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Abstract

In this paper, we introduce a generalization of partial isometries to
m-partial isometries on Hilbert space for m =1, 2, 3, .... Also, we study

some of the basic algebraic and spectral properties and present some
examples.

1. Introduction

The operator theory of partial isometries has been studied by several authors
([2], 8], [13]...). For example, in [10], Mbekhta and in [13], Schmoeger have
characterized the class of partial isometries on Banach spaces. The class of
m-isometric and in particular 2-isometric operators on a Hilbert space has been the
object of some intensive study, especially by Agler and Stankus in [1], but also by
Richter [12], Shimorin [14] and Hellings [9]. In this paper, we will give a
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generalization of partial isometries and m-isometries to m-partial isometries on
Hilbert spaces. More precisely, we will study the bounded linear operator T on a
complex Hilbert space H that satisfies the identity

m
m *AM— _
Y k[ ety o (%
k=0
for some positive integer m. We will define an operator satisfying (*) to be an
m-partial isometry on H. The case when m =1, represents the partial isometries
class. If T is injective and it verifies (*), then it is called an m-isometry that is

deeply studied by Agler and Stankus in [1]. This paper is divided into four sections.
In Section 2, we introduce the different notions and notations and we recall some
definitions which we shall need in the sequel. We give also a characterization of
partial isometries. In Section 3, we discuss the elementary operator theory of

m-partial isometries. We observe that if T is an m-partial isometry for which N(T)

is a reducing subspace, then T |N(T ) is an m-isometry and for all n e N, T is an
(m + n)-partial isometry. Moreover, if St is defined by

m—1
— m-—1 Ko * *\m—1-k+m-1-k
st =3 (" kT,

k=0
then Sy is a positive operator, the kernel of Sy is invariant for Tand T | (s1) is an
(m —1) -partial isometry. Some spectral properties of an m-partial isometry are also
studied, namely, if T is an m-partial isometry and reduces N(T), then we prove that
6,(T)c CU{0} and o(T) = C or o(T) c D, where C is the unit circle, D is

the open unit disc and D is the closed unit disc. In Section 4, we shall specialize to
the case m = 2. We explore some properties of 2-partial isometries and obtain

additional information. Finally, if T is finitely cyclic and reduces N(T), then we

prove that the operator St defined above is compact.

2. Notations and Preliminaries

Let H be a complex Hilbert space, and denoted by L£(H) the set of bounded

linear operators on H. Then for an operator T € £(H), we write N(T) for its kernel,
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R(T) for its range and T" for its adjoint. Let p(T), o(T), o,(T) and op(T),

respectively, denote the resolvent set, spectrum, the approximate point spectrum and
point spectrum of the operator T. The spectral radius and the numerical radius of T
will be denoted by r(T) and |W(T)|, respectively. For any arbitrary operator

T e L(H), asusual |T|=(T"T )2 and consider the following standard definitions:
T is normal if T*T = TT*, quasinormal if TT*T = T*T?2, quasi-isometry if T**T?

=T™T. If Ais a subset of H, then we define Span(A) to be the smallest subspace of

H which contains A.
Consider the following standard definitions:

Definition 2.1. An operator T € £(H) is called

1. Anisometry if | Tx | = | x|, Vx e H.

2. A partial isometry if | Tx || = || x||, ¥x e N(T)*.

Remark 2.1. A partial isometry is an isometry if and only if it is injective.

If we consider the set A = {T € £(H)/TT*T =T}, then we have the following

well-known characterization of partial isometries.
Proposition 2.1. For T € £(H), the following properties are equivalent:
)T e A
(i) T*T is an orthogonal projection.
(iii) T is a partial isometry.

We recall now the definition of an m-isometry on H introduced by Agler and
Stankus in [1].

