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Abstract 

When the true plant evolution deviates significantly from the plant 
predicted by the model, the performance of a model predictive controller 
(MPC) is typically poor. So a robust MPC approach considering model 
uncertainty is explicitly needed. For the range of uncertainty considered, 
multiple input profiles that each profile is for each realization of the 
uncertainty, was determined. Unfortunately, it is extremely expensive in 
computation such that its practical implementation is difficult. This paper 
proposes two approaches based on neighboring extremal, which are 
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described as triple-mode and quadruple-mode prediction structures, 
respectively, to improve the performance of the closed-loop system. 
Furthermore, these algorithms demonstrate how an underexplored 
prediction class can be combined with parametric programming to 
generate far simpler solutions with a little cost to optimality. The idea is 
illustrated via the simulation of a continuous stirred tank reactor. 

1. Introduction 

Model predictive control (MPC) has become an effective control algorithm for 
dealing with multivariable constrained control problems that are encountered in the 
process industries: At each sampling time, MPC uses an explicit process model and 
information about input and output constraints to compute process inputs so as to 
optimize future plant behavior over the prediction horizon. Although more than one 
input move is computed, the controller implements only the first computed input and 
repeats these calculations at the next sampling time. 

Over the last decade, a solid theoretical foundation for MPC has emerged so that 
in real life, large-scale MIMO application controllers with non-conservative stability 
guarantees can be designed routinely and with ease [10]. The big drawback of the 
MPC is the relatively formidable on-line computational effort, which limits its 
applicability to relatively slow and/or small problems. 

A key element in predictive control is the extensive use of the dynamic process 
model, but model is only an approximation of the real process. When the difference 
between the predicted and the true plant evolutions is significant, standard predictive 
control may be unable to conduct the desired performance [8, 12].  So it is extremely 
important to re-cast MPC to be robust for model uncertainty. 

Standard robust predictive control computes an input that represents a 
compromise solution for the range of uncertainty considered [2, 6, 7], it requires a 
modest amount of online computation and introduces extra free degree to enlarge the 
volume of the relevant invariant set and improve closed-loop response. To prove 
robust stability, it is important to guarantee that the final state is within some 
bounded set [9]. When the dispersion of the open-loop predicted state is large, 
especially in the case of unstable processes, it may not be possible to find a feasible 
solution to the robust optimization problem. So, the state dispersion should be 
controlled, and the inherent state feedback needs to be incorporated in the robust 
predictive control formulation [6]. 
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We can express the inherent state feedback by two ways: One is using multiple 
input profiles [8, 13], i.e., at each sample interval, the predictive control law can be 
constructed in more than one phase: one phase is a transient phase of first cn  steps; 

the others are the asymptotic phases thereafter. At the next sampling interval, the 
same step is started again. This approach has flexibility but its computational load 
is  large; the other way is using the neighboring extremal approach to approximate 
the inherent state feedback [1, 2]. For small deviation away from the optimal 
solution, the theory of neighboring extremals provides a closed-form solution to the 
optimization problem. Thus, the optimal input can be obtained using state feedback, 
which approximates the feedback provided by explicit numerical re-optimization. 

In [5], an approach is proposed which embeds the NE-based approach into 
robust optimization with multiple input profiles, i.e., the optimization scheme 
optimizes the multiple profiles, and the nominal one is exactly obtained via explicit 
optimization and all the perturbed ones are obtained approximately via the NE 
approach. Since only one input profile is optimized explicitly, the computational 
complexity of the problem is reduced considerably, while keeping the advantages of 
the robust optimization scheme with multiple input profiles. This scheme gives a 
first order approximation of the optimal input. 

Note that the main emphasis is not only in reducing the computational 
complexity of a general MPC problem as in [14], but also in the context of robust 
predictive control. In [11], based on parametric programming for MPC, a simple 
algorithm showed how to move all the computations necessary for the 
implementation of MPC offline, while preserving all its other characteristics. 
Moreover, such an explicit form of the controller provides additional insight for a 
better understanding of the control policy of MPC. 

