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Abstract

In this paper, we derive an inequality for the coefficient of z" in ,,;d,

basic hypergeometric series. We use the inequality obtained in this paper
to give a sufficient condition for the convergence of a bibasic series.

1. Introduction

g-series, which is also called basic hypergeometric series, plays a very
important role in many fields, such as affine root systems, Lie algebras and groups,
number theory, orthogonal polynomials and physics, etc. Inequality technique is one
of the useful tools in the study of special functions. There are many papers about it
(see [1, 2, 4,5, 6, 7]). In [7], the authors gave some inequalities for certain bibasic
sums. In this paper, we give a new inequality about g-series. First, we recall some
definitions, notations and known results which will be used in this paper.
Throughout this paper, it is supposed that 0 < q < 1. The g-shifted factorials are

defined as
n-1 ©

@ap =1 @a,=]]a-a") n=12., @aq,=]]a-ad). @
k=0 k=0
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We also adopt the following compact notation for multiple g-shifted factorial:

(ag, @z, ..., am; )y = (ag; A)y(@2; A)y -+ (ams Ay (1.2)
where n is an integer or oo.

The Fubini’s theorem. Suppose that fj; is absolutely summable, that is,

ZZ| fij | < oo,

i=1l j=1

then

o0 o0

i fij = iz fi. (1.3)

=1 j=1 j=1i=1

In [1], the basic hypergeometric series .1y, is introduced as follows:

O (a1, 8y, By Dy _k
dr(ag, @, vy Ar4q; by, by, oy bys Q, 2) = - ", (1.9
r+1%r\c1 r+1 r kz(:) (q’ blv bz, i bri q)k

2. Main Result and its Proof

We know that, estimating the value of

(8, 3, - ar; 9)y
(by, b, -y By Q)

is an important problem in the study of g-series. In this section, we want to derive
an upper bound of (2.1). In order to prove the main result, we need to introduce
following lemma.

2.1)

Lemma 2.1. Let a and b be given complex numbers, satisfying b = b or b < 1.
Then, for 0 < x <1, we have

‘ Loax) o omx 2.2)

1-bx

where

o =
[b] |

|a|+ b <1,

a+|al+|b|, b=#b, |b|2
M:

1-b’
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Proof. (i) When b = b, let

f(x) = (1-bx)(L—bx)e*.

Since
A=(b[>-a+b))y - 4a/b[*(a-(b+b))
—4b[* +a?(b+Db)* - 40 b
—4b* +a?(b-b)* =0,
hence

f'(x) = [o| b[>x2 + (2| b > = a(b + b))x + o — (b + b)]e* > 0.
So f(x) is monotonous increasing function with respectto 0 < x <1 and
f(x)>1,
(2.3) is equivalent to

1 ax

— <
(1-bx)(L-bx)
Using (2.4), we have

_|@-ax)-bx)

o <(1+|alx)(1+|b_|x)Se(a+\a\+\b\)x.
(1-bx)(1-bx)

T (@-bx)(1-bx)

1-ax
1-bx

(i) When b < 1, for 0 < x <1, we have

b

1 —X
< al-b
1-bx ° '
Using (2.6), we have
b o)
1-ax|_1+]alx _ e(\aHE)X s e(\ah_b *
1-bx 1-bx

Together with (2.5) and (2.7), (2.2) follows.
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(2.3)

(2.4)

(2.5)

(2.6)

(2.7
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Theorem 2.2. Let & and b; be some complex numbers, satisfying by = b; or
bj <1 with i =1 2, .., r. Then, for all nonnegative integer n, we have

r

1
e AL -
where
o +|ag|+[bi |, by = by, |b; [?
S (P T e N A LY

1-b°

Proof. When n = 0, it is obvious that (2.8) holds; when n > 1, for 0 < x <1
and 1 <i <r, by Lemma 2.1, we have

k
1780 | oMia (k=0,1,2, ).
1-bq"
Consequently,
1
(@ 0)y < eMitrar+a"™) eli, i=12..,r).
(bi; 9),
Thus, (2.8) follows. O

3. Some Applications of the Inequality

Convergence is an important problem in the study of g-series. In this section,
we use the inequality obtained in this paper to give a sufficient condition for the
convergence of a bibasic series.

Theorem 3.1. Let z, a;, b; be some complex numbers, satisfying |z| <1,

bj = EJ- orb; <lwithi=12..,r j=12,..s Let{c,} beacomplexsequence
satisfying

o0

D leal <.

n=0

c c (a1, 8, - Ar; Q) _k
DL e 3.1

n=0 k=0

Then, the series

is absolutely convergent.
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Proof. Not losing generality, suppose s < r. By (2.8), we have

(8, 8y, ... 3 )y

k
CRO ST

s} n
D
n=0 k=0
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(3.2)

where b = 0 in M;, when i > s. Thus, the series (3.1) is absolutely convergent. [

Theorem 3.2. Let z, a;, b; be some complex numbers, satisfying |z | <1,

bj # Bj orb;<lwithi=12 .,r+1 j=12 .. r Then, the series

0 n
1 (a]_, a2, ey ar+1; q)k k
k Z
Z:; n(n +1)k2:; (b, by, ..., br, G5 @),

n

is absolutely convergent and

n
= r110r(ag, A, .y Apyg; by, by, By 0, 2).

Proof. By (2.8), we have

i 1 Zn: (a, @, - Ary1; Ay S
cn(n+1) & 7| (by, by, ... by, 5 Q)
1 r+l
< eml—lMii 1 ik| Z|k
= n(n +1)
n=1 k=1
1 %M' "
1T A~ 1
<l Z 11. |Z|2<oo,
n(n+1) (1-|z|)

where b,,1 =g, in M,,1, M; isdefined as before (i =1, ..., r +1).

[°e) n
1 (ay, @, oy Ara1; Ay i
1+ k z
Z:; n(n +1) kZ:; (by, by, ..., by, @; Q)

(3.3)

(3.4)

(3.5)
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From (3.5), we know that, the series in (3.3) is absolutely convergent and by

(1.3), we have

0 n
1 (81, @2, v i1y Ay i
1+ k z
nZI n(n +1) ; (b, by, ..., by, G; )y

S (@ Ay, B Dy ko 1
=1+ k 7
; (by, by, ..., by, G; Q) %n(nﬂ)

2 (8, @y, ..., ryq) G
14 kz; Ebll b;, brr,*é; qgt zX. (3.6)
Together with (1.4) and (3.6), (3.4) follows. O
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