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Abstract 

In this paper, we introduce a generalization of partial isometries to 
m-partial isometries on Hilbert space for ....,3,2,1=m  Also, we study 

some of the basic algebraic and spectral properties and present some 
examples. 

1. Introduction 

The operator theory of partial isometries has been studied by several authors 
([2], [8], [13]…). For example, in [10], Mbekhta and in [13], Schmoeger have 
characterized the class of partial isometries on Banach spaces. The class of 
m-isometric and in particular 2-isometric operators on a Hilbert space has been the 
object of some intensive study, especially by Agler and Stankus in [1], but also by 
Richter [12], Shimorin [14] and Hellings [9]. In this paper, we will give a 
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generalization of partial isometries and m-isometries to m-partial isometries on 
Hilbert spaces. More precisely, we will study the bounded linear operator T on a 
complex Hilbert space H that satisfies the identity 
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for some positive integer m. We will define an operator satisfying ( )∗  to be an 

m-partial isometry on H. The case when ,1=m  represents the partial isometries 

class. If T is injective and it verifies ( ),∗  then it is called an m-isometry that is 

deeply studied by Agler and Stankus in [1]. This paper is divided into four sections. 
In Section 2, we introduce the different notions and notations and we recall some 
definitions which we shall need in the sequel. We give also a characterization of 
partial isometries. In Section 3, we discuss the elementary operator theory of 
m-partial isometries. We observe that if T is an m-partial isometry for which ( )TN  

is a reducing subspace, then ( )⊥TNT  is an m-isometry and for all ,N∈n  T is an 

( )nm + -partial isometry. Moreover, if TS  is defined by 
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then TS  is a positive operator, the kernel of TS  is invariant for T and ( )TSNT  is an 

( )1−m -partial isometry. Some spectral properties of an m-partial isometry are also 

studied, namely, if T is an m-partial isometry and reduces ( ),TN  then we prove that 

( ) { }0∪C⊂σ Ta  and ( ) C⊂σ T  or ( ) ,D⊂σ T  where C  is the unit circle, D  is 

the open unit disc and D  is the closed unit disc. In Section 4, we shall specialize to 
the case .2=m  We explore some properties of 2-partial isometries and obtain 
additional information. Finally, if T is finitely cyclic and reduces ( ),TN  then we 

prove that the operator TS  defined above is compact. 

2. Notations and Preliminaries 

Let H be a complex Hilbert space, and denoted by ( )HL  the set of bounded 

linear operators on H. Then for an operator ( ),HT L∈  we write ( )TN  for its kernel, 
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( )TR  for its range and ∗T  for its adjoint. Let ( ) ( ) ( )TTT aσσρ ,,  and ( ),Tpσ  

respectively, denote the resolvent set, spectrum, the approximate point spectrum and 
point spectrum of the operator T. The spectral radius and the numerical radius of T 
will be denoted by ( )Tr  and ( ) ,Tw  respectively. For any arbitrary operator 

( ),HT L∈  as usual ( ) 21TTT ∗=  and consider the following standard definitions: 

T is normal if ,∗∗ = TTTT  quasinormal if ,2TTTTT ∗∗ =  quasi-isometry if 22TT ∗  

.TT ∗=  If A is a subset of H, then we define ( )ASpan  to be the smallest subspace of 

H which contains A. 

Consider the following standard definitions: 

Definition 2.1. An operator ( )HT L∈  is called 

1. An isometry if ,xTx =  .Hx ∈∀  

2. A partial isometry if ,xTx =  ( ) .⊥∈∀ TNx  

Remark 2.1. A partial isometry is an isometry if and only if it is injective. 

If we consider the set { ( ) },TTTTHT =∈= ∗LA  then we have the following 

well-known characterization of partial isometries. 

Proposition 2.1. For ( ),HT L∈  the following properties are equivalent: 

  (i) .A∈T  

 (ii) TT ∗  is an orthogonal projection. 

(iii) T is a partial isometry. 

We recall now the definition of an m-isometry on H introduced by Agler and 
Stankus in [1]. 

Definition 2.2. An operator ( )HT L∈  is called an m-isometry if 

( )∑
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3. m-partial Isometry 

In this section, we generalize the notions of partial isometries and m-isometries 
to m-partial isometries. 
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Definition 3.1. An operator ( )HT L∈  is called an m-partial isometry if 
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Remark 3.1. (1) It is easy to see that ( )HT L∈  is an m-partial isometry if and 

only if 

( ) ( ) ( )∑
=

⊥−−∗ ∈∀=⎟
⎠
⎞

⎜
⎝
⎛−

m

k

kmkmk TNxxTT
k
m

0

,,01  

which shows that the class of m-partial isometries generalizes those of m-isometries 
and partial isometries. 