We know, the validity of the first order approximation is not good, when the 
solution deviates great away from the optimal solution. In this paper, as the 
expansion of the robust predictive control based on the NE, two algorithms, which 
embedding neighboring extremal (NE) approach into robust predictive control with 
multiple input profiles, are proposed. These algorithms introduce some adjustable 
parameters to improve the performance of the closed loop system. Furthermore, 
they  demonstrate how an underexplored prediction class can be combined with 
parametric programming to generate far simpler solutions with a little cost to 
optimality. The simulation results of applying these algorithms to a continuous 
stirred tank reactor verify the effectiveness of the algorithm proposed in this paper. 



BAILI SU and GUOYUAN QI 132 

2. Preliminaries 

2.1. Standard predictive control 

Consider the nonlinear dynamic process: 

( ) ( ) ,0,,, 0xxuxFx =θ=  (1) 

where the state x and the input u are vectors of dimensions n and m, respectively. 0x  

represents the initial conditions, θ denotes the vector of uncertain parameters that are 
assumed to lie in the admissible region Θ, and F is the process dynamics. 

In predictive control, the following optimization problem is solved repeatedly at 
discrete time instants: 

( [ ] )
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s.t. ( ) ( ) ( ) ,,,,, XTtxxtxuxFx fkkk ∈+=θ=  (2) 

where P, Q and R are positive-definite weighting matrices with appropriate 
dimensions, X is the bounded region of state space where the final state should lie, 

kt  is the present time at which the optimization is performed, fT  is the prediction 

horizon, and kx  is the state measured or estimated at time .kt  The optimal input 

computed by solving (2) is represented by ([ ])., fkk Tttu +∗  The importance of 

having a terminal cost, and also a bounded region for the final state for the sake of 
stability is discussed in [8]. 

Let h be the sampling period, which, in general, is a constant. The first part of 

the optimal input, ([ ]),, 1+
∗

kk ttu  is applied to the open loop, and the optimization 

problem is repeated at the time instant .1 htt kk +=+  So, for implementation 

purposes, the infinite-dimensional input ([ ])fkk Tttu +,  is parameterized using a 

finite number of decision variables, typically a piecewise-constant approximation. 

Remark 1. When the controlled system has parameter uncertainties and 
disturbance, the difference between the model and the true plant is significant, 
standard predictive control may be unable to provide the desired performance. So we 
must improve the robustness of predictive control. 
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2.2. Neighboring extremals controller 

Including the dynamic constraints of optimization problem (2), the augmented 
cost function, ,J  can be written as 

( ( )) ( )∫
+

λ−++Φ=
fk

k

Tt

t
T

fk dtxHTtxJ ,  (3) 

where ( ) ( ) ( ),,,
2
1,

2
1 θλ++==Φ uxFRuuQxxHPxxx TTTT  and ( ) 0≠λ t  is the 

n-dimensional vector of adjoint states or Lagrange multipliers for the system 
equations. 

At the optimal solution, the first variation of J  is given by [3, p. 64]: 

( ) [( ) ]∫ τΔ+Δλ++|Δλ−Φ=Δ + ,duHxHxJ u
T

xTt
T

x fk  (4) 

where ( ) ( ) ( )txtxtx ∗−=Δ  and ( ) ( ) ( ),tututu ∗−=Δ  with ∗x  and ∗u  are the optimal 

state and input, respectively, and the notation 
b
aab ∂
∂=  is used. 

