
 

Far East Journal of Theoretical Statistics 
Volume 32, Number 1, 2010, Pages 81-99 
Published Online: July 26, 2010 
This paper is available online at http://pphmj.com/journals/fjts.htm
© 2010 Pushpa Publishing House 

 

 :tionClassificaject Sub sMathematic 2010 62A01, 93A05, 93A10. 

Keywords and phrases: psychological test, quantitative language, measurement theory, 
Occam’s razor, Bell’s inequality, split-half method. 

Communicated by Noboru Kunimatsu; Editor: Far East Journal of Dynamical Systems; 
Published by Pushpa Publishing House. 

Received May 24, 2010 

PSYCHOLOGICAL TESTS IN MEASUREMENT THEORY 

KOHSHI KIKUCHI and SHIRO ISHIKAWA 

Department of Media Presentation 
Faculty of Studies on Contemporary Society 
Mejiro University 
4-31-1 Naka-Ochiai, Shinjuku-ku 
Tokyo, 161-8539, Japan 
e-mail: k.kikuchi@mejiro.ac.jp 

Department of Mathematics 
Faculty of Science and Technology 
Keio University 
3-14-1 Hiyoshi, Kohoku-ku 
Yokohama, 223-8522, Japan 
e-mail: ishikawa@math.keio.ac.jp 

Abstract 

The purpose of this paper is to show the measurement theoretical 
approach to a problem of analyzing scores of tests for students. The 
obtained score is assumed to be the sum of a true value and a 
measurement error caused by the test, in which a student’s score is subject 
to a systematic error (= noise) depending on his/her health or 
psychological condition at the test. In such cases, statistical measurements 
are convenient since these two errors in measurement theory can be 
characterized in the different mathematical structures, respectively. As a 
result, we show that “reliability coefficient” = “correlation coefficient” in 
the clearer formulation. 
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1. Introduction 

Recently, in [5-15], we propose measurement theory, which is motivated by 
dynamical system theory and quantum mechanics, and is constructed in terms of 
operator algebras (cf. [17]) such as 

( ) [ ]
( )

[ ]
( )2 rule Linguistic1 rule Linguistic

.causalitytmeasuremen”MT theorymeasurment“ +==  

And we have the following classification: 

( [ ])
⎩
⎨
⎧ =

=
t theory,measuremen classical

19 mechanics quantumt theory measuremen quantum
”MT“  

where the algebra is either non-commutative or commutative. Measurement theory        
is neither mathematics nor physics but quantitative language. As seen in [9], 
measurement theory is quite applicable, that is, it covers dynamical system theory, 
Fisher’s statistics, Bayesian statistics, control theory, information theory, quantum 
theory, etc. Therefore, we believe that measurement theory gives the framework to 
the language of ordinary science. 

We note that the world-understanding (or precisely, the world-description) is 
composed of two methods, i.e., the linguistic method (i.e., quantitative language, 
idealism) and the mechanical method (i.e., physics, materialism), whose ultimate 
theory is respectively MT (i.e., measurement theory) and TOE (i.e., the theory of 
everything). Throughout the history of quantitative language, we have few 
quantitative keywords: “velocity” (cf. [11]), “causality”, “probability” (cf. [16]) and 
“measurement”. Note that dynamical system theory (= statistics, cf. [13]) [resp. 
measurement] is regarded as the quantitative language that is composed of 
“causality” and “probability” [resp. “causality” and “measurement”]. That is, in the 
history of quantitative language, we have the evolutions, decided by Occam’s razor, 
such as “velocity → causality” and “probability → measurement”. 

The purpose of this paper is to treat a problem of analyzing scores of tests for 
students in measurement theory. The obtained score is assumed to be the sum of a 
true value and a measurement error caused by the test, in which a student’s score is 
subject to a systematic error depending on his/her health or psychological condition 
at the test. It is important to see that systematic and measurement errors can be 
respectively represented by the different mathematical structures in measurement 
theory. Therefore, we can avoid confusing the two errors in the measurement theory. 
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Thus, our main result (i.e., Theorem 4: “reliability coefficient” = “correlation 
coefficient”) becomes clearer than the conventional one. 

2. Measurement Theory 

Focusing on classical measurements, we shall review the measurement theory 
introduced in [9]. 