(2) A 1-isometry is an isometry and a 1-partial isometry is a partial isometry. 

(3) An operator is an m-isometry if and only if it is an injective, m-partial 
isometry. 

Example 3.1. Consider the operators ⎟
⎠
⎞

⎜
⎝
⎛=

10
00T  and ⎟

⎠
⎞

⎜
⎝
⎛=

01
0aS  with 2a  

2
51 +=  acting on ,2C=H  then T and S are two 2-partial isometries but they are 

not 2-isometries on H. 

Example 3.2. Set 3C=H  and identify the operator T on H with the matrix 

,
001
000
100

⎟
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then T is a quasinormal 2-partial isometry. 

Example 3.3. Put [ [ ( )( )xdLH σ∞+= ,,02  equipped with the norm =2
Hf  

( ) ( )∫
∞+

σ
0

2 ,xdxf  and consider the operator V on H defined by 

( ) ( ) ( ),να= xfxxVf  

where ( ) ν
−
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1
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If { },2,1,0\+∈ν R  then the operator V is a partial isometry and it is not an 

isometry neither a 2-partial isometry on H. 

Remark 3.2. (1) If ( ),HT L∈  then ( ) ( )TNTTN =∗  and if ,N∈k  then 

( ( ) ) ( ) .⊥⊥∗ ⊂ TNTNTT kk  

(2) If ( )HT L∈  and satisfies ,TTTT =∗  then ( ) ( ).∗∗ = TRTTR  

Proposition 3.1. Let ( )HT L∈  be an m-partial isometry. If T is quasi-isometry 

or quasinormal, then T is a partial isometry. 

Proof. Let ( )HT L∈  such that ( ) ( )∑
=

−−∗ =⎟
⎠
⎞

⎜
⎝
⎛−

m

k

kmkmk TTT
k
m

0
.01  If T is quasi 

-isometry, then TTTT kk ∗∗ =  for ...,,3,2,1=k  and the equation above becomes 

.TTTT =∗  Thus T is a partial isometry, and therefore, quasinormal. If now T is 

quasinormal, then for ...,,3,2,1,0=k  we get ( )kkk TTTT ∗∗ =  and so =0  

( ) ( ) ( )∑
=

∗−−∗ −=⎟
⎠
⎞

⎜
⎝
⎛−

m

k

mkmkmk TTITTTT
k
m

0
.1  This implies that TT ∗  is a positive 

projection, hence T is a partial isometry. 

Definition 3.2. Let ( )HT L∈  and F be a subspace of H. Then we say that F is 

a reducing subspace for T if both F and ⊥F  are T-invariant or equivalently if F is 

invariant for both T and .∗T  

Contrary to the case of quasinormal operators, in general, the kernel of an 
m-partial isometry is not reducing. 

Theorem 3.1. If ( )HT L∈  and ( )TN  is a reducing subspace for T, then the 

following properties are equivalent: 

 (i) T is an m-partial isometry. 

(ii) ( )⊥TNT  is an m-isometry. 

Proof. (i) ⇒  (ii) Since T reduces ( ),TN  ( )⊥TNT  is an injective, m-partial 

isometry in ( ( ) ).⊥TNL  Thus ( )⊥TNT  is an m-isometry. 
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(ii) ⇒  (i) Let ,21 xxx +=  ( ),1 TNx ∈  ( ) .2
⊥∈ TNx  Then 

( ) ( ) ( ) ( )∑ ∑
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Since ( )⊥TNT  is an m-isometry, ( ) ( )∑
=
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k
m kmkm  and the result is obtained. 

Proposition 3.2. Let T, ( )HS L∈  such that T is an m-partial isometry and S is 

an isometry with STTS =  and .TSTS ∗∗ =  Then TS is an m-partial isometry. 

Proof. Let .Hx ∈  Then we have 
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which finishes the proof. 

Remark 3.3. For ( ),HT L∈  T is a 1-partial isometry if and only if ∗T  is so. 

This equivalence is false for the class of m-partial isometries with .2≥m  For 

example, the operator ( )3

02
20

003
6

000

CL∈

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

=T  is a 2-partial isometry but ∗T  is 

not a 2-partial isometry. 
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Proposition 3.3. If T and S are unitarily equivalent operators on H, then T is an 
m-partial isometry if and only if S is an m-partial isometry. 

