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Abstract 

Multiple hypothesis tests have been widely studied in the recent literature 
of statistics, however, most of the studies focus on how to control the false 
discovery rate for a given set of test scores or, equivalently, test p-values. 
Given the vast data involved in a multiple hypothesis test, it is natural to 
think about how to make use of population information of samples to 
improve the power of the test for each individual subject and thus to 
improve the power of the multiple hypothesis test. In this paper, we 
propose a nonparametric method for evaluation of test scores for each 
individual subject involved in a multiple hypothesis test. The method 
consists of two key steps, smoothing over neighboring subjects and 
density estimation over control samples, both of which allow for the use 
of population information of the subjects. The new method is tested on 
both the ChIP-chip data and the microarray data. The numerical results 
indicate that use of population information can significantly improve the 
power of multiple hypothesis tests. 

1. Introduction 

In biomedical study, many problems involve simultaneous tests of thousands, or 
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even millions, of null hypotheses. For example, Cawley et al. [6] considered the 
problem of identification of human transcription factor binding sites via ChIP-chip 
experiments, where more than 300,000 hypotheses were evaluated simultaneously; 
and Gottardo et al. [11] considered the problem of detection of differentially 
expressed genes under HIV-infected and non-infected conditions using microarrays, 
where 7680 hypotheses (genes) were tested simultaneously. How to effectively use 
the vast data in multiple hypothesis tests poses a great challenge for statisticians. The 
conventional multiple hypothesis testing procedure consists of the following typical 
steps: 

- Sample collection: Let 1...,,1 rXX  denote the samples collected under the 

control condition, and let 2...,,1 rYY  denote the samples collected under the treatment 

condition. In a microarray experiment, for example, =iX ( )′nii xx ...,,1  is a vector 

of gene expression levels measured on array i and n is the number of genes involved 
in the experiment. This is the same for Y. Henceforth, X’s and Y’s are called the 
control and treatment samples, respectively; and ( )1,1, ...,, rkk xx  and ( ...,,1,ky  

)2, rky  are called the control and treatment samples of subject k, respectively. 

- Test score or p-value evaluation: This is hypothesis dependent. For example, 
to test the mean difference between the control and treatment samples, the two-
sample Welch t-statistic (Welch [30]) is often used under the assumption that the 
experimental samples of each subject are mutually independent and normally 
distributed. The p-value of subject k can then be calculated accordingly. 

- Significant subject identification: This can be done with various criteria, e.g., 
the per-comparison error rate, the family-wise error rate (Dudoit et al. [8]), and the 
false discovery rate (FDR) (Benjamini and Hochberg [1], Efron [9]). 

Although the above procedure has succeeded in many applications, a drawback 
of the procedure is that the power of each individual test is low. This is because the 
sample replicates 1r  and 2r  are usually small and each individual test only makes 

use of sample information from the subject that it is testing. Given the vast data 
involved in a multiple hypothesis test, it is natural to think about how to make 
effective use of population information of samples to improve the power of the test 
for each individual subject and thus to improve the power of the multiple hypothesis 
test. 
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In this paper, we propose a nonparametric method for evaluation of test scores 
for each individual subject. The method consists of two key steps, smoothing over 
neighboring subjects and density estimation over control samples, both of which 
allow for the use of population information of the subjects. The new method is tested 
on both the ChIP-chip data and gene expression data. The numerical results indicate 
that use of population information can significantly improve the power of multiple 
hypothesis tests. In other words, the proposed method can significantly reduce the 
number of duplicates of the routine ChIP-chip and microarray experiments and thus 
the experimental cost, while maintaining the same level of statistical power in the 
analysis. 

The remainder of this paper is organized as follows: In Section 2, we describe 
our new method how test scores are evaluated for individual subjects using 
population information of samples. In Sections 3 and 4, we apply, respectively, the 
new method to the ChIP-chip data and gene expression data along with comparisons 
with some existing multiple hypothesis testing methods. In Section 5, we conclude 
the paper with a brief justification for the rationale of the new method. 