Definition 2.2. An operator T € £(H) is called an m-isometry if

ki(_l)k(:).r*m—k-r mk _ o,

=0
3. m-partial Isometry

In this section, we generalize the notions of partial isometries and m-isometries
to m-partial isometries.
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Definition 3.1. An operator T € £(H) is called an m-partial isometry if

m
m £ _
TZ(—I)k(ij m-kgm-k _ g,
k=0

Remark 3.1. (1) It is easy to see that T € £(H) is an m-partial isometry if and
only if
U m
Z(—l)k(k]T*’“‘kTm‘km =0, Vxe N,
k=0

which shows that the class of m-partial isometries generalizes those of m-isometries
and partial isometries.

(2) A l-isometry is an isometry and a 1-partial isometry is a partial isometry.
(3) An operator is an m-isometry if and only if it is an injective, m-partial
isometry.

Example 3.1. Consider the operators T = (0 O) and S = Gl gj with |a[?

0 1
1++/5

= actingon H = c? , then T and S are two 2-partial isometries but they are

not 2-isometries on H.

Example 3.2. Set H = C? and identify the operator T on H with the matrix

0 0 1
T=/0 0 0,
1 0 0

then T is a quasinormal 2-partial isometry.
Example 3.3. Put H = L?([0, +[, do(x)) equipped with the norm | f |||2_| =

J-(;roo| f (x)|*do(x), and consider the operator V on H defined by
VE(x) = a(x) f(x"),

where o(x) = X ¥ and a(X) =

! {«/Vx(v‘l)/z, x € R, \N,

0, x e N.
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If veR,\{0, 1,2}, then the operator V is a partial isometry and it is not an

isometry neither a 2-partial isometry on H.

Remark 3.2. (1) If T € £(H), then N(T*T)= N(T) and if k € N, then

THRTENT)Y) < N
(@) If T € £(H) and satisfies TT*T =T, then R(T*T) = R(T").

Proposition 3.1. Let T € £(H) be an m-partial isometry. If T is quasi-isometry

or quasinormal, then T is a partial isometry.

m m N
Proof. Let T € £(H) such that Z (—l)k(ij(T )m*kTm_k = 0. If T is quasi
k=0

-isometry, then T*TK —T*T for k = 1, 2, 3, ..., and the equation above becomes

TT*T =T. Thus T is a partial isometry, and therefore, quasinormal. If now T is
quasinormal, then for k =0,1, 2,3, ..., we get Tk = (T*T)k and so 0=

m m
Z(—1)k(ij(T*)m‘kka =T(I =T*T)™. This implies that T*T is a positive
k=0

projection, hence T is a partial isometry.
Definition 3.2. Let T € £(H) and F be a subspace of H. Then we say that F is

a reducing subspace for T if both F and F' are T-invariant or equivalently if F is

invariant for both T and T™.

Contrary to the case of quasinormal operators, in general, the kernel of an
m-partial isometry is not reducing.

Theorem 3.1. If T € £(H) and N(T) is a reducing subspace for T, then the

following properties are equivalent:
(1) T is an m-partial isometry.

G) T |N(T)¢ is an m-isometry.
Proof. (i) = (ii) Since T reduces N(T), T |N(-|-)L is an injective, m-partial

isometry in £(N(T)"). Thus T |N(T)L is an m-isometry.
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(i) = () Let X = X, + X5, X € N(T), X, € N(T)*. Then
u m u m
TZ(_I)k(ij*m—kT m—k (X) _ TZ(_I)k(ij*m—kT m—k(X2 )
k=0 k=0

m m
. . . k(M) *m—k+m—k k
Since T 1 18 an M-isometry, -1 T T X5)=0,s0T -1
Iner) ry kg,)( )(k) (x2) kgo( )

m ®M— — . .
: (ij M=k M=K (x) = 0 and the result is obtained.

Proposition 3.2. Let T, S € £(H) such that T is an m-partial isometry and S is
an isometry with TS = ST and TS™ = S*T. Then TS is an m-partial isometry.