Upon the convenient choice of the adjoint states, x
T H−=λ  with ( )fk

T Tt +λ  

( ),fkx Tt +Φ=  the necessary conditions of optimality that are derived from JΔ  

0=  are: 

.0=λ+= u
TT
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The second-order variation of J  is given by [3, p. 317]: 
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Choose uΔ  to minimize J2Δ  under the linear dynamic constraint 

.uFxFx ux Δ+Δ=Δ  (7) 

Equation (6) represents a time-varying linear quadratic regulator (LQR) problem, for 
which a closed-form solution is available: 
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( ) ( ) ( ),txtKtu Δ−=Δ  (8) 

( ),1 SFHHK T
uuxuu += −  (9) 

( ) ., PTtSKSFKHSFSFHS fkuxu
T
xxxx =+++−−−=  (10) 

The solution combining (8) with (9) and (10) is optimal solution of LQR problem at 
optimal point. Gros et al. [5] applied this solution to the neighborhood, and termed it 
as neighboring extremals controller. Actually, the solution becomes an approximate 
solution in the neighborhood. 

Remark 2. For small deviation away from the optimal solution, the NE 
approach can provide a first order approximation of the optimal solution. Thus, the 
optimal input can be obtained using state feedback, which approximates the 
feedback provided by explicit numerical re-optimization. 

In [5], an approach was proposed which embedded the NE-based approach 
into  robust optimization with multiple input profiles, i.e., the optimization scheme 
optimizes the multiple profiles, and the nominal one is exactly obtained via explicit 
optimization and all the perturbed ones are obtained approximately via the NE 
approach. Since only one input profile is optimized explicitly, the computational 
complexity of the problem is reduced considerably, while keeping the advantages of 
the robust optimization scheme with multiple input profiles. 

It is clear that the first order approximation of a nonlinear function cannot 
provide a satisfying approximating result, when the nonlinearity of this function is 
high. So the control approach based on NE theory cannot obtain a satisfying 
performance under this situation. In next section, we will propose two improved 
predictive control algorithms based on NE with a system free degree to overcome 
the drawback of first order approximation of nonlinearity to improve the 
optimization performance of the closed-loop system. 

3. An Improved Algorithms with Multiple Input Profiles and Based on 
Neighboring Extremals 

In this section, we introduce two algorithms which combine the NE approach 
with multiple input profiles to improve the performance of the closed-loop system 
and keep the advantages of the predictive control based on NE approach. 
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3.1. Triple mode prediction structure 

Here we will use a modified method based on the theory of neighboring 
extremal to construct the control increments as a triple mode structure: 
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where ( )tK  is defined as formula (9), kc  is an adjustable parameter, ( ) ( )tutu θ=Δ  

( ),0 tuθ−   and ( ) ( ) ( ),0 txtxtx θθ −=Δ  where 0θ  is the nominal parameter vector. 

Embedding ( ) ( ) ( )txtxtx 0θθ −=Δ  and ( ) ( ) ( )tututu 0θθ −=Δ  into formula (11), 
we can obtain: 
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Then the optimization problem of model predictive control can be expressed as 
follows: 

( [ ] )
( )( ),,min

,
θθ+

pJF
fkk Tttu

 

s.t. ( ),,, 000 θ= θθ uxFx  ( ) ;0 kk xtx =θ  ( ),,, θ= θθθ uxFx  ( ) ,kk xtx =θ  

,0θ≠θ∀  

( ) ,, Θ∈θ∀∈+θ XTtx fk  (12) 

( )
( )
( ) ( )
( ) ( )⎪

⎩

⎪
⎨

⎧

+≤≤−−
≤≤+−−

<≤
=

+θθθ

−++θθθ

+θ

θ

,if,
,if,

,if,

00

00

0

11

1

fknk

nkkk

kk

TtttxxKtu
tttcxxKtu

ttttu
tu

c

c  (13) 

( ) ( )fk
T

fk TtPxTtxJ ++= θθθ 2
1  

( ( ) ( ) ( ) ( ))∫
+

θθθθ τττ+ττ+
fk

k

Tt

t

TT dRuuQxx ,
2
1  (14) 

where ( )( )θθ pJE ,  is a general stochastic objective function that depends on the 

probability density function ( ).θp  
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Remark 3. The free degree of the controlled system is added by introducing the 
adjustable parameter kc  to improve the optimization performance of the closed-loop 

system in some certain while keep the advantages of the approaches based on NE 
theory. 