Proof. Assume that there exists a unitary operator ( )HV L∈  such that 

.TVVS ∗=  Then 

( ) ( ) ( ) ( ) ( ) ( )∑ ∑
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Thus the equivalence. 

Remark 3.4. The following examples show that the classes of 1-partial 
isometries and 2-partial isometries are independent. 

Example 3.4. Consider the operator ,

001

2
100

2
100

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=T  acting on ,3C  then a 

direct computation shows that T is a 1-partial isometry but is not a 2-partial isometry. 

Example 3.5. Consider the operator ,

000

02
510

000

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
+=S  acting on ,3C  then 

a simple calculation shows that S is a 2-partial isometry but is not a 1-partial 
isometry. 

Proposition 3.4. Let ( )HT L∈  be an m-isometry. Then T is an ( )nm + -

isometry for all ....,2,1,0=n  
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Proof. It suffices to prove the result for ,1=n  we have 
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Hence T is an ( )1+m -isometry. 

In the following, we generalize the previous result for m-partial isometries. 

Proposition 3.5. Let ( )HT L∈  be an m-partial isometry such that ( )TN  is a 

reducing subspace for T. Then T is an ( )nm + -partial isometry for ....,2,1,0=n  

Proof. If T is an m-partial isometry, then ( )⊥TNT  is an m-isometry, we deduce 

from Proposition 3.5 that ( )⊥TNT  is an ( )nm + -isometry, hence by Theorem 3.1, 

T is an ( )nm + -partial isometry. 

Example 3.6. The operator ( )3

001
100
010

CL∈⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=T  is a 1-partial isometry 

and a 2-partial isometry and ( )TN  is a reducing subspace for T. 
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Remark 3.5. If ( )TN  is not reducing for T, then it is not necessary that an 

m-partial isometry is also an ( )nm + -partial isometry. 

For example, the operator ( )3

001
2

100
2

100

CL∈

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=T  is a 1-partial isometry 

with ( )TN  is not reducing for T and T is not a 2-partial isometry. 

Notation. For ( )HT L∈  and ,1≥m  let ,TTS TT Δ= ∗  where 

( )∑
−

=

−−−−∗⎟
⎠
⎞

⎜
⎝
⎛ −

−=Δ
1

0

11 .
1

1
m

k

kmkmk
T TT

k
m

 

The following results illustrate the interest of .TS  

Proposition 3.6. Let ( )HT L∈  be an m-partial isometry such that ( )TN  is a 

reducing subspace for T. Then .0≥TS  

Proof. For ,Hx∈  we get .TxTxxxS TT |Δ=|  According to [1, Proposition 

1.5], we have ( ( ) ) .0≥Δ ⊥TNT  Since T reduces ( ),TN  ( )⊥∈ TNTx  and =| xxST  

.0≥|Δ TxTxT  Hence the result. 

Theorem 3.2. Let ( )HT L∈  be an m-partial isometry such that 2≥m  and 

( )TN  is a reducing subspace for T. Then we have the following properties: 

1. ( )TSN  is an invariant subspace for T. 

2. ( )TSNT  is an ( )1−m -partial isometry. 

3. If G is an invariant subspace for T and GT  is an ( )1−m -partial isometry, 

then ( ).TSNG ⊂  

Proof. Note first that T is an m-partial isometry if and only if ( ) .0=Δ− ∗TS TT  

1. Let ( ).TSNx ∈  Then .222 xxTTTxxTTTxTxS TTT |Δ=|Δ=| ∗∗  Since 

( ) ,⊥∈ TNTx  we obtain .0=|=|Δ=| ∗ xxSxTxTTxTxS TTT  The positivity 
of TS  implies that ( )TSN  is invariant for T. 
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2. Since ( )TSN  is invariant for T, 
( ) ( ) ( )

.
TSNTTSN TSNT P Δ=Δ  So, for ,Hx ∈  

we have 

( ) ( ) 00 =⇒= xTSxS TT  

( ) 0=Δ⇔ xT T  

( ) ( )
.0=Δ⇒

TSNT TSNT  

Thus ( )TSNT  is an ( )1−m -partial isometry. 