2.1. Mathematical preparations 

Throughout this paper, the symbol Ω denotes a locally compact Hausdorff space 
with the Borel field .ΩB  The space ( )ΩC  denotes the Banach-algebra: 

( ) { },onboundedandcontinuousis:: Ω|→Ω=Ω ffC R  

endowed with canonical structures. The functions 0 and 1 denote the zero function 
and the constant 1 function, respectively. 

Define ( )ΩM  by { }.onmeasuresignedfiniteais: Ωρ|→ρ Ω RB  We shall 

introduce two subclasses of ( ):ΩM  the mixed state class ( )ΩmM  and the pure state 

class ( )ΩpM  defined by 

( ) ( ) ( ) ( ){ },1andfor,0: =Ωρ∈≥ρ|Ω∈ρ=Ω ΩBMM AAm  

( ) ( ){ },: Ω∈ω|Ω∈δ=Ω ω MM p  

where { }1,0: →δ Ωω B  is a point measure at ,Ω∈ω  i.e., 

( ) ( )
⎪⎩

⎪
⎨
⎧

∈
∉ω

∈ω
=δ Ωω .

,for ,0

,for ,1
BA

A

A
A  

The space ( )ΩpM  with the weak* topology can be identified with the Ω; ( )ΩpM  

is called a state space under the identification. 

Following Davies [2], we shall introduce a concept of observables. In all 
descriptions of this paper, the symbol X denotes a set, and XF  is the σ-subfield of 

the power set ( ) { }.: XX ⊆Ξ|Ξ=P  

We call a triplet ( )FX X ,, F  an observable in ( )ΩC  if ( )Ω→ CF XF:  satisfies 
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 (i) ( ) 10 ≤Ξ≤ F  for ,XF∈Ξ  ( ) 0=∅F  and ( ) ,1=XF  

(ii) for any countable decomposition { }...,,, 321 ΞΞΞ  of Ξ  ( Xk F∈ΞΞ ,  

( )),...,3,2,1=k  it holds that 

( ) ( ) ( ) ( ) ( )∑
=

∞→
Ω∈ωωΞ=ωΞ

N

n
nN

FF
1

.lim  

Remark 1. Note that any locally compact Hausdorff topological space has the 
Stone-Čech compactification. Furthermore, if Ω is compact, then the above                          
σ-additivity (ii) can be interpreted in the sense of the norm topology (see Pettis’s 
complete additivity theorem in [3]). As mentioned in [9], measurement theory has 

two formulations, i.e., ∗C -algebraic formulation and ∗W -algebraic formulation. In 

this paper, we devote ourselves to the ∗C -algebraic formulation. In ∗W -algebraic 
formulation, the state space Ω is not only assumed to be a locally compact Hausdorff 
space but also a σ-finite measure space ( )νΩ Ω ,, B  such that ( ) 0>ν D  for any 

open set ( ).Ω⊆D  

2.2. Linguistic rule in measurements 

The linguistic rule to be presented below is analogous to a classical version of 
Born’s probabilistic interpretation of quantum mechanics (see [2, 19]). 

With any system S, an algebra ( )ΩC  can be associated in which a measurement 

theory of that system can be formulated. A state of the system S is represented by a 

pure state ( )Ω∈δω
pM  and an observable is represented by an observable =O  

( )FX X ,, F  in ( ).ΩC  Moreover, the measurement of an observable O for the 

system S with a state 0ωδ  is denoted by ( )( [ ])0
,

ωδΩ SC OM  (or  in short, 

( )( [ ])),, 0ωΩ SC OM  so that we obtain a measured value in X by the measurement 

( )( [ ]).,
0ωδΩ SC OM  

Linguistic rule 1 (Measurements). Let ( )FX X ,, F=O  be an observable            
in ( )ΩC  and ( )( [ ])0

,
ωδΩ SC OM  be a measurement of the observable O for the 

system with a state .0ωδ  Then the probability that a measured value in X by 

( )( [ ])0
,

ωδΩ SC OM  belongs to a set XF∈Ξ  is given by ( ) ( ).0ωΞF  
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2.3. Linguistic rule in statistical measurements 

In our setting, we assert that most of the measurement problems is to infer an 

unknown state ( ).Ω∈δω
pM  In order to know a state ,ωδ  we take a measurement 

( )( [ ]).,
ωδΩ SC OM  When we want to emphasize that we have no information about 