Proof. Let x € H. Then we have

TS > KM (rsymk ()™ (x)

Z;* (kj X

e m (—1)k m T*m—kTm—k(S*m_kSm_k )
kZ_; (k) X

- sz: (-1)"(UT*m—kT K (5x)

which finishes the proof.

Remark 3.3. For T € £(H), T is a 1-partial isometry if and only if T* is so.

This equivalence is false for the class of m-partial isometries with m > 2. For

0 0 0
'\/g 3\ . . * .
example, the operator T = EN 0 0]|eL(C) is a2-partial isometry but T is
V2
0 -5 0

not a 2-partial isometry.
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Proposition 3.3. If T and S are unitarily equivalent operators on H, then T is an
m-partial isometry if and only if S is an m-partial isometry.

Proof. Assume that there exists a unitary operator V e £(H) such that

S =V*TV. Then

Si(_l)k(rjs*m—ksm—k(x) =V TV i(_l)k(rl]:j(v TV )*m—k(v TV )m_k(x)
k=0 k=0

ERVE: *m_km*mfkmfk

=V TW Z:ﬁ( 1) (ij TV (x)

=V*T \ (=)f[ M T em=kr mky ().
kZ; (kj "

Thus the equivalence.

Remark 3.4. The following examples show that the classes of 1-partial

isometries and 2-partial isometries are independent.

1
0 0 —
V2
Example 3.4. Consider the operator T =|0 0 % , acting on C3, then a
1 0 O

direct computation shows that T is a 1-partial isometry but is not a 2-partial isometry.

0 0 0
1++4/5
2

Example 3.5. Consider the operator S =| 0 0|, acting on C3, then
0 0 0
a simple calculation shows that S is a 2-partial isometry but is not a 1-partial
isometry.
Proposition 3.4. Let T € £(H) be an m-isometry. Then T is an (m + n)-

isometry forall n =0, 1, 2, ....
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Proof. It suffices to prove the result for n = 1, we have

m+1

> (" i

j=0

=TT P + Z<—1>J‘(m ; lj | T 0 P = P
j=1

TR + i(—nj[(“;j " e ico - comixe

=1

ST+ Y[

j=1

[ T - i
j=1

—_0_ N _ j(m m-j 2 _
o ,Z;( 1>J[jj||T i) |2 =o0.

Hence T is an (m + 1) -isometry.
In the following, we generalize the previous result for m-partial isometries.
Proposition 3.5. Let T € £(H) be an m-partial isometry such that N(T) is a
reducing subspace for T. Then T is an (m + n)-partial isometry for n =0, 1, 2, ....
Proof. If T is an m-partial isometry, then T |N(T ) is an m-isometry, we deduce
from Proposition 3.5 that T |N(T yL s an (m + n)-isometry, hence by Theorem 3.1,

Tisan (M + n)-partial isometry.

0 1 0
Example 3.6. The operator T = {O 0 1] € E((C3) is a 1-partial isometry
1 00

and a 2-partial isometry and N(T) is a reducing subspace for T.
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Remark 3.5. If N(T) is not reducing for T, then it is not necessary that an
m-partial isometry is also an (m + n)-partial isometry.

0 0
For example, the operator T ={0 0 «/l_ € E((C3) is a l-partial isometry
1 0 O

with N(T) is not reducing for T and T is not a 2-partial isometry.

Notation. For T € £(H) and m > 1, let S; = T*A;T, where

m-1

m-1\_.m_i— -

k=0

The following results illustrate the interest of St.

Proposition 3.6. Let T € £(H) be an m-partial isometry such that N(T) is a
reducing subspace for T. Then St > 0.

Proof. For x € H, we get (Stx|x)=(A7rTx|Tx). According to [1, Proposition
1.5], we have At L) > 0. Since T reduces N(T), Tx e N(T)* and (Stx|x) =
(ATTx|Tx) = 0. Hence the result.