3. Let G be an invariant subspace for T and GT  is an ( )1−m -partial isometry. 

If ,Gx ∈  then ( ) ( ) .⊥⊥ |⊂∈ GTNTNGTx ∩  Thus =|Δ=| ∗ xTxTxxS TT  

( ) ,0=|Δ |
∗ xTxT GT  so .0=xST  This means that ( ).TSNG ⊂  

Note that if ( )HT L∈  is an m-partial isometry and reduces ( ),TN  then ( )TN Δ  

( ) ,⊥⊂ TN  ( ) ( ) ( )TT NTNSN Δ⊕=  and .TT STST =∗  

In the next proposition, we discuss maximal reducing subspaces on which a 
given m-partial isometry is an ( )1−m -partial isometry. 

Proposition 3.7. Let ( )HT L∈  be an m-partial isometry such that 2≥m  and 

( )TN  is a reducing subspace for T. Then there exists a unique subspace HF ⊂  

that is maximal with respect to the following properties: 

(1) F is a reducing subspace for T. 

(2) FT |  is an ( )1−m -partial isometry. 

Proof. The existence of the subspace F that is maximal with respect to (1) and 
(2) follows from Zorn’s lemma. To prove uniqueness, it suffices to establish that if 

1F  and 2F  satisfy (1) and (2), then so also 21 FFF +=  satisfies (1) and (2), and 

that F satisfies (1) is immediate. To see that F satisfies (2), first observe that 1FT |  

and 2FT |  are ( )1−m -partial isometries. Theorem 3.2 implies that ( )TSNF ⊂1  and 

( )TSNF ⊂2  and also, ( ).TSNF ⊂  Thus (2) holds for F. 
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In the following results, we examine some spectral properties of m-partial 
isometries. 

In [1, Lemma 1.21], the authors proved that if T is an m-isometry, then 

( ) .C⊂σ Ta  This is not true for an m-partial isometry. For example, on 2C  the 

matrix operator ,
01
0
⎟
⎠
⎞

⎜
⎝
⎛=
a

S  where 
2

512 +=a  is a 2-partial isometry, with 

( ) { }.,0 aS =σ  

However, if in addition, assume that T reduces ( ),TN  then we obtain the following 

result: 

Proposition 3.8. Let ( )HT L∈  be an m-partial isometry such that ( )TN  is a 

reducing subspace for T. Then ( ) { }.0∪C⊂σ Ta  

Proof. Let ( ).Taσ∈λ  Then there exists a sequence ( ) ,1 Hx nn ⊂≥  with 

1=nx  such that ( ) .0→λ− nxIT  By induction for each integer ,0≥k  we 

have ( ) .0→λ− n
kk xIT  Since ( ) ( ) ,⊥⊂ TNTR  from Remark 3.1(1), for all ,1≥n  

we have 

( )∑
=

∗− |⎟
⎠
⎞

⎜
⎝
⎛−=

m

k
nn

kkkm xTxTT
k
m

0

10  

( ) ( ) ( )∑∑
=

−

=

∗− ⎟
⎠
⎞

⎜
⎝
⎛−λ+|λ−⎟

⎠
⎞

⎜
⎝
⎛−=

m

k
n

kkm
m

k
nn

kkkm xT
k
m

xxTTT
k
m

0

2

0

11  

( ) ( )∑
=

∗− |λ−⎟
⎠
⎞

⎜
⎝
⎛−=

m

k
nn

kkkm xxTTT
k
m

0

1  

( ) ( ) ( ) )∑
=

− λ+λ|λ−+λ−⎟
⎠
⎞

⎜
⎝
⎛−λ+

m

k

k
nn

kk
n

kkkm xxTxT
k
m

0

22 21 Re  

as ( ) ,0→λ− n
kk xIT  we obtain 

( ) .01 2 =λ−λ m  

Then 0=λ  or .1=λ  
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Corollary 3.1. If T is an m-partial isometry and reduces ( ),TN  then ( ) .1=Tr  

In particular, ( ) C⊂σ T  or ( ) .D=σ T  

Proof. It is known (see for example [3, 5]) that the convex envelopes of all 
spectra coincide. Thus from Proposition 3.8, it follows that ( ) .1=Tr  

On the other hand, ( ) D∩Tρ  is both open and closed subset of the domain .D  

Consequently, we find ( ) C⊂σ T  or ( ) .D=σ T  

We have also the following properties: 

Proposition 3.9. Let T be an m-partial isometry such that ( )TN  is a reducing 

subspace for T. Then 

  (i) ( ) { }0\Taσ∈λ  implies ( ).∗σ∈λ Ta  

 (ii) ( ) { }0\Tpσ∈λ  implies ( ).∗σ∈λ Tp  

(iii) Eigenvectors of T corresponding to distinct eigenvalues are orthogonal. 

