di .
Now, suppose p —11 dj. If (b'al )" = bi(@*? /(% -Dg ik _ 1 then p — 1/ j.
- -1
Hence | blal [ = —P—2 . O
| | (Jp-1

From this result we have

Lemma 3. Let G = IFg X FE. Then the following table gives the orders of all

the elements of G and the number of elements of a given order:

order = | if 1] pd it 1|p-111d

no. of elements o(l) po(l)

Proof. As before, let de = p —1. Notice from the previous lemma that if p 1 i

and e] j, then

Iva) | ey

Otherwise |biaj |= Hence if 1| pd, then there are ¢(l) elements with

p-1
(J,p-1)
order 1. If, on the other hand, I|p—1 but I{d, then there are pe(l) such
elements. O

From this we have the following proposition.
Proposition 7. Let G = IE‘; X IE‘; where d|p —1. Then

("
co0 = [Ta-x)T = [Ta-"

| pd Ip-1
d

In particular, for G = Fy x, Fy = C(p) » C(p —1),

tet - -0a-x"5 [ a-x",
141 p-1
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whereas if G = Fy x4 Fy = C(p) @ C(p —1), then
o)
= [T a-xryr.
l1p(p-1)

We now compute the zeta function of a semidirect product of the additive and
multiplicative groups of an arbitrary finite field [, of order g, where q = p™, pis

a prime. Then the additive group Fy is isomorphic to H = C(p)™; while Fy =K
= C(q —1). We shall present H = C(p)™ multiplicatively as
H = (b, .. by b =1 byb; =bjb;, i, j=1,.., m),

and K generated by a, say.

Now, let ¢ : K — Aut(H ) be a group homomorphism, determined by a > ¢,.
Since Aut(H) = GLy(Fp), we identify @, with a matrix A e GLy,(F,) given as
follows:

Write b¥ = bl --by™, where v = (vi, .., vy)' € F'; then g, (bY) = b™Y.
Now, let G = H x4, K = H x4 K with H and K as above. Hence G can be presented

as
G = (b, .... by, a|b® = a%" =1, bb; = by, ab¥a~t = ™).

Next, we study some properties of the matrix A. First notice that the order of A,
| A, divides g —1. Now factor the characteristic polynomial pa(x) = det(Ix — A)

= H:Zl p;(x)" for some positive integers r, n; and p;j(x) distinct irreducible
polynomials in IFp[x] and with the degree of p;(x) equal to m;, say. We know that
pa(x) factors into linear factors in Fp, an algebraic closure of F,. Hence

mj

OB | [CR!

=1

where IFpmi = Fp(aj) and ai(j) range over all the conjugates of a; over Fy.

But then A is similar to the diagonal matrix ((ai(j)lmi )iy GL(Fp), where
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((ai(j)lmi )(”i)) is as above. Hence | A| = lem(| a|). In particular, |a;| divides
| A|, and therefore, a; € Fq. From this we see that A is similar to a diagonal matrix
in GLy(Fy).

Now, for some notation. If M e GL,,(F,), then let A/(M) be the null space of
M, ie, N(M)={ve IF{)“ My = 0}. In particular, if  is an integer, then let d,, =
d(n) = dim /(A" — 1), where A is given above. Hence d(u) is the dimension of

the eigenspace of A" in IE‘B1 associated with the eigenvalue 1.

We now compute the orders of the elements in G = H x4 K. First notice that

since ab¥a™t = p”V

, we have
atpYat = pAY,

Therefore,

(anu)n _ Q(I+A“+---+A“(”‘l))yaun’
for any positive integer n, as can easily be seen by induction on n.

Next, let (-, -) be the standard inner product on IFS‘ For any integer u, we may
m

decompose Iy’ as

Fp' = N(AY — 1) ® N(A* - )",
Thus, if v e IFS‘ then v = v; +v' for unique v; e N and v’ e N+, Using this
decomposition of v, notice that

(anp)n _ [_)mllg(l+AH+"'+A“(n_D)¥'aMn’

since v; € N(A" - 1), and thus A'v; = v;.

From this we can prove the following

Lemma 4.

(b¥a")" =1 iff pn=0modq -1, nv, =0 (in Fy).
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Proof. Suppose (b¥a")" = 1. From above we then have
1= (b¥a")" = 9”!19('+A”+---+A”(”_1))L’aun_
This implies in particular that pn = 0modg—1. But now we show that for

un =0modq -1,

b(| +A”+---+A“(n_l))l’ _1

To see this, recall from above that A is similar to a diagonal matrix

D e GLy(Fy). Hence we see that A" = B~'D*B for some B, where

Du:(ld(u) 0)
o D)

where D' is diagonal with elements of the form B} = 1, for some B; e [y, onthe

main diagonal. From this we see

' 0
Lo AR e pueD) _ gl A0 )
0 (l+ B:’l +...+Bli'1(n_l))6ij

Maw) 0
nld() 0
_p-1 un _ gl K
=87 Bl 1}3” B B[ B,

0 0

when pun = 0mod q — 1. But then again for un = 0mod g — 1, we have

(L AR g AROEDY B—l[md(u) OJBV,
- 0 0

_ nld( ) 0
=B l( Op‘ 0 (0, v 0, Va(u)-%—l’ . V;’n)t _ Q,

as desired.