Theorem 3.2. Let T € £(H) be an m-partial isometry such that m > 2 and
N(T) is a reducing subspace for T. Then we have the following properties:

1. N(S7) is an invariant subspace for T.
2.T |N(ST) isan (m — 1) -partial isometry.

3. If G is an invariant subspace for Tand T | is an (m —1)-partial isometry,
then G < N(S7).

Proof. Note first that T is an m-partial isometry if and only if (St —A7)T* = 0.

1. Let x e N(St). Then (SyTx|Tx) = (T*ArT2x|Tx) = (T **A;T?x|x). Since

Tx € N(T)*, we obtain (SyTx|Tx) = (T*ArTx|X) = (Syx|x) = 0. The positivity
of St implies that N(St ) is invariant for T.
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2. Since N(St) is invariant for T, At INGsy) = Pn(sy)AT INGsT)” So, for x € H,
we have
ST(X) =0= TST(X) =0

= TAT (X) =0

=T |N(ST)AT INGst) ~ 0
Thus T |N(ST) is an (m — 1) -partial isometry.

3. Let G be an invariant subspace for T and T |G is an (m — 1) -partial isometry.

If xeG, then Txe GNN(T)" < N(T|g)". Thus (Syx|x) = (T*ATTX|x) =

(T*A(r5)TXIX) = 0, 50 Syx = 0. This means that G < N(St).

Note that if T € £(H) is an m-partial isometry and reduces N(T), then N(At)
< N(T)Y, N(S7)=N(T)® N(A) and T*S¢T = Sy.

In the next proposition, we discuss maximal reducing subspaces on which a

given m-partial isometry is an (m — 1) -partial isometry.

Proposition 3.7. Let T € £(H) be an m-partial isometry such that m > 2 and
N(T) is a reducing subspace for T. Then there exists a unique subspace F < H

that is maximal with respect to the following properties:
(1) F is a reducing subspace for T.
(2) T|g isan (m —1)-partial isometry.

Proof. The existence of the subspace F that is maximal with respect to (1) and

(2) follows from Zorn’s lemma. To prove uniqueness, it suffices to establish that if
F, and F, satisfy (1) and (2), then so also F = F; + F, satisfies (1) and (2), and
that F satisfies (1) is immediate. To see that F satisfies (2), first observe that T |F1

and T |, are (M —1)-partial isometries. Theorem 3.2 implies that Fy = N(S7) and

F> < N(S7) and also, F < N(St). Thus (2) holds for F.
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In the following results, we examine some spectral properties of m-partial
isometries.

In [1, Lemma 1.21], the authors proved that if T is an m-isometry, then

o,(T) < C. This is not true for an m-partial isometry. For example, on C? the

1++/5

a o0
matrix operator S = (1 Oj’ where | a |2 = is a 2-partial isometry, with
o(S) = {0, a}.
However, if in addition, assume that T reduces N(T ), then we obtain the following
result:

Proposition 3.8. Let T € £(H) be an m-partial isometry such that N(T) is a
reducing subspace for T. Then 64(T) < C U {0}.

Proof. Let A € c,(T). Then there exists a sequence (X,),,; < H, with

[ Xn | =1 such that (T —Al)x, — 0. By induction for each integer k >0, we

have (TX —2¥1)x., = 0. Since R(T) N(T)l, from Remark 3.1(1), for all n > 1,
n

we have

0= <i(—l)m_k[TjT*kT kX, |xn>

k=0
_m_m_km*kk‘ m_m—km ky, 2
_<k§( ! (ij iy x)xn'xn>+xk§( 1) (ijIT X |

(M - >
S () ol

m m
+KZ(—1)m_k(k](||Tk “ Y%y P+ 29Re((TX = ) xq [2x0 ) + | 2 %)
k=0
as (TX - kkl)xn — 0, we obtain

A=A )™ =o.

Then L =0 or |A|=1.
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Corollary 3.1. If T is an m-partial isometry and reduces N(T), then r(T) = 1.
In particular, o(T) = C or o(T) = D.