2. Testing Multiple Hypotheses using Population Information of Samples 

In this section, we first describe a nonparametric method for evaluation of test 
scores for each individual subject under the assumption that the control samples are 
homogeneous, and then describe a procedure on how to prepare homogeneous 
control samples. The control samples are said homogeneous if the samples are 
identically distributed over all subjects. Finally, we describe how to identify 
significant subjects using a stochastic approximation FDR method (Liang and Zhang 
[18]). 

2.1. A test with homogeneous control samples 

Suppose that 1r  control samples, ,...,, 11 rXX  and 2r  treatment samples, 

,...,, 21 rYY  have been collected in the experiment, respectively; and that the control 

samples are homogeneous. Furthermore, suppose that we are interested in testing 
simultaneously the mean difference of the control and treatment samples of n 
subjects; that is, to test the hypotheses kykxkH ,,0 : μ=μ  versus kykxkH ,,1 : μ<μ  

for ,...,,1 nk =  where kx,μ  and ky,μ  denote, respectively, the means of the control 

and treatment samples of subject k. To make use of population information in the 
test, we propose the following procedure: 
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- Density estimation: Fit a base density for ( )′= niiii xxxX ...,,, 21  using a 

nonparametric density estimation method, e.g., estimating f with the kernel estimator 
of the form 

( ) ,1ˆ
1
∑
=
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where K is the kernel, and h is the bandwidth which can be selected using an 
empirical plug-in rule. As shown by Hall et al. [12], this estimator is consistent even 
for long-range dependent data. Its asymptotic expansion for the mean integrated 
squared error (MISE) agrees to the second order with that of independent data. 
Denote the CDF of the fitted density by .iXF  Totally, 1r  base densities are obtained. 

The kernel CDF, ,XF  can be represented as 
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by averaging over all base CDFs. 

- Test score evaluation: Evaluate the p-value for each treatment sample of 
subject k using the kernel CDF XF  by 

( ) ,...,,2,1,...,,2,1,1 2,, nkrjyFp jkXjk ==−=  (3) 

and then evaluate the test score of subject k by 
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which averages the test scores over all replicates. 

Hereafter, this test will be called the population-based test. It has several 
significant advantages. First, it incorporates the population information of the 
control samples into the individual tests by basing the p-value evaluation on the 
fitted kernel distribution of the control samples. Second, it allows for the use of a 
single pair of control-treatment samples in multiple hypothesis tests; that is, both 1r  

and 2r  can be as small as 1. Third, it is a nonparametric method which avoids the 

normality assumption for the samples. In our experience, the normality assumption is 
often violated by real biomedical data. 
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2.2. A general procedure for preparing homogeneous control samples 

The key assumption of the population-based test is that the control samples are 
homogeneous, otherwise, the density estimation step is not sound. However, the raw 
control samples collected in biomedical study are usually not homogeneous. For 
example, this can be caused by the subject specific effect. Here, we propose a 
general procedure, which will transform the raw control samples to be homogeneous 
or approximately homogeneous. Note that our underlying assumption for the 
transformation is that the experimental samples follow a distribution in the location-
scale family. 

Let ( )′= 21 ,1,,1, ...,,,...,, rkkrkkk yyxxa  represent the samples of subject k, 

,...,,1 nk =  where the part ( )1,1, ...,, rkk xx  denotes the control samples, and the part 

( )2,1, ...,, rkk yy  denotes the treatment samples. The transformation procedure can 

be described as follows. 

For ,...,,2,1 nk =  do the following: 

- Neighboring subject identification: Calculate the distance between subject k 
and all other subjects using 

( ) ,...,,1for,, nsd sksk =−= aaaa  (5) 

where z  denotes the Euclidean norm of the vector z. Identify l nearest subjects in 

terms of distance ( )., ⋅⋅d  The l subjects are called the neighboring subjects of subject 

k. The l is a predetermined number, depending on the problem under study. How 
to  choose l will be discussed later; its effect will be measured in our simulated 
microarray data example. 

- Smoothing: Smooth the samples of subject k by weightedly averaging the 
samples of the neighboring subjects. The method of weight assignment is also 
problem dependent. Generally speaking, the magnitude of the weight assigned to a 
neighboring subject should be reversely correlated to its distance to subject k. 

