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Abstract

We present an abstract critical point theorem dropping any smoothness or
continuity assumptions on the functional. The main tools are quantitative
equivariant deformation properties. As a by-product, we prove an
existence result of infinitely many critical values for an invariant and
noncontinuous functional on a complete metric space. This result
generalizes the nonsmooth and noncontinuous cases, the so-called
“Fountain theorem”.

1. Introduction

The recent developments of critical point theory for nonsmooth functionals
motivated the introduction of weak slope for lower semicontinuous functions
defined on metric spaces, see for instance [3] or [4]. Similar notion was introduced
for continuous functions in [5]. Schechter in [7] proposed a new formulation for the

mountain pass and saddle point theorems without the use of “auxiliary” sets for ct
functions. This new formulation was extended to nonsmooth case in [2] by using
continuity assumption and in [6] without using any continuity assumption.

In [1], the authors proved an abstract critical point theorem which guarantees

the existence of infinitely many critical values of an even ¢! functional in a
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bounded range. This result has been used in [1] and [8], to prove the existence of a
sequence of solutions with unbounded energy for the semilinear elliptic equation

~Au = Ah(x)|u[%2u + pk(x)|u 42U
in open bounded and unbounded domains for u > 0 and arbitrary A.

The purpose of this paper is to show that similar critical point result can be
proved in nonsmooth case and without using any continuity assumption. As in [1],
our main tool is a quantitative equivariant deformation that we extend to nonsmooth
case without using any continuity assumption. Thus our result can be applied to both
continuous and noncontinuous functions. Also, as a by-product, we extend to the
nonsmooth case, the so-called Fountain theorem (see [9]).

In Section 2, we prove the quantitative equivariant deformation theorem. Also,
Section 3 deals with the main results.

2. Quantitative Equivariant Deformation

Let X be a complete metric space, ® : X — R be a functional and G be a Lie
group. An orthogonal finite dimensional representation V of G is said to be

admissible if all equivariant and continuous function h: U — vk k> 1 admits
a zero on oU, where U is an open and bounded equivariant neighborhood of 0 in
Vk+1

Definition 1. An open subset U < X is said to be G-invariant or invariant if
forall ge G andueU, gueU. Amap h:U — VX is said to be equivariant if

h(gu) = g(h(u)). A function ® : X — R is said to be invariant under the action G
if forall x e X, g € G, ®(gx) = O(x).

Definition 2. Let H : B(u; 8)x[0, 8] cU x R — X be an equivariant function,
i.e, forall g e G, and ® : X — R be an invariant function. Then the weak slope
of ® at ue X denoted by |d®|(u) is the supremum of o such that for all
v e B(u, 8§) and t € [0, §],

(@) d(H(v, t), v) < t;

(b) ®(H (v, 1)) < (V) - ot.
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Because of the equivariance of @, the weak slope |d® |(u) is invariant under
the action G.

Definition 3. An element u € X is a critical point of @ if | d®|(u) = 0. A real

number c is called a critical value of @ if there exists a critical point u € X of ®
such that ®(u) = c.

Definition 4. A regular point of @ is an element x € X such that there exists
c >0 and |d® |(x) > o. Denote by Reg(®) the set of regular points of ®.

We consider the following nonsmooth version of the quantitative equivariant
deformation theorem:

Theorem 1. Let ® : X — R be an invariant function, S be a closed subset
of X and U be an open neighborhood of S. Assume that U is invariant and ¢ > 0
such that |d® |(u) > o for all u e U. Then for ¢ > 0, there exists an equivariant

continuous function n : X x [0, 1] - X such that
(i) n(x, 0) = x forall x e X;
(ii) n(x, t) = x, vx € X\U andfor t > 0;
(iii) d(x, n(x, t)) < e-t-d(x, X\U);
(iv) ®(x) — O(n(x, t)) = od(x, n(x, t)) forall t > 0.

Proof. Let x e U. Then x € Reg(®) and consider ¢ : U x [0, 1] — X as the

corresponding regularity map at x (see [6]), then for all u € U, ¢ is continuous and
satisfies the following properties:

@ o, 0) =u;
(b) d@u) - d(¢p(u, t)) > 0, Vt > 0.
Forall g € G, define the function
¢o(u, 1) = g o(gu, 1),

then @ : U x [0, 1] — X is continuous and satisfies

po(u, 0) = g p(gu, 0) = g *gu = u (1)
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and for all g’ € G, we have
Po(g'u, 1) = g p(gg'u, 1)
= ¢'(9) g "o(gg'u, 1)
= 9'(99) "o(ggu, 1) )
= g'po(u, t). ©)
From (1) and (2), oq(- t) is equivariant for all t> 0. On the other hand, for all

geG, gt eG and ® being invariant, we have for all v e U, ®(gv) = d(v)

and by the invariance of U, g‘lv e U. Thus
D(g V) - D(pp(g v, 1)) = D(v) — (g o(gg TV, 1)

= d(v) - d(g Yp(v, 1))
= d(v) — d(g(v, t)) > 0. (4)

By equations (1) and (3), ¢q satisfies the conditions (a) and (b) of a regularity map
at x associated to @.