3.2. Quadruple mode prediction structure 

Although more than one input moves are computed at each sampling time, the 
controller implements only the first computed input and repeats these calculations at 
the next sampling time. Since there is inherent feedback between control inputs and 
states, state ( )ktx  which relates to the first input is very important. Hence, the state 

should be emphatically considered in constructing the controller. Therefore, we 
construct the control increments as a quadruple mode structure: 

( )
( ) ( )
( ) ( )
( ) ( )⎪

⎪

⎩

⎪
⎪

⎨

⎧

+<≤Δ−

<≤+Δ−

<≤+Δ+Δ−

<≤

=Δ

+

−++

−++

+

,,

,,

,

,,0

2

21

1

12

,111

1

fknk

nknkk

nkkkkk

kk

TttttxtK

tttctxtK

tttcxLtxtK

ttt

tu

c

cc

c  (15) 

where 21,, kkK ccL  are adjustable parameters, ( )tK is defined as formula (9), and 

( ) ( ) ( ),0 tututu θθ −=Δ  ( ) ( ) ( ),0 txtxtx θθ −=Δ  ( ) ( ).0 kkk txtxx θθ −=Δ  Embedding 

( ) ( ) ( ),0 tututu θθ −=Δ  ( ) ( ) ( ),0 txtxtx θθ −=Δ  ( ) ( )kkk txtxx 0θθ −=Δ  into (15), 

then optimization problem can be expressed: 
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where ( )( )θθ pJE ,  is a general stochastic objective function that depends on the 

probability density function ( ).θp  

Remark 4. This method further enhances the free degree regulation of the 
controlled plant by adding adjustable parameters 21, kk cc  and kL  to improve the 

system’s performance with less computing complexity than standard robust 
predictive control. 

4. Illustrative Example 

In this section, a continuous stirred tank reactor (CSTR) is considered to show 
the effectiveness of the algorithms proposed in this paper. 

The concentration control in a CSTR with constant cooling jacket temperature 
is  considered. There is a single exothermic chemical reaction, ,BA →  and the 

manipulated variable is the inlet feed rate. The model equations are: 

( ),0 AART
E

AA cc
V
Feckc in −

−

+−=  

( ) ( ) ( ),0 TT
cV

UATT
V
Feck

c
HT c

p
inRT

E

A
p

−
ρ

+−+
ρ
Δ−

=
−

 (19) 

where Ac  is the concentration of species A; T, inT  and cT  are the reactor temperature, 

the inlet temperature and the cooling jacket temperature, respectively. F is the feed 

rate of A, 0k  is the pre-exponential factor, E is the activation energy, R is the gas 

constant, V is the reactor volume, HΔ  is the reaction enthalpy, ρ is the density, pc  

is the heat capacity, U is the heat transfer coefficient, and A is the heat transfer area. 

These parameter values, taken from [4], are listed in Table 1. 
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Table 1. Parameter values 

3m36.1=V  3
, mmol8008=inAc  hl1008.7 7

0 ×=nomk  

K8375=RE  K3.373=inT  K6.532=cT  

3mkg8.800=ρ  ( )kgKJ3140=pc  ( )hKJ1004.7 6×=AU  

( ) =Δ− H  69,775 molJ    

The uncertainty regards the pre-exponential factor 0k  that can take any value 

in  the range [ ]77 105.8,1066.5 ××  with equal probability. The value used for 

simulating the reality is 7
0 1014.8 ×=realk h,l  which is larger than the nominal 

model value h,l1008.7 7
0 ×=nomk  i.e., the reality is more reactive than that 

predicted by the model. For a feed rate [ ],hm5 3=F  the model exhibits three 

equilibrium points. The control objective is to drive the process from the stable 