Proof. It is known (see for example [3, 5]) that the convex envelopes of all

spectra coincide. Thus from Proposition 3.8, it follows that r(T) = 1.

On the other hand, p(T) D is both open and closed subset of the domain D.
Consequently, we find o(T) < C or o(T) = D.
We have also the following properties:

Proposition 3.9. Let T be an m-partial isometry such that N(T) is a reducing

subspace for T. Then
(i) A € 5,(T)\{0} implies & € 5,(T").
(ii) 1 € o (T)\{0} implies X € o (T").
(iii) Eigenvectors of T corresponding to distinct eigenvalues are orthogonal.
Proof. (i) Let & € 6,(T)\{0}. Then choose a sequence (X,),s; < H such that
%, [|=1 and (T =&)X, — 0, so for all k 0, we have T**T¥(T —1)x, - 0
and (TX —2X)x, — 0. On the other hand,

THTRT - 2)x, =TT, - a1 Tk,
=TT AT (TR - )%, ATk, > 0.

Since T is an m-partial isometry, we deduce that
U m
m-k #\K
XKE_O (-1 (kj(ﬂ ) — 0.

m
I) Xn — 0. Finally, the operator (T* —%I) is not bounded

|
Hence (T o

below. From Proposition 3.9, we conclude that A = % € o (TH).

(i) Let A € 5,(T)\{0}. Then there exists x € H\{0} such that Tx = Ax, using

a similar argument as in (i), we get (T" — Al )"x = 0 from which it follows that

Ae Gp(T*).



m-PARTIAL ISOMETRIES ON HILBERT SPACES 79

(iii) Let A and p be distinct eigenvalues of T. Suppose Tx = Ax and Ty = py.

~{[Eperer o

o qrertmy)

Then

=
I

0

ﬁi(j(nmka X|Ty)

) ( j(—l)m-k(m)k<x| )

=0
— A0 - D™X]y).
If w =0, then (X|y) =0, if Ap # 0, then & = ﬁ and we find also that (x|y) =

The following corollary gives a more detailed description of the spectrum in a

special case.
Corollary 3.2. Let T e £(H). If both T and T* are m-partial isometries such

that T reduces N(T) and T"* reduces N(T"), then o(T) < C U {0}.
Proof. It follows from o(T) = 6, (T)U {A, A € cp(T*)} and Proposition 3.9.

Note also that, if both T and T* are m-partial isometries satisfying N(T) =
N(T"), then o(T) < C U {0}. The result follows from [1, Corollary 1.22] since both
T |N(T )+ and T" |N(T y- are m-isometries.

4. 2-partial Isometry

In this section, we prove some results for the class of 2-partial isometries.
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Theorem 4.1. Let T € £(H) be a 2-partial isometry such that N(T) is a

reducing subspace for T. Then any power of T is also a 2-partial isometry.

Proof. Let k € N. If T is a 2-partial isometry, then T |N(T ) is a 2-isometry

and from [11, Theorem 2.1], Tk |N(T)L is a 2-isometry. Hence TK is a 2-partial
isometry.
Theorem 4.2. A nonisometric unilateral weighted shift T with weights (L),

is a 2-partial isometry if and only if
(| 2n Pl 2nar P =2 2n P +1) =0 for each n.
Proof. Suppose that T is a 2-partial isometry. If (e, )nzl is an orthonormal base
for H, then Tey = Anii€ns and T'enyq = Angen. Hence An(|An [} Ansr |* -
2| Ay | +1) = 0 for each n. The converse assertion is obvious.

Corollary 4.1. Let T be an injective nonisometric unilateral weighted shift with

weights (L) If T is a 2-partial isometry, then the following assertions hold:

n>1-
() | %n [*|Ans1 |2 = 2/ A |* +1 =0 foreachn.

(i) (| xn |)n is a strictly decreasing sequence of real numbers converging to 1.