Let us prove the existence of the deformation n. Our approach is closely related
to the one proposed by loffe and Schwartzman in [5]. Denote by R(u) = d(u, X\U),
for all u € U and define the function

&u(t) = 2 - R) [ sup d(u, po(u, 1) +1]

0<t1

for all ¢ > 0. For each u € Dom(o), the function t — ,(t) is strictly increasing,
£,(0) = 0 and for all (u, t) e U x [0, 1], the mapping (u, t) — &, (t) is an invariant
continuous function because of the invariance of U and the equivariance of ¢y. We
notice that for all t > 0, the inverse function {, satisfies the same properties.
Defining w(u, t) = eg(u, ¢, (t)), then v is equivariant and satisfies the conditions
(@) and (b) of regularity map at x associated to @, and

(. wx, ) = (5 JRW) &) = ROt
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For each x e Reg(®), take r(x) > 0 such that r(x) < %R(x) and B(x; r(x)) c U.

Then the interiors of the balls B(x; r(x)) form an open covering of the metric space
Y = Reg(®) which is a therefore paracompact space. Hence there exists a finite

subcovering (int(B(x;; r(x;))));c,; of Y, where I is finite. Let (u;);_, be a partition

iel
of unity subordinate to this subcovering. Set 1(x) = {i € I : p;(x) > 0} and g is
the equivariant regularity map at x; and define
vi = @oi(u, t-pi(x)), if ue B(x; r(x))
= u otherwise.

Because of the invariance of U, p;(u) is invariant and by the equivariance of o,
y; is equivariant for all i € 1. Note that, y; is defined on U x [0, 1] and satisfies

the conditions (a) and (b) of regularity map at x, y;(u, t) = u forall t >0, u; >0
and d(u, y;(u, t)) < %R(u) i (u) forall ueU.
Fixing arbitrary x e U and ordering 1(x) = {iy, iy, ..., in }, by using the following
iteration:
Up =X Uy =y (Xt p (X)), o Ukgr = Wi (Ug, to g, (X))
forall k =1, 2, ..., n, we define n by
n(x, t) = Up,1.

Thus n: X x[0, 1] = X is continuous equivariant and satisfies (i)-(iv).

3. Existence of Infinite Sequence of Critical Values

Let X be a metric space with an isometric G-action, ® : X — R be an invariant
function under the G-action, and H : K5 — X, where K5 = B(u; 8) x [0, &].
Assume the following hypotheses:

(A1) There exists an admissible representation V of G such that X =
®jc) X(J), where 1 =N or | =Z and X(j)=V, Vjel
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(Az) VK20, Xy =@ o X(1), X* =@ 4 X(j), X =@ X(j) and X", =

@y X(j).

(A3) There exists ¢ € R such that each sequence (u,)c X, with ®(u,)—>c
and | d® |(u,) — 0, as n — oo admits a subsequence converging in XD

Definition 5. A sequence (up,) satisfying the condition (A3) on X is a Palais-

Smale sequence at level ¢ or (PS), -sequence in short.

Definition 6. A function @ : X — R satisfies the (PS). condition if all

(PS), -sequence admits a converging subsequence.
We give the following version of the Palais-Smale-Cerami (PSC) condition:

Definition 7. Let ® : X — R be a continuous function. Then a sequence (u;)
in X is called a PSC sequence if (®(uy)) is bounded and (1 + || up [)| d® |(u,) — O.

Also, @ satisfies the PSC condition if all its PSC sequences are precompact.

Let By < Xk and A, XX such that A N B =, and there exists y e
C(By, X) a continuous and equivariant function with y(B,) N A, # &. Denote

T = iv(B) N A = Dy
Also, define
b = infyeg, @(u) and ay = inf,cp, supyep, P(v(u)).
Thus by <ay, since By links A,. On the other hand, we may assume that
d(A¢, Bx) > 0.

Let
Bi = {ve B |D(v) < a}.