equilibrium, Point A [ ] [ ] ,K72.44.5,mmol08.1586, 3 ′=′TcA  to the unstable 

equilibrium, Point B [ ] [ ] .K79.487,mmol23.4786, 3 ′=′TcA  

The equilibrium point varies with ,0k  i.e., [ ]hm5 3=F  no longer corresponds 

to the equilibrium points A and B for the real process. Hence any proportional 

controller will seek a compromise meeting between [ ]hm5 3=F  and refAA cc ,=  

at steady state. Fortunately, the resulting steady-state error can be eliminated via 
integral control. For this, an additional state I with the following dynamics is 
included: 

( ) ( ) ( ) .00,, =−= ItcctI ArefA  (20) 

Integral controller is added in the output channel artificially to eliminate steady-state 
error. 

All control predictive schemes investigated below share the same features as 
[5]: (i) re-optimization of the input at each sampling instant, with [ ]h2.0=λ  is the 

sampling interval, (ii) [ ]h1=fT  is the prediction horizon, (iii) control sequence for 
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λ+≤≤ kk ttt  is applied, leaving the rest of the sequence unused, (iv) piecewise-

constant parameterization of the input ( )tF  with time intervals of length h, and ( )v  

.50,
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⎥
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⎣

⎡
=
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⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= RQP  

4.1. Robust control with triple-mode input profile based on NE 

Firstly, the robust predictive control scheme with dual-mode structure as (15)-
(17) is studied. At the re-optimization at time ,kt  an optimal input is computed for 

the nominal model using a piecewise constant input parameterization of length λ. 

Based on this input, an improved NE controller is designed to generate ([ ,λ+ktu  

( ) ])λ−+ 1ck nt  and ([ ]),, fkck Ttntu +λ+  where ,2=cn  .3.0=kc  For the 

tuning ,kc  firstly, take kc  in the interval Cck ≤  evenly, where C is boundary, 

and usually .10<C  The cost function J for all of them is calculated, and then the 

parameter kc  which has the minimum J is chosen. A new NE controller is therefore 

computed at each re-optimization. Simulation results are displayed in Figures 1-4 
(dashed line). 

4.2. Robust control with quadruple-mode input profile based on NE 

Here the robust predictive control scheme with triple-mode structure as (18)-(20) 
is studied. Similarly, at the re-optimization at time ,kt  an optimal input is computed 

using a piecewise constant input parameterization of same length λ. Based on this 

input, giving 11 =cn  and ,22 =cn  control sequences ([ ( ) ]),1, λ−+λ+ ckk nttu  

([ ( ) ]),1, 211 λ−++λ+ cckck nntntu  ([ ( ) ])fkcck Ttnntu +λ++ ,21  are computed, 

where ,5.11 =kc  ,6.02 =kc  .1.0=kL  The simulation results are shown in Figures 

1-4 (solid line). 

The simulation results of the method proposed in [5] are given in Figures 1-4 
(dotted line). 
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Figure 1. The feed rate F based on NE and triple mode input profile (i) solid line: 
Quadruple-mode input profile based on NE; (ii) dash line: Triple-mode input profile 
based on NE; (iii) dot line: Robust control based on NE (proposed in [5]). 

 

Figure 2. The integrator rate F based on NE and triple mode input profile (i) solid 
line: Quadruple-mode input profile based on NE; (ii) dash line: Triple-mode input 
profile based on NE; (iii) dot line: Robust control based on NE (proposed in [5]). 

 

Figure 3. The concentration of A, Ac  based on NE and triple mode input profile (i) 

solid line: Quadruple-mode input profile based on NE; (ii) dash line: Triple-mode 
input profile based on NE; (iii) dot line: Robust control based on NE (proposed in 
[5]). 
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Figure 4. The temperature T based on NE and triple mode input profile (i) solid line: 
Quadruple-mode input profile based on NE; (ii) dash line: Triple-mode input profile 
based on NE; (iii) dot line: Robust control based on NE (proposed in [5]). 