(iii) 1 <|An | <+/2 foreach n>1.

Proof. (i) is a consequence of Theorem 4.2, since T is injective.

(ii) Suppose that |Ay,q| =] Ay | for some k. Then by (i), we find that 0 >
(1=|A [)* or | %y | = 1. But this will contradict | %, | # 1 for each n, since T is
nonisometric.

(iii) Rewriting equation (i) as

1
|7‘n+1|2_2+ =0,

|2

hence | A, | < /2 foreach n > 2 and by (ii), we get | Ay | > 1.
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Theorem 4.3. Let T € £(H) be a 2-partial isometry such that N(T) is a

reducing subspace for T. If there exists a constant M > 0 satisfying
IT" [Nyt <M, vneN,

then T is a partial isometry and quasi-isometry. In particular, T is quasinormal.
Proof. If T is a 2-partial isometry, then T |N (T): is a 2-isometry, and by
[11, Theorem 2.4], T |N(T)l is an isometry. In particular, Proposition 2.1 gives
TT*T =T. Using equation T(T**T? = 2T*T + 1) = 0, we deduce the result.
Corollary 4.2. Let T € £(H) be a 2-partial isometry such that N(T) is a
reducing subspace for T. If r(T |yryt) =[W(T [yqyL)[. then T is a partial
isometry.

Theorem 4.4 [11, Theorem 2.10]. The spectrum of a 2-isometry is the closed
unit disc provided it is nonunitary.

In the next for T € £(H) we denote by P the canonical projector on N(T). We

will generalize the result below for 2-partial isometry.
Theorem 4.5. Let T € L(H) be a 2-partial isometry and reduce N(T). If
T*T — I + P is not the null operator, then the spectrum of T is the closed unit disc.

Proof. Let T be a 2-partial isometry on H. If T is injective, then it is a 2-isometry

and the result is given by Theorem 4.4. If T is not injective, since N(T) is a reducing
subspace for T, then for A € C*, the operator S = Al —T is invertible if and only if
S |N(T) and S |N(T)L are invertible. Hence o(T) = o(T |N(T)L)U {0}. Now the
fact that T*T — | + P is not null, shows that T |N(T ) is a nonunitary 2-isometry.
Consequently, the result follows from the preceding theorem.

Corollary 4.3. If T is a 2-partial isometry and reduces N(T), then each isolated

point of its spectrum is an eigenvalue.

Proof. If the spectrum of T has an isolated point, then from the above theorem,

we deduce that T is unitary and hence the result follows.
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Definition 4.1. Let T € £(H). Then T is said to be finitely cyclic if there exist
an integer p and vectors X;, Xy, ..., Xp in H such that
Span{Tkxj; 1<j<p, k=0,1,2,..}=H.

For a finitely cyclic operator, we prove the following result:
Theorem 4.6. If T € £(H) is a finitely cyclic, 2-partial isometry and it reduces

N(T), then St is compact.

Proof. If T is finitely cyclic, then for all k > 1, TK is finitely cyclic and so
R(Tk)l is finite dimensional. If P denotes the orthogonal projection of H onto
R(T¥1), then St — St PR is finite rank. Let x € H, since T is a 2-partial

isometry and reduces N(T), T*S;T = Sy, and thus
(RSTRT X|TH ) = (5T T x)
= (T s Ty x)

= (Stx|x)
= (ATTX|Tx),

since Tx € N(T )L and T |N(T ) is a 2-isometry, we deduce from [1, Proposition

1.24] that
1
(ArTx T = (I TR = 7))
1 k+1,, 112
< Lyrhony
L +21k-1, 2
= Ljrerieny
T ket 2
< " k" ||T lx ” )
k-1, k-1 1T —kety 2
Hence (R STRT X|T 7 x)<——|T" x|, so lim |PStPF ||=0 and
k K —+o0

St = lim (St — RSt R) is compact.
k—+o0
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