- Standardization: Let ( ) ,...,,,...,, 21 ,1,,1,
′= ∗∗∗∗∗

rkkrkkk yyxxa  ,...,,2,1 nk =  

denote the smoothed samples of subject k. Let 
kx

v
,∗

 and 
ky

v
,∗

 denote the James-

Stein shrinkage variance (Opgen-Rhein and Strimmer [20]) of the smoothed control 
and smoothed treatment samples, respectively. Thus, 
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Note that setting ,0=λ  
2ˆ kσ  is reduced to the conventional pooled variance estimator 

for two samples. 

Then, under the null hypothesis ,: ,,0 kykxkH μ=μ  we standardize the control 
and treatment samples of subject k by 
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for 1...,,1 ri =  and ....,,1 2rj =  

It is clear that the samples s’~
, ikx  are identically distributed under the mild 

assumption that the original samples s’, ikx  follow a distribution in the location-

scale family. Thus, the transformed control samples are homogeneous, and the 
density estimation described in Subsection 2.1 is applicable. This approach is similar 
to Song and Hart’s cluster-based density estimate [25]. Note that the transformation 
procedure has been designed to incorporate information from other subjects. This 
reflects in two steps, smoothing over neighboring subjects and calculation of James-
Stein shrinkage variance. As argued at the end of the paper, smoothing over 
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neighboring subjects reduces effectively the variation of the experimental samples, 
while causing only negligible bias to the mean of the samples as long as l, the size of 
neighboring subject set, is reasonable. 

In this subsection, we only outline the idea how to prepare homogeneous 
control samples by using population information of the samples. In practice, many 
detailed steps, such as determination of neighboring subjects and smoothing weight 
assignment, will depend on the problem under study. In Sections 3 and 4, we will 
give details on how the idea works for the ChIP-chip data and the gene expression 
data. 

2.3. FDR control 

Given the test scores, a multiple hypothesis testing procedure is still needed for 
identification of significant subjects. Here, we adopted the stochastic approximation-
based FDR control method developed by Liang and Zhang [18], which, hereafter, 
will be abbreviated as the SA-FDR method. The SA-FDR method falls into the class 
of empirical Bayes methods (Efron [9]). Like other methods in this class, it works by 
fitting the test scores with a two-component mixture model 

( ) ( ) ( ) ( ) ,1 1000 zfzfzf π−+π=  (10) 

where 0π  is the prior probability that a null hypothesis is true, 0f  is the empirical 

null distribution, 1f  is the alternative distribution, and 0f  is stochastically smaller 

than .1f  Given the estimators of 0π  and ,0f  the positive FDR (Storey [28]) of a 

rejection rule { }0zZi ≥=Λ  can be estimated by 

( ) [ ( ) ]
{ }
0 0 0

0

ˆˆ 1Fdr ,# :i i

N F z
z z z

π −
Λ =

≥
 (11) 

where { }0:# zzz ii ≥  denotes the number of subjects with test scores greater than 

,0z  0π̂  denotes the estimator of ,0π  and 0F̂  denotes the CDF estimator of .0f  

Note that ( )Fdr Λ  can be intuitively interpreted as the expected proportion of null 
subjects, i.e., the subjects with the null hypotheses being true, among those with 
the test score greater than .0z  Following the suggestion by Storey [26], the q-value 
defined below 

( )
{ }

( ),Fdrinf
:

Λ≡
Λ∈Λ z

zq  (12) 

is used in this paper as a reference quantity for the decision of multiple hypothesis 
testing. 
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In Liang and Zhang [18], 0π  and 0f  are estimated using a two-step procedure: 

- Fit the distribution of the test scores with a mixture of exponential power 
distributions using the stochastic approximation method (Robbins and Monro [22], 
Benveniste et al. [3]). 

- Clustering the components of the mixture exponential power distributions 
into two clusters, which correspond to 0f  and 1f  of the mixture (10), respectively, 

according to the mutual distance between the components. 