From these results of simulation on the continuous stirred tank reactor, we can 
see that the triple-mode and quadruple-mode algorithms proposed in this paper 
conducted the better performances in terms of settling time, peak time and percent 
overshoot than the algorithm proposed in [5] as illustrated in Figures 1-4.  

By adding the free degree in the first order approximation of nonlinearity, the 
optimization performance is superior to the purely first order approximation, which 
verifies the validity of the proposed methods. 

5. Conclusion 

In this paper, two approaches based on neighboring extremal, which are 
described as triple-mode and quadruple-mode predictive control structures, 
respectively, were proposed for nonlinear systems. These algorithms can improve 
the performance of the closed-loop system and have little computational load. The 
simulation results demonstrated that they can control the nonlinear systems well. 
But, their stability and performance have not been addressed in this paper yet. These 
issues, in particular, the validity of the first-order approximation and the effect of the 
approximation on stability, will form the subject of future research. These algorithms 
are only used as a fictitious input for computational purposes. Yet, its use for direct 
implementation is another promising research direction. 

References 

 [1] A. Bemporad, Reducing conservatism in predictive control of constrained systems 
with disturbances, 37th IEEE Control and Decision Conference, Tampa, FL, 1998, pp. 
1384-1389. 



BAILI SU and GUOYUAN QI 142 

 [2] A. Bemporad and M. Morari, Robust Model Predictive Control: A Survey, Springer-
Verlag, 1999. 

 [3] A. E. Bryson, Dynamic Optimization, Addison-Wesley, Menlo Park, California, 1999. 

 [4] S. A. Eker and M. Nikolaou, Linear control of nonlinear systems: interplay between 
nonlinearity and feedback, AIChE J. 48(6) (2002), 1957-1980. 

 [5] S. Gros, B. Srinivasan and D. Bonvin, Robust predictive control based on neighboring 
extremals, J. Process Control 16 (2006), 243-253. 

 [6] B. Kouvaritakis, J. A. Rossiter and J. Schuurmans, Efficient robust predictive control, 
IEEE Trans. Automat. Control 45(8) (2000), 1545-1549. 

 [7] J. H. Lee and Z. Yu, Worst-case formulations of model-predictive control for systems 
with bounded parameters, Automatica 33(5) (1997), 763-781. 

 [8] D. Q. Mayne, J. B. Rawlings, C. V. Rao and P. O. M. Scokaert, Constrained model 
predictive control: stability and optimality, Automatica 36(6) (2000), 789-814. 

 [9] H. Michalska and D. Q. Mayne, Robust receding horizon control of constrained 
nonlinear systems, IEEE Trans. Automat. Control 38(11) (1993), 1623-1633. 

 [10] S. J. Qin and T. A. Badgwell, An overview of industrial model predictive control 
technology, Chemical Process Control-V, AIChe Symposium Series, American 
Institute of Chemical Engineers 93(316) (1997), 232-256. 

 [11] J. A. Rossiter, B. Kouvaritakis and M. Cannon, An algorithm for reducing complexity 
in parametric predictive control, Internat. J. Control 78(18) (2005),   1511-1520. 

 [12] J. A. Rossiter, B. Kouvaritakis and M. J. Rice, A numerically robust state-space 
approach to stable-predictive control strategies, Automatica 34(1) (1998), 65-73. 

 [13] P. O. Scokaert and D. Q. Mayne, Min-max feedback model predictive control for 
constrained linear systems, IEEE Trans. Automat. Control 43 (1998), 1136-1142. 

 [14] Z. Wan and M. V. Kothare, An efficient off-line formulation of robust model 
predictive control using linear matrix inequalities, Automatica 39 (2003), 837-846. 