Then we note that B; = & if and only if b, = a,. Denote by d; = d(A, By),
then for all nonempty set A, if we write d(A, &) = «, then dj = o if B} = &.
Assume that
(A4) supg, @ oy is attained at a point not in B.

a — by
k

(Ag) There exist o, >0 and T >0 suchthat 0 < T, < d and < oy.
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Our main result can be formulated as follows:

Theorem 2. Assume that @ satisfies the hypotheses (A;)-(As ). Then there exists

ko such that for all k > kg, ® admits a critical value ¢, e [by, ay].

Corollary 1. Under the hypotheses of Theorem 2, if By = &, then there exists

a sequence u, < X such that
(i) u, € cl(d)‘l[ck —iz, Cx + %D
n n
(i) | o |(Un) <+

(iii) d(uy,, B,) <

S|

The following corollary is a generalization of the Fountain theorem (see [9,
Theorem 3.6]).

Corollary 2. Under the hypotheses of Theorem 2, if @ satisfies the (PS),
condition for all ¢ € R, and if di — o and limy_,,, infg ®(u) = o, then ® has

an infinite sequence of critical values.

Proof. If dy > « as k — o, then a, — b, > 0. Since b, < ¢ < a if
infg, ®(u) =by > o as k — o, then ¢, — o and by Theorem 2, ® has an

infinite sequence of critical values.

Proof of Theorem 2. Without loss of generality, we assume that —oo < by,
a, < oo. Under the hypotheses (A4), (As) and by the definition of A, and By,
using Theorem 1 of [6] or Theorem 2.1 of [7], we obtain that for all £ > 0 such that

T —ay —(a —by)
2

e < min(dg — Ty, oy - d (A, B¢\Bg)/2) and ¢ € }0, { there

exists u € X such that
(1) by —e<D(u) <a +¢

(2) [ d® [(u) < oy;

(3) dist(u, By) < Ty, dist(u, B, \B}) < ai
k
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Assume
Dk,n C XDk, k <n
and define
Ay n = € C(Dy n, X"))IM(gu) = gi(u), Vg € G, and A(u) = u, Vu e A}

and
n

ck = inf  sup @(r(u)).
}‘EAK,H UGDk'n

We can prove that b, <cp < a, forall n > k. Infact, by (1), (2) and (3) above, ¢}
is an almost critical value, that is, there exists a sequence (U)5; < X, with
®(u)) - ¢f and [d®|(u)) - 0 as | — oo, Also, by (A3) and (1), c¢§ converges
along the subsequence to a critical value ¢, e [by, a ] as n — .

From the definitions of Dy ,, and ci, we have ¢ > by. It remains to prove the

inequality cf < a, for all n>k. We suppose it is false. Then there exists & > 0

such that a, < c — 2e. Applying Theorem 1 with S = y(By ), and defining

B'(u) = B(v(w)) = & Ay(u))),
then by the definition of v, there exists u e By such that y(u) e A,. For such

ue By, we have A(y(u))=17y(u) and n A(y(u))) = y(u). Moreover, B’ is

equivariant and belongs to Ay . Therefore,

sup @(B'(u)) = sup D(B e y(u))

ueby n ueby n

sup  d(n(, A(y(u)))
ueby n

sup @(n(1, v))
ve A

sup ®d(v) < ¢f — 2,
ve Ay

which contradicts the definition of cy.
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Remark. (1) The results obtained in Theorem 2 do not require the function ®

tobe C. Moreover, the main tool that is, the guantitative equivariant deformation
theorem does not require @ to be continuous. Thus, the results obtained in Theorem
2 can be applied even to noncontinuous functions.

(2) Let d be the metric defined on X, Ac X be a nonempty set and
B:[0, +o[ = ]0, +o[ be a continuous function. Then Theorem 4.1 of [2] implies

that there exists a metric d on X topologically equivalent to d such that, for any
subset B of X, we have

d(B, A) > J';(B'A)ﬁ(t)dt,

and if jgo B(t)dt = o, then (X, a) is complete if and only if (X, d) is complete.

Let
B{( = {V S Bk ‘(D(V) < ak},

and consider a sequence (uy) in X such that (| d® |(uy)) is bounded. Assume

- d(Bk, A)
A A0z [ o)
and define
~ d
0 - 120100

where dy = d(By, A;). Then, if B(dg) — o as dy — o, which is possible if
Bl =@ or ||uy | — %, we have |dd |(u) — O under the metric d. If (uy) is
such that

Ck—SSq)(Uk)SCk + g,

for € as in the proof of Theorem 2, then Corollary 2 implies that @ has an infinite
sequence of critical values. We observe that in this case, | d® |(uy) need not to be

very small.
An example of function B satisfying Remark 2 is given by: B(dy) =
(maxyca, d(U, BY)+D* or B(t) = @+ t2)* for p>0. If p>0 and [dd|(u)

< ¢ forall € > 0, then we obtain a Cerami condition.
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