,ωδ  the measurement ( )( [ ])ωδΩ SC ,OM  is often denoted by ( )( [ ])., ∗Ω SC OM  

The measurement ( )( [ ])∗Ω SC ,OM  for a statistical state ( ( ))Ω∈ρ mM  is 

denoted by ( )( [ ]( ))ρ∗Ω SC ,OM  (or  in short, ( )( ( ))),, ρΩ SC OM  called a statistical 

measurement. This means that the probability that a measured value by 

( )( ( ))ρΩ SC ,OM  belongs to XF∈Ξ  is given by 

( ) ( )[ ]( ) ( ) ., ⎟
⎠

⎞
⎜
⎝

⎛ ωρωΞ≡Ξρ ∫Ω dFF  

Summing up the above arguments, we have the following Linguistic rule. 

Linguistic rule 1′  (Statistical measurements). Let ( )FX X ,, F=O  be an 

observable in ( ).ΩC  Let ( )( ( ))ρΩ SC ,OM  be a statistical measurement of the 

observable O for the system with a statistical state .ρ  Then the probability that a 

measured value in X by ( )( ( ))ρΩ SC ,OM  belongs to a set XF∈Ξ  is given by 

( ) ., Ξρ F  

2.4. Linguistic rule (causality) 

Let ( )2,1=Ω kk  be a locally compact Hausdorff space. The function 

( )kk C Ω∈1  denotes the constant 1 function in ( ).2,1=Ω kk  A continuous linear 

operator ( ) ( )122.1 : Ω→ΩΦ CC  is called a Markov operator, if it satisfies 

  (i) 022,1 ≥Φ f  for ( )22 Ω∈ Cf  satisfying ,02 ≥f  

 (ii) ,11 122,1 =Φ  

(iii) there exists a bounded linear operator ( ) ( )212,1 : Ω→ΩΦ∗ MM  which 

satisfies 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫Ω Ω

∗ ωρΦω=ωρωΦ
1 2

2,12,1 dfdf  for ( ).2Ω∈ Cf  
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Note that the condition (iii) is not needed if Ω is compact. If ( )22,1 : ΩΦ C  

( )1Ω→ C  is a Markov operator, note that the ( )FX X 2,1,, ΦF  is an observable in 

( )1ΩC  for any observable ( )FX X ,, F  in ( ),2ΩC  where ( ) ( ) ( )( ),2,12,1 ΞΦ=ΞΦ FF  

for .XF∈Ξ  

Now, we can propose Linguistic rule 2 as follows: 

Linguistic rule 2 (Causality). The causal relation between systems is 
represented by a Markov operator ( ) ( ).: 122,1 Ω→ΩΦ CC  Moreover, the 

observable 2O  in ( )2ΩC  can be identified with the observable 22,1 OΦ  in ( ),1ΩC  

that is, 

22,1 OΦ  in ( ) 2tionidentifica1
2,1 O⎯⎯⎯ ⎯←Ω

Φ
C  in ( ).2ΩC  

Remark 2. (i) In the above case, { }2,1=T  is quite simple. However, in the 
∗W -algebraic formulation (cf. [9]), it is usual to consider that T is an infinite 

complete tree, that is, any subset ( )TA ⊆  that is bounded under below has an inf A. 

(ii) Measurement theory is based on dualism, and therefore, “observer” and 
“observed object” must be always separated. This fact is sometimes confused. For 
example, the famous statement: “I think, therefore I exist” is not the statement in 
measurement theory since it includes the confusion. In fact, this statement has never 
been effectively used before in science. 

2.5. Simultaneous measurement and parallel measurement 

For each ,...,,2,1 nk =  we consider an observable ( )kkkk FX ,,: F=O  in 

( ).ΩC  Let ( )k
n
kk

n
k X F11 , == XX  be the product measurable space of ( ) .s’, XkX F  An 

observable ( )FX k
n
kk

n
k ,,: 11 F=== XXO  in ( )ΩC  is called the product observable of 

{ }nkk ...,,2,1: =O  and denoted by k
n
k O1=X  if it satisfies 

( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ) ( )[ ] ( ),221121 ωΞωΞ⋅ωΞ=ωΞ××