Proof. (i) Let ( ) { }.0\Taσ∈λ  Then choose a sequence ( ) Hx nn ⊂≥1  such that 

1=nx  and ( ) ,0→λ− nxT  so for all ,0≥k  we have ( ) 0→λ−∗
n

kk xTTT  

and ( ) .0→λ− n
kk xT  On the other hand, 

( ) n
kk

n
kk

n
kk xTTxTTxTTT ∗+∗∗ λ−=λ− 1  

( ) .01 →λλ−λ−λ−= ∗∗+∗
n

kk
n

kkk
n

kk xTxTTxTT  

Since T is an m-partial isometry, we deduce that 

( ) ( )∑
=

∗− →λ⎟
⎠
⎞

⎜
⎝
⎛−λ

m

k

kkm T
k
m

0

.01  

Hence .01 →⎟
⎠
⎞⎜

⎝
⎛

λ
−∗

n
m

xIT  Finally, the operator ⎟
⎠
⎞⎜

⎝
⎛

λ
−∗ IT 1  is not bounded 

below. From Proposition 3.9, we conclude that ( ).1 ∗σ∈
λ

=λ Ta  

(ii) Let ( ) { }.0\Tpσ∈λ  Then there exists { }0\Hx ∈  such that ,xTx λ=  using 

a similar argument as in (i), we get ( ) 0=λ−∗ xIT m  from which it follows that 

( ).∗σ∈λ Tp  
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(iii) Let λ and μ be distinct eigenvalues of T. Suppose xTx λ=  and .yTy μ=  

Then 

( ) yTxTT
k
mm

k

kkkm |
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛= ∑

=

∗−

0

10  

( ) ( )∑
=

∗− |−⎟
⎠
⎞

⎜
⎝
⎛=

m

k

kkkm yTxTT
k
m

0

1  

( )∑
=

− |−⎟
⎠
⎞

⎜
⎝
⎛λ=

m

k

kkkm yTxT
k
m

0

1  

( ) ( )∑
=

− |μλ−⎟
⎠
⎞

⎜
⎝
⎛λ=

m

k

kkm yx
k
m

0

1  

( ) .1 yxm |−μλλ=  

If ,0=μ  then ,0=| yx  if ,0≠λμ  then 
μ

=μ 1  and we find also that .0=| yx  

The following corollary gives a more detailed description of the spectrum in a 
special case. 

Corollary 3.2. Let ( ).HT L∈  If both T and ∗T  are m-partial isometries such 

that T reduces ( )TN  and ∗T  reduces ( ),∗TN  then ( ) { }.0∪C⊂σ T  

Proof. It follows from ( ) ( ) { ( )}∗σ∈λλσ=σ TTT pa ,∪  and Proposition 3.9. 

Note also that, if both T and ∗T  are m-partial isometries satisfying ( ) =TN  

( ),∗TN  then ( ) { }.0∪C⊂σ T  The result follows from [1, Corollary 1.22] since both 

( )⊥TNT  and ( )⊥
∗

TNT  are m-isometries. 

4. 2-partial Isometry 

In this section, we prove some results for the class of 2-partial isometries. 
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Theorem 4.1. Let ( )HT L∈  be a 2-partial isometry such that ( )TN  is a 

reducing subspace for T. Then any power of T is also a 2-partial isometry. 

Proof. Let .N∈k  If T is a 2-partial isometry, then ( )⊥TNT  is a 2-isometry 

and from [11, Theorem 2.1], ( )⊥TN
kT  is a 2-isometry. Hence kT  is a 2-partial 

isometry. 

Theorem 4.2. A nonisometric unilateral weighted shift T with weights ( ) 1≥λ nn  

is a 2-partial isometry if and only if  

( ) 012 22
1

2 =+λ−λλλ + nnnn    for each n. 

Proof. Suppose that T is a 2-partial isometry. If ( ) 1≥nne  is an orthonormal base 

for H, then 11 ++λ= nnn eTe  and .11 nnn eeT ++
∗ λ=  Hence ( −λλλ +

2
1

2
nnn  

) 012 2 =+λn  for each n. The converse assertion is obvious. 

Corollary 4.1. Let T be an injective nonisometric unilateral weighted shift with 
weights ( ) .1≥λ nn  If T is a 2-partial isometry, then the following assertions hold: 

  (i) 012 22
1

2 =+λ−λλ + nnn  for each n. 