Liang and Zhang [18] showed theoretically that the method is valid under 
general dependence between test scores. We note that for the population-based test 
proposed in this paper, the use of the SA-FDR method is not essential. Any other 
multiple comparison methods, e.g., the methods developed by Benjamini and 
Yekutieli [2], Storey et al. [28], and Efron [9], can be equally used here. To use the 
method proposed by Benjamini and Yekutieli [2] and Storey et al. [28], we may need 

to transform the test scores to p-values via the transformation ( ).1 1 ZP −Φ−=  

3. Application of the Population-based Test to ChIP-chip Data Analysis 

In this section, we applied the population-based test to ChIP-chip data for the 
purpose of identification of transcription factors binding sites (TFBS). The 
performance of our method is first assessed on a real dataset, and then assessed on 
some simulated datasets. 

3.1. p53 data 

The dataset, we studied here, was generated by Cawley et al. [6], whose 
experiment mapped the binding sites of four human transcription factors Sp1, cMyc, 
p53-FL, and p53-DO1 on chromosomes 21 and 22. The chromosomes were spanned 
over three chips A, B and C. All experiments were done under three conditions: IP, 
control GST and control input. For each transcription factor, under each experiment 
condition, 6 samples (2 biological replicates 3×  technical replicates) were obtained. 

For the testing purpose, p53-FL data on chips A, B and C, under IP and control 
input  conditions, were analyzed in this paper. The raw data is available at 
http://transcriptome.affymetrix.com/publication/tfbs. 

For comparison, the raw data were pre-processed as in Cawley et al. [6]. We 
first filtered out the local repeats, and then normalized the data using the quantile-
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normalization method (Bolstad et al. [4]). After normalization, the data were rescaled 
to have a median feature intensity of 1000, log-transformed, and then processed as 
prescribed in Subsection 2.2. For the ChIP-chip data, the neighbor identification step 
can be skipped, because, by the nature of the data, the probes have been self-
clustered into bound and non-bound regions. For the smoothing step, the Gaussian 
weighted moving average method was applied as in Zheng et al. [32]. A window 
with size ( )bpbp 5001000 ±  was moving along the genome. The intensity of the probe 

in the center of the window is updated by 

∑ ∑
∈ ∈

∗
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where ia  denotes the intensity values of probe i measured in the experiment, ikd ,  is 

the genomic distance between the central positions of probe i and probe k, and the 
standard deviation is set to be one fourth of the window size, .250bp=σ  Note that 

the probe-specific effect has been removed by sample centralization in the 
standardization step (9). Hence, the control samples are, at least approximately, 
homogeneous after pre-processing. 

Following Keles et al. [15], we define a scan-statistic, which is a moving 
average of the test scores resultant from the population-based method, i.e., 
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where 5=w  is the half moving window size, which is the same as that used in Ji 
and Wong [13], Keles et al. [15] and Gottardo et al. [10]. By doing so, information 
from neighboring probes were further borrowed for identification of bound regions. 

In Cawley et al. [6], a cutoff of 510−  was used for the p-values resultant from 
the Wilcoxon rank sum test, and this led to 36, 353 and 423 probes being identified 
as “significant” probes on chips A, B and C, respectively. For comparison, we set 
the cutoff numbers to 36, 353 and 423 for the test scores on chips A, B and C, 
respectively. Following the approach taken by Cawley et al. [6], the regions having 
less than 3 probes or 100 bps were considered to be spurious and removed, and the 
regions separated by 500 bps or less were merged together to form a predicted bound 
region. The results are summarized in Table 1. The Wilcoxon rank sum test 
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identified 9 out of 14 experimentally validated bound regions, while the population-
based test identified 12 out of the 14 validated bound regions. For a further 
comparison, we relaxed the cutoff number and counted the total number of 
“significant” probes needed to cover all the 14 validated bound regions. For the 
Wilcoxon rank sum test, it needs to increase the total number of “significant” probes 
to 7292; while for the population-based method, it only requires 1241 “significant” 
ones. The population-based test outperforms significantly the Wilcoxon rank sum 
method for this example. 

