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Abstract

A new representation of n-soliton solution to the modified Vakhnenko
equation is constructed by using the Hirota method. The method can be
applied to other nonlinear integrable equations as well.

1. Introduction

Nonlinear integrable equations are widely used to describe many important
natural phenomena and dynamic processes in physics, mechanics, chemistry,
biology, etc. In order to better understand these phenomena and further apply them
in the practical life, it is an important task to seek new multi-soliton solutions of
nonlinear integrable equations. Moreover, various useful methods for obtaining
exact solutions to nonlinear integrable equations have been developed, such as the
inverse scattering approach [1-3], Darboux transformation [4-6], the Hirota method
[7-9], the Wronskian technique [10-13] and so on. Among them, the Hirota method
is an efficient way to obtain soliton solutions for nonlinear evolution equations [14,
15].
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Recently, Chen presented a direct method, which can obtain new multi-soliton
solutions of nonlinear integrable equations [14, 15]. In this paper, we use the method
to study nonlinear integrable equations. A new representation of n-soliton solution to
the modified Vakhnenko equation is given by using the extended Hirota method.

2. A New Representation of n-solition Solution to the Modified
Vakhnenko Equation

The modified Vakhnenko equation is a completely integrable model, which
describes the nonlinear propagation of deformation wave in a flexible long string
[16],

%(Azu—uz—u)—Au =0, )

_ 0 .9
where A = at+“ax'

To obtain new n-soliton solution of equation (1), we transform the independent
variables

X
Xx=T +J' UX', T)dX' + xg, t =X, @)

—00

where u(x, t) = U(X, T) and xg is a constant. According to equation (2), equation

(1) becomes
o0
UXXT—ZUUT+UXJ Ur(X', T)dX'=Us —Uy =0. 3)
X
Letting Wy = U, equation (3) becomes
Wyxxt = 2Wx Wy —WyxWr =Wy —Wyxx =0. 4)

We introduce an auxiliary variable Y and take W = —4(In f ), . Then equation

(4) can be expressed as the following bilinear equations:

Dy (Dy + D¥)f - f =0,

|Dx(Or + Dy - DrDf) + 3 Dr (By + DY) - f =0, ©)

where D is the Hirota bilinear operator [7].
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We expand f as the series
f(XvT,Y)Zl-l-f(l)8+f(2)52+f(3)53+..._ (6)

Substituting equation (6) into equation (5) yields

1
f>(<1\2 + f>(<1>2xx =0, fT()1<) - fT()l()XX + f>(<1>2 +§(fT(\l() + fT()l()XX )=0, (7
1
18 + 1% = ] Dy (Dy + D}) f® . £@, (8a)

1
)~ 3 0 200+ 15000

— 5| Dx(Dr + Dx ~DrD)+ 3 Dr(Dy + D[ 1 10, . (eb)

In order to obtain new n-soliton solution of equation (1), we take
S
- 0
f(l):Z’l’]jeJ, E_,J=0)]T+kJX+pJY+§(J),
j=1

nJZQJT+B]X+yJY+SJ, (9)

where oj, k

ir Pj 2(10), aj, Bj, vjand §; arearbitrary real constants.

When n =1, by using the following formula:

DDy (M2 Mn€™) - M1z = Nm€™2)

h
= "2 T(np + apdy, +Bpoa,)
p=1

m
< [ [ g + g9, +Baday) (@1 = 02)°(k — ko), (10)
q=h+1

and equations (7) and (8), we can work out

2
O _ el (@ _%92&1, £ ~0(n>3), (11)
4kq
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kl 3 k12 +1 2
, pr=-kK, oap=——">——"PB1, 7v1=-3K{PBq. (12)
k12—1 1 1 1 (klz_l)z 1 1 1P1

0 =

Hence, we have

2
W(X!T):_4 In 1+‘|’]1€E“’1—B_12e2§1 1
4k X

1

2
U(X,T) = —4{In[1+ ne _i_lzeZilﬂxx' (13)

1

Thus, new one-soliton solution of equation (1) can be given. For n = 2 in equation

9), fO - nleE~'1 + nzeiz. From equations (7) and (8), we obtain

() _ B o2 B o252 {(1 ky)? N — 4kB, (kg —kp) N
ak{ g (ky + ky)? (ky +kp)®
T APy (kg — ko) - 4[31132(k1 — Akgky + kz)} oy (14a)
(ky +kp)® (ky +kp)*
(@) _ B3 (ky — kp)* - 2B,B5 (ks — kp)® oE+282
4k5 (kg + k) ka(ky + kp)°
| Bk — k)" 2[32[31('& kp)® oGo+28 (14b)
2 g M2+ '
4k (kg + ko) ky(ky + ko)
BEBS (kg — kp)®
4 = PP = Ra) 254425 () — g (n 2 5), (14c)
16k2k3 (kg + Ky )
J k3 K +1 B k%, j=1 2. (14d)
®;: = , =—k3, o =-———=B;, ==3kBi, j=1 2.
T Pj PTG Vi vy

Take ¢ =1, then the series (6) is truncated and becomes f =1+ fO 4 @4

£3) 4 4, Thus, we can obtain new two-soliton solution of equation (1).



NEW REPRESENTATION OF SOLITON SOLUTIONS ... 5

In general, we have

n i(ni-1)
Bj HJ(HJ _(2_ )
f = Z H(mj (B]6k1 +8j)p'] Hj

n=0,12 | j=1
n (n)
x exp Zujéj + Z R A [ (15a)
j=1 1<j<l
2
A Kizk)” o ks
kj+k)? 1 k-
K +1 B 3k (15b)
Oy =———F—5Pj Y = - iPis
j (k2 12 i i iPj

the first summation is taken over all possible combinations of pj =0,1, 2 (j=

1, 2, ..., n). Then new n-soliton solution of equation (1) can be obtained.

When nj =1(j =1 2, .., n), equation (15) is nothing but the soliton solution

of the modified Vakhnenko equation in [16]. Therefore, we give the new
representation of soliton solution of the modified VVakhnenko equation (1).
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