Summarizing we have that if (b¥a")" =1, then un = 0modq -1 and b"¥1 =1,

Therefore, pn = 0modq -1 and ny; =0

The converse follows easily from this argument. O
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From this we immediately obtain
Proposition 8. Let G = C(p)™ x4 C(q —1) be as above. Then

p(q — 1) if

_ X]_ * Qa
| b¥al | (mg-1)
B -1 .
Gaop Muso

where v = v; + v' with v; e V(A" - 1) and v' € V(A" - Nt
Now, we can finally count the number of elements in G of any given order. To

this end, let N(k) be the number of elements of G of order k. Then we have

Proposition 9. Let G = C(p)™ x4 C(q —1) be as above. Then the order of any
element divides p(q —1). Moreover, if 1|q —1, then

N(pI) = o(1)(p™ — p™ (D) and N(1) = o(1) (pm-9(a-DIN),
where d(p) = dim NV (A" —1).

Proof. By the previous proposition notice that for any given p

p(q —1)) m_m—d(u) ( q-1 j m—d(u)
N[22 = p™ - and N| ———— | = .
(M,q—l PeoP wa-1)°°
Also, notice that if (un, g —1) = (1, g —1), then d(u) = d(n'). Moreover,
#{w'mod g ~1/(a 0-2) = (4, 4-) = of 025 |
(m q-1)

_q-1
(wa-1)
and the above arguments the proposition follows easily. a

Hence if = |, then the cardinality of the above set is ¢(l). From this
From this we immediately obtain the following

Proposition 10. Let G = C(p)™ x4 C(q —1). Then

o= [a-x” ) pm—pm-e((a-1m

I|g-1

1 )@(pm—d«q—nﬂ))

with d(u) = dim AV/(A* = 1).
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In particular, if G = Fy x,, Fy, then

ae(l)

o0 =a-0a-x"% ] a7

121]g-1
whereas if G = IFq+ ® Fy, then
(1) (1)
G0 = [T a-x"ya @ Va-xyT
1|g-1

We note in passing that CFX(X) and Cpr (x) are both factors of the zeta function
q q

Cg(x) given in Proposition 10.

5. L-functions and Zeta Functions

In order to define our main families of L-functions and zeta functions, let K
denote a number field. For each maximal ideal p of o, the ring of integers of K, let

G, be some finite group associated with the residue class field o/p and let o, bea

complex linear representation on G,,. We formally define
_ _ G PN
Lic(s. fophy) = [ T Lo, N0~ ) cic?(5) = [ G, (N0
p p
for s € C and where p ranges over all the maximal ideals of o and so o/p is a

finite residue class field with Np elements.

In particular, notice that if each 0p =1 then
—s\-1
L (s, 21 = [ [@=Np™*)" = ¢k (),
p

the Dedekind zeta function of K, since LG'J (x,1) =1- X, as we have already seen
above.
Here is an example of a zeta function. Let G, = (o/p)*, the additive group of

the residue class field o/p = Fy,. Then
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SOR | (T
p

B I RV R s mar ) | [Tl g
p

b

which is regular for ¢ = Re(s) >1 with a simple pole at s =1, since (k(s) is

Np-1
regular on o > 1 with a simple pole at s =1 and £*(s) = Hp (1-Np Py p

converges absolutely and uniformally on compact subsets of ¢ > 0. To see this last
claim, notice that

. Np—-1 1
log™(s) = —_ <,

uniformly on compact subsets of ¢ > 0. Thus, we have
Fpd oy _ +
Ress_1C  (s) = k(K)c(K, {Fny}),
where «(K) is the residue of £k (s) at s =1 and

oK. {5 = [Ta- NP5
p

We note, too, that since ¢*(s) is an absolutely convergent product for c > 0, the

+
zeros of QEFN’”(S) with positive real part are precisely those of (i (s). If we let

K = @Q, then notice that
(F3) N
SSMOR<O] [ [N
P
where {(s) is the Riemann zeta function. Hence its residue at s = 1 is the constant

[Te-vo"
p
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Now, we come to a (perhaps) more important example of a zeta function of an

algebraic number field K. This time let Gf‘“ = IE‘J XA, IF(; for ¢ = Np and where

A, is some matrix (as before) for which its order | A, | divides g —1. Then

Ap
o @ =T Tegn v
p

In light of Proposition 10, it is not hard to see that this zeta function converges
for o > 1.

Instead of carrying this out in general we now consider the case where K = Q.

Let Ggp =F, M, Fy with some d | p —1. Then

dp
SERORS | BRRCEEY || [
p P p P

and so by Proposition 7,

ap o) _is\Pol)
o 'O =T][Ja-o™ T [Ja-o" "1
p lipdp :‘fpd&
p

We now have the following theorem.

Theorem 1. For each prime p let Ggp = IE‘;,’ Mg, IF; with some dj|p -1

dp
Then the zeta function Q({Q?p }(s) converges to a meromorphic function on

o = Re(s) > 0 which is regular except for a pole at s = 1. This pole is simple if

and only if
>
5 p
21dp

converges. If the sum diverges, then the order of the pole is equal to 2.
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{Fp

+ X
In particular, Cg, ®Fp} (s) has a simple pole at s = 1, whereas Qgp n IFp}(5)

has a double pole at s = 1.

Sketch of the Proof. By Proposition 7,

(s) H(l p—s)ll—[ H 1- p_|s),_ H _,S),mp()

p 1l pdp # |
T

The first product is ¢(s), the Riemann zeta function, which has a simple pole at

s = 1. Moreover, for ¢ = Re(s)

simp™ 11p-1 m=1 MP
Itdp

S D L)
&(o) o | 117p | mlo-1

1
201 +0(Q),

1
-7 2
p
24dp
where the implicit constant depends on . The rest of the proof follows immediately.

U
Notice that the parity of d, determines how —1 acts on IF; in the semidirect

product Fg Xd, ]FS; namely, —1 acts trivially if and only if d is even. Thus the

theorem shows that the action of —1 in the semidirect products radically influences
the behavior of the zeta function near s = 1.
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