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Abstract 

A new representation of n-soliton solution to the modified Vakhnenko 
equation is constructed by using the Hirota method. The method can be 
applied to other nonlinear integrable equations as well. 

1. Introduction 

Nonlinear integrable equations are widely used to describe many important 
natural phenomena and dynamic processes in physics, mechanics, chemistry, 
biology, etc. In order to better understand these phenomena and further apply them 
in the practical life, it is an important task to seek new multi-soliton solutions of 
nonlinear integrable equations. Moreover, various useful methods for obtaining 
exact solutions to nonlinear integrable equations have been developed, such as the 
inverse scattering approach [1-3], Darboux transformation [4-6], the Hirota method 
[7-9], the Wronskian technique [10-13] and so on. Among them, the Hirota method 
is an efficient way to obtain soliton solutions for nonlinear evolution equations [14, 
15]. 
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Recently, Chen presented a direct method, which can obtain new multi-soliton 
solutions of nonlinear integrable equations [14, 15]. In this paper, we use the method 
to study nonlinear integrable equations. A new representation of n-soliton solution to 
the modified Vakhnenko equation is given by using the extended Hirota method. 

2. A New Representation of n-solition Solution to the Modified 
Vakhnenko Equation 

The modified Vakhnenko equation is a completely integrable model, which 
describes the nonlinear propagation of deformation wave in a flexible long string 
[16], 
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To obtain new n-soliton solution of equation (1), we transform the independent 
variables 

 ( )∫ ∞−
=+′′+=

X
XtxXdTXUTx ,,, 0  (2) 

where ( ) ( )TXUtxu ,, =  and 0x  is a constant. According to equation (2), equation 

(1) becomes 

 ( )∫
∞

=−−′′+−
X

XTTXTXXT UUXdTXUUUUU .0,2  (3) 

Letting ,UWX =  equation (3) becomes 
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We introduce an auxiliary variable Y and take ( ) .ln4 XfW −=  Then equation 

(4) can be expressed as the following bilinear equations: 
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where D is the Hirota bilinear operator [7]. 
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We expand f as the series 
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Substituting equation (6) into equation (5) yields 
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In order to obtain new n-soliton solution of equation (1), we take 
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where ,jω  ,jk  ,jp  ( ),0
jξ  ,jα  ,jβ  jγ  and jδ  are arbitrary real constants. 

When ,1=n  by using the following formula: 
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and equations (7) and (8), we can work out 
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Hence, we have 
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Thus, new one-soliton solution of equation (1) can be given. For 2=n  in equation 

(9), ( ) .21 21
1 ξξ η+η= eef  From equations (7) and (8), we obtain 
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Take ,1=ε  then the series (6) is truncated and becomes ( ) ( ) +++= 211 fff  
( ) ( ).43 ff +  Thus, we can obtain new two-soliton solution of equation (1). 
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In general, we have 
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the first summation is taken over all possible combinations of ( ==μ jj 2,1,0  

)....,,2,1 n  Then new n-soliton solution of equation (1) can be obtained. 

When ( ),...,,2,11 njj ==η  equation (15) is nothing but the soliton solution 

of the modified Vakhnenko equation in [16]. Therefore, we give the new 
representation of soliton solution of the modified Vakhnenko equation (1). 
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