Table 1. Computational results for the p53-FL data. V: the number of bound regions 
that have been experimentally validated and identified by the method; a: the cutoff 
number specified by Cawley et al. [6]; b: the number of bound regions that have 

been experimentally validated on the chip; and :∗τ  the number of “significant” 

probes needed to cover all experimentally validated bound regions 

S Chip A Chip B Chip C 
Method ( )baV 2,36 ∗τ  ( )baV 2,353 ∗τ ( )baV 10,423  ∗τ  

Wilcoxon 2 29 1 862 6 6401 
Population-based 2 34 2 71 8 1136 

3.2. Simulated data 

To have a careful assessment of the performance of the population-based test on 
ChIP-chip data, we simulated 20 datasets based on the Sp1 data generated by 
Cawley et al. [6]. Each dataset consists of 200,000 probes, two conditions (IP and 
control input), and six replicates under each condition. We extract the first 200,000 
genomic positions of the Sp1 data as the probe genomic coordinates in the 
simulations. Each dataset consisted of 996 bound probes, which form 50 bound 
regions. As in Gottardo et al. [10], the bound regions were assumed to describe a 

peak with the intensity function given by { ( ) },4exp 22 BCgA i −−  where A is the 

amplitude of the peak, B controls the width of the peak, C represents the center of 
the peak, and ig  is the genomic position of probe i. We also followed Gottardo et al. 

[10] to generate the centers of the bound regions randomly across the set of possible 
coordinates while imposing a separation of at least 3000 bps between peaks; and to 
generate the values of parameter B uniformly between 600 and 1000 bps. The values 
of parameter A were generated uniformly between 3 and 5. The variance of the probe 
intensity was estimated from the Sp1 data. 
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For comparison, four different methods were applied to the 20 simulated 
datasets, including the Wilcoxon rank sum test (Cawley et al. [6]), t-scan test (Keles 
et al. [15]), Tilemap (Ji and Wong [13]), and population-based test. The results are 
summarized in Table 2. For testing purpose, we tried different cutoff numbers for the 
probes. At each of the cutoff numbers, the methods were compared in three criteria, 
the number of false negative bound regions (i.e., the number of bound regions not 
identified by the method), the number of false positive bound regions (i.e., the 
number of falsely identified bound regions), and the number of true positive probes 
(i.e., the number of correctly identified bound probes). The numerical results show 
that for this example, Tilemap works better than the t-scan test in terms of all three 
criteria, and the Wilcoxon method finds less false positive bound regions than 
Tilemap and t-scan. While, the population-based method outperforms other three 
methods in all three criteria. 

Table 2. Computational results for the simulated datasets. At each cutoff number τ, 
the number of false negative bound regions (missed regions), the number of false 
positive bound regions (extra regions), and the number of true positive probes 
(matched probes) with their standard deviations (the numbers in the parentheses) 
were calculated by averaging over the 20 datasets 

  Methods 

τ Criteria Wilcoxon t-scan Tilemap pop-based 

 Missed regions 8.1(.37) 4.9(.35) 4.5(.37) 4.2(.29) 
800 Extra regions 1.2(.29) 5.7(.69) 2.7(.31) 0.9(.18) 

 Matched probes 712.3(2.62) 733.5(2.54) 741.8(1.85) 757.4(2.15) 
 Missed regions 5.6(.34) 3.3(.29) 3.3(.28) 2.5(.21) 

900 Extra regions 3.2(.52) 13.9(1.36) 7.9(.63) 2.5(.29) 
 Matched probes 780.9(3.26) 791.9(3.63) 804.5(2.94) 823.6(2.42) 
 Missed regions 3.2(.40) 2.5(.24) 2.6(.23) 1.5(.15) 

1000 Extra regions 6.1(.66) 26.6(1.30) 19.8(1.16) 6.4(.37) 
 Matched probes 837.3(3.82) 834.0(4.30) 848.5(3.32) 872.9(2.79) 
 Missed regions 1.95(.36) 2.1(.23) 1.7(.21) 1.0(.15) 

1100 Extra regions 15.6(.89) 44.7(1.92) 37.7(1.55) 12.3(.60) 
 Matched probes 878.3(4.71) 861.3(4.07) 875.8(3.95) 904.0(2.58) 
 Missed regions 1.5(.26) 1.6(.22) 1.4(.17) 0.9(.17) 

1200 Extra regions 27.9(1.14) 67.8(2.48) 58.9(1.59) 21.1(.75) 
 Matched probes 905.0(4.47) 879.4(4.24) 894.8(3.49) 923.0(2.55) 
 Missed regions 0.7(.16) 1.2(.17) 1.1(.20) 0.5(.11) 

1500 Extra regions 84.6(2.27) 144.1(3.14) 141.6(2.69) 48.9(0.99) 
 Matched probes 943.7(4.22) 912.0(4.00) 925.6(3.24) 950.5(2.26) 
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(a) ROC curves. 