 (ii) ( )nnλ  is a strictly decreasing sequence of real numbers converging to 1. 

(iii) 21 <λ< n  for each .1>n  

Proof. (i) is a consequence of Theorem 4.2, since T is injective. 

(ii) Suppose that kk λ≥λ +1  for some k. Then by (i), we find that ≥0  

( )21 kλ−  or .1=λk  But this will contradict 1≠λn  for each n, since T is 

nonisometric. 

(iii) Rewriting equation (i) as 

,012 2
2

1 =
λ

+−λ +
n

n  

hence 2<λn  for each 2≥n  and by (ii), we get .1>λn  
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Theorem 4.3. Let ( )HT L∈  be a 2-partial isometry such that ( )TN  is a 

reducing subspace for T. If there exists a constant 0>M  satisfying 

( ) ,, ∗∈∀≤⊥ NnMT TN
n  

then T is a partial isometry and quasi-isometry. In particular, T is quasinormal. 

Proof. If T is a 2-partial isometry, then ( )⊥TNT  is a 2-isometry, and by 

[11,  Theorem 2.4], ( )⊥TNT  is an isometry. In particular, Proposition 2.1 gives 

.TTTT =∗  Using equation ( ) ,0222 =+− ∗∗ ITTTTT  we deduce the result. 

Corollary 4.2. Let ( )HT L∈  be a 2-partial isometry such that ( )TN  is a 

reducing subspace for T. If ( ( ) ) ( ( ) ) ,⊥⊥ = TNTN TwTr  then T is a partial 

isometry. 

Theorem 4.4 [11, Theorem 2.10]. The spectrum of a 2-isometry is the closed 
unit disc provided it is nonunitary. 

In the next for ( )HT L∈  we denote by P the canonical projector on ( ).TN  We 

will generalize the result below for 2-partial isometry. 

Theorem 4.5. Let ( )HT L∈  be a 2-partial isometry and reduce ( ).TN  If 

PITT +−∗  is not the null operator, then the spectrum of T is the closed unit disc. 

Proof. Let T be a 2-partial isometry on H. If T is injective, then it is a 2-isometry 
and the result is given by Theorem 4.4. If T is not injective, since ( )TN  is a reducing 

subspace for T, then for ,∗∈λ C  the operator TIS −λ=  is invertible if and only if 

( )TNS  and ( )⊥TNS  are invertible. Hence ( ) ( ( ) ) { }.0∪⊥σ=σ TNTT  Now the 

fact that PITT +−∗  is not null, shows that ( )⊥TNT  is a nonunitary 2-isometry. 

Consequently, the result follows from the preceding theorem. 

Corollary 4.3. If T is a 2-partial isometry and reduces ( ),TN  then each isolated 

point of its spectrum is an eigenvalue. 

Proof. If the spectrum of T has an isolated point, then from the above theorem, 
we deduce that T is unitary and hence the result follows. 
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Definition 4.1. Let ( ).HT L∈  Then T is said to be finitely cyclic if there exist 

an integer p and vectors pxxx ...,,, 21  in H such that 

{ } ....,2,1,0,1; HkpjxTSpan j
k ==≤≤  

For a finitely cyclic operator, we prove the following result: 

Theorem 4.6. If ( )HT L∈  is a finitely cyclic, 2-partial isometry and it reduces 

( ),TN  then TS  is compact. 

Proof. If T is finitely cyclic, then for all ,1≥k  kT  is finitely cyclic and so 

( )⊥kTR  is finite dimensional. If kP  denotes the orthogonal projection of H onto 

( ),1−kTR  then kTkT PSPS −  is finite rank. Let ,Hx ∈  since T is a 2-partial 

isometry and reduces ( ),TN  ,TT STST =∗  and thus 

xTxTSxTxTPSP kk
T

kk
kTk

1111 −−−− |=|  

xxTST k
T

k |= −−∗ 11  

xxST |=  

,TxTxT |Δ=  

since ( )⊥∈ TNTx  and ( )⊥TNT  is a 2-isometry, we deduce from [1, Proposition 

1.24] that 

( )2211 TxxTkTxTx k
T −=|Δ +  

211 xTk
k+≤  

2121 xTT
k

k −=  

.21
2

xTk
T k−≤  

Hence ,21
2

11 xT
k

T
xTxTPSP kkk

kTk
−−− ≤|  so 0lim =

∞+→ kTkk
PSP  and 

( )kTkTkT PSPSS −=
∞+→

lim  is compact. 
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