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Abstract 

In this paper, we derive an inequality for the coefficient of nz  in rr φ+1  

basic hypergeometric series. We use the inequality obtained in this paper 
to give a sufficient condition for the convergence of a bibasic series. 

1. Introduction 

q-series, which is also called basic hypergeometric series, plays a very 
important role in many fields, such as affine root systems, Lie algebras and groups, 
number theory, orthogonal polynomials and physics, etc. Inequality technique is one 
of the useful tools in the study of special functions. There are many papers about it 
(see [1, 2, 4, 5, 6, 7]). In [7], the authors gave some inequalities for certain bibasic 
sums. In this paper, we give a new inequality about q-series. First, we recall some 
definitions, notations and known results which will be used in this paper. 
Throughout this paper, it is supposed that .10 << q  The q-shifted factorials are 

defined as 
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We also adopt the following compact notation for multiple q-shifted factorial: 

( ) ( ) ( ) ( ) ,;;;;...,,, 2121 nmnnnm qaqaqaqaaa =  (1.2) 

where n is an integer or .∞  

The Fubini’s theorem. Suppose that ijf  is absolutely summable, that is, 
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In [1], the basic hypergeometric series ,1 rr φ+  is introduced as follows: 
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2. Main Result and its Proof 

We know that, estimating the value of 
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is an important problem in the study of q-series. In this section, we want to derive 
an upper bound of (2.1). In order to prove the main result, we need to introduce 
following lemma. 

Lemma 2.1. Let a and b be given complex numbers, satisfying bb ≠  or .1<b  
Then, for ,10 ≤≤ x  we have 
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Proof. (i) When ,bb ≠  let 

( ) ( ) ( ) .11 xexbbxxf α−−=  

Since 

( ( )) ( ( ))bbbbbb +−αα−+α−=Δ 222 42  

( ) 22224 44 bbbb α−+α+=  

( ) ,04 224 =−α+= bbb  

hence 

( ) [ ( ( )) ( )] .02 222 ≥+−α++α−+α=′ αxebbxbbbxbxf  

So ( )xf  is monotonous increasing function with respect to 10 ≤≤ x  and 

( ) ,1≥xf  (2.3) 

(2.3) is equivalent to 
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Using (2.4), we have 
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(ii) When ,1<b  for ,10 ≤≤ x  we have 
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Using (2.6), we have 
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Together with (2.5) and (2.7), (2.2) follows.  
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Theorem 2.2. Let ia  and ib  be some complex numbers, satisfying ii bb ≠  or 
1<ib  with ....,,2,1 ri =  Then, for all nonnegative integer n, we have 
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Proof. When ,0=n  it is obvious that (2.8) holds; when ,1≥n  for 10 ≤≤ x  
and ,1 ri ≤≤  by Lemma 2.1, we have 
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Thus, (2.8) follows.  

3. Some Applications of the Inequality 

Convergence is an important problem in the study of q-series. In this section, 
we  use the inequality obtained in this paper to give a sufficient condition for the 
convergence of a bibasic series. 

Theorem 3.1. Let z, ,ia  jb  be some complex numbers, satisfying ,1<z  

jj bb ≠  or 1<jb  with ....,,2,1,...,,2,1 sjri ==  Let { }nc  be a complex sequence 

satisfying 
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is absolutely convergent. 
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Proof. Not losing generality, suppose .rs <  By (2.8), we have 
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where 0=ib  in ,iM  when .si >  Thus, the series (3.1) is absolutely convergent.  

Theorem 3.2. Let z, ,ia  jb  be some complex numbers, satisfying ,1<z  

jj bb ≠  or 1<jb  with ....,,2,1,1...,,2,1 rjri =+=  Then, the series 

( )
( )
( )∑ ∑

∞

= =

+
+

1 1 21

121
;,...,,,
;...,,,

1
1

n

n

k

k

kr

kr z
qqbbb
qaaa

k
nn

 (3.3) 

is absolutely convergent and 
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Proof. By (2.8), we have 
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where ,1 qbr =+  in ,1+rM  iM  is defined as before ( ).1...,,1 += ri  
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From (3.5), we know that, the series in (3.3) is absolutely convergent and by 
(1.3), we have 
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Together with (1.4) and (3.6), (3.4) follows.  
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