 
(b) Error rate. 

Figure 1. Averaged ROC curves and error rate curves (over 20 datasets) for the 
population-based, Tilemap, t-scan and Wilcoxon methods. (a) the ROC curve; (b) 
the error rate curve. The right panel plot provides a closer view for the area enclosed 
by the dotted line and the axes in the left panel plot. 

Later, we compared the receiving operating characteristic (ROC) curves 
(Bradley [5]) and the error rate curves for the four methods. The ROC curve shows 
the true positive discovery rate (sensitivity) against the false positive discovery rate 
(1-specificity) at the probe level, and the area under the curve (AUC) has been used 
as a summary measure of accuracy for multiple hypothesis tests. The error rate curve 
shows the proportion of incorrect probe calls, including both false positives and false 
negatives, against different cutoff values. The error rate has been used as a summary 
measure for the performance of a clustering method. The averaged ROC curve and 
error rate curve (over 20 datasets) are shown in Figure 1. In terms of AUCs, the four 
tests are ranked as the population-based test, Wilcoxon, Tilemap and t-scan, from the 
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best to the worst. This is a little different from our impression obtained from Table 2, 
where it seems that Tilemap and t-scan outperform the Wilcoxon method. An 
interpretation for the difference is that AUC emphasizes more on the false discovery 
rate. It is indeed that the Wilcoxon method consistently produced smaller numbers of 
false positive bound regions than do the Tilemap and t-scan methods for this 
example. Next, we examined the error rates of the four methods. Figure 1(b) 
indicates that all the four methods have an optimal cutoff number around 996, which 
is the number of true bound probes. It is remarkable that, among the four tests, the 
population-based test has consistently the lowest error rate at various cutoff values. 

4. Application of Population-based Tests to Microarray Data Analysis 

In this section, we considered the application of the population-based test to 
microarray data for identification of differentially expressed genes. First, we tested 
the new method on a simulated example, which was modified from some examples 
used in the literature. Next, we applied the new method to a real dataset which is 
typical in this area. 

4.1. A simulated example 

This example is modified from examples of Qiu et al. [21] and Liang et al. [17]. 
It consists of multiple simulated datasets. Let n denote the number of genes included 
in each dataset, and let m denote the number of differentially expressed genes. The 
datasets were generated in the following way. 

First, generate an 6×n  matrix and denote this matrix by ( ) ,ijxX =  ni ...,,1=  

and .6...,,1=j  The elements of this matrix are set as 

[ ]

( )⎪⎩
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σ
σ
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x
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i

i
i
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where ,iμ  iσ  and ijz  are drawn independently from the distributions 

( ) ( ) ( ).1,0~,5.1,5.0~,5.0,5.0~ NzUU ijii σ−μ  (16) 

It is not difficult to show that ( ) ρ=+ jiji xx ,1, ,Corr  for 1...,,1 −= ni  and 

any j. In other words, there is constant correlation between the expression levels of 
adjacent genes. 
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Next, define 
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where μ is a constant representing the mean expression level difference of the 
differentially expressed genes and nondifferentially expressed genes. For each 
dataset ( ) niyY ij ...,,1, ==  and ,6...,,1=j  generated in the above procedure, the 

first m rows model the differentially expressed genes, the first 3 columns represent 
the control samples, and the last 3 columns represent the treatment samples. 

For comparison, we calculated the test scores using the following two methods: 

- Score A: The population-based test with the three control and the three 
treatment samples. To prepare homogeneous control samples, the data are smoothed 
as follows, 

∑ ∑∈ ∈

∗

ρ

ρ
==

k k
Ci Ci ki

ki
iiik ww ,

ˆ

ˆ
, 2

,

2
,aa  (18) 

where ( ) kiiiiiii Cyyyxxx ,,,,,, 321321
′=a  denotes the set of neighboring genes of 

gene k, and ki,ρ̂  denotes the Pearson correlation coefficient between the expression 

levels of gene k and gene i. For this example, we set ,kC  the size of ,kC  to be 10 

based on the belief that there are about 10 genes co-expressed with each gene in the 
dataset. As indicated by our numerical results presented below, the population-based 
test is rather robust to the size of .kC  

- Score B: Two-sample t-test with the three control and the three treatment 
samples. 

Please note that the t-tests used in Score B is exact, as the data are generated 
from normal distributions. From this point of view, the comparison is a little unfair 
to Score A. In the following, we compare Score A and Score B, by looking at the 
power of the resulting multiple hypothesis tests. 

4.1.1. Score A versus Score B 

In this comparison, we fix ,2500=n  ,250=m  ,3=μ  ,3.0=ρ  and ,10=kC  

generated 50 different datasets in the above procedure and calculated Scores A 
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and  B. Then the true FDRs (tFDRs) were calculated at different cutoff numbers. A 
cutoff number, τ, defines a classification criterion, classifying the τ genes with the 
highest test scores as “differentially” expressed genes. The computational results are 
summarized in Table 3. It shows that the tFDRs resultant from Score A is lower than 
those from Score B for all the chosen cutoff numbers. This implies that the multiple 
hypothesis test based on Score A can have a higher power than that based on Score 
B. In addition, we compare the histograms of Score A and Score B. Figure 2(a) 
shows the histograms of the test scores for one of the 50 datasets, which indicates 
that the distribution of the test scores produced by the population-based method has 
relatively heavier and longer tail in the significant region than that produced by the 
two-sample t-test. Hence, the differentially and non-differentially expressed genes 
can be better separated by Score A than by Score B. Furthermore, we examined the 
histograms of the averaged test scores, where the average is taken for each gene 
over  the 50 datasets. As shown in Figure 2(b), the distance between differentially 
expressed genes and non-differentially ones is almost three times longer for the 
population-based method than for the two-sample t-test method. This supports again 
our claim that the differentially and non-differentially expressed genes can be better 
separated by Score A for this example. 

Table 3. Computational results for the datasets generated with ,2500=n  ,250=m  

,3=μ  ,3.0=ρ  and .10=kC  The value of tFDR and its standard deviation (the 

number in the parentheses) were calculated by averaging over 50 datasets 
Cutoff number τ 

Method  50 100 200 250 300 400 500 
Score A .006(.002) .005(.001) .022(.002) .084(.002) .201(.002) .387(.001) .507(.001) 
Score B .051(.005) .078(.004) .165(.004) .228(.003) .294(.003) .422(.002) .520(.001) 

In addition, comparisons between population-based test with three control and 
three treatment samples and two-sample t-test with four control and four treatment 
samples have also been carried out, with various choices of the parameters ,,, μρn  

and kC  in terms of specificity and sensitivity of multiple hypothesis tests. The 

numerical results indicate that the population-based test can outperform the two-
sample t-test in almost all scenarios for this example, which means to achieve the 
same or even higher testing power while maintaining the same level of specificity, 
the population-based test requires less than 43  of the control and treatment samples 

than does the two-sample t-test. This implies that use of the population-based test 
can potentially lead to a great saving of experiment cost. 
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(a)          (b) 

Figure 2. Histograms of test score for the simulated data. Left panel: histograms of 
test scores of one dataset. Right Panel: histograms of the average test scores of 50 
simulated datasets. 

4.2. HIV data 

This dataset includes 7680=n  genes. It concerns the difference of gene 

expression levels of uninfected cells and HIV-infected cells (Wout et al. [31]). As 
described by Gottardo et al. [11], the experiment was carried out on four different 
slides under the same RNA preparation. Each slide reported on the same set of 7680 
genes. Among them, 12 known differentially expressed HIV-1 genes are included as 
positive controls. Dye-swapped hybridizations technique was used to compensate 
dye bias in this experiment. Two of the four slides were hybridized with the green 
dye (Cy3) for the control (uninfected) samples and the red dye (Cy5) for the 
treatment (HIV-infected) samples, the dyes were reversed on the other two slides. 
Totally, 4 control and 4 treatment samples were included in this dataset. The raw 
data was downloaded from http://wwwstatubcca/~raph/PublicFiles/. 
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Figure 3. Test score of HIV dataset for population-based method and two-sample 
t-test. 

The raw data were pre-processed as in Gottardo et al. [11]. They were first 
quantile-normalized (Bolstad et al. [4]), log-transformed, and then the mean of the 
log expression values was adjusted to zero for each chip. Afterwards, the two-
sample t-test was applied to the pre-processed data. On the other hand, for the 
population-based test, the data were further processed as prescribed in Subsection 
2.2. As for the simulated example, we set the size of ,kC  the number of neighboring 

genes, to be 10, and smoothed the gene expression levels using (18). 

Figure 3 displays the histograms of the test scores produced by the two methods. 
It is easy to see that the histogram produced by the population-based test has a 
relatively shorter left-tail and longer right-tail than that produced by the two-sample 
t-test. This difference implies that the population-based test can have a higher power 
than the two-sample t-test. The SA-FDR methods were applied to the test scores 
resultant from the two methods. By controlling the nominal FDR at 10%, only 16 
differentially expressed genes were detected using the test scores produced by the 
two-sample t-test. This is too conservative, comparing to 33, 86 and 81 genes found 
by the software BRIDGE (Gottardo et al. [11]), the empirical Bayes gamma-gamma 
model (Newton et al. [19]) and the empirical Bayes lognormal-normal model 
(Kendziorski et al. [16]), respectively. Using the test scores resultant from the 
population-based test, 50 genes were identified as being differentially expressed. It is 
remarkable that, not only the built-in 12 positive control genes are covered by the 50 
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significant genes, but also their test scores are ranked among the top 13 test scores. 
This does not happen for the two-sample t-test. All the above evidences indicate the 
effectiveness of the population-based test for detecting differential expressed genes 
with microarray experiments. 

5. Discussion 

We have proposed a population-based method for evaluation of test scores for 
each individual subject involved in a multiple hypothesis test. The method consists 
of two key steps, smoothing over neighboring subjects and density estimation over 
control samples, both of which allow for the use of population information of the 
subjects. The new method is tested on both the ChIP-chip data and the gene 
expression data. The numerical results indicate that use of population information 
can significantly improve the power of multiple hypothesis tests. In other words, the 
proposed method can significantly reduce the number of duplicates of the routine 
ChIP-chip and microarray experiments and thus the experimental cost, while 
maintaining the same level of statistical power in the analysis. 

The strength of the new method comes from two sources, smoothing over 
neighboring subjects and density estimation over control samples. Smoothing over 
neighboring subjects effectively reduces variation of the experimental samples, 
while causing only negligible bias to the mean of the samples as long as the size 
of  neighboring subjects set is reasonable. As shown by our numerical examples, 
smoothing over neighboring subjects samples does improve the power of multiple 
hypothesis tests. 

Nonparametric density estimation over control samples provides us a robust 
way of test scores evaluation, which relaxes the distribution assumption for the 
experimental samples from normality to a location-scale family. Moreover, it 
automatically accounts for the extremeness of a large size sample with its built-in 
mechanism. This is beyond the ability of the two-sample t-test and other tests based 
on the individual subject samples. 

At last, we would like to mention that the idea of using population information 
of samples to improve the power of multiple hypothesis tests is not brand new. 
Smyth [24], Ji and Wong [13], Cui et al. [7], and Opgen-Rhein and Strimmer [20], 
can be viewed as early works in this research direction, although the idea of using 
population information was not stated there explicitly. In these works, the variance 
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of each individual subject samples was estimated by an empirical Bayesian approach 
or a shrinkage approach which make use of other subjects samples. Although the 
population information of samples is used very limitedly in these works, their 
numerical results do show that use of population information can improve the power 
of multiple hypothesis tests. In this paper, we made a full exploration of this idea by 
using the traditional nonparametric technique of kernel density estimation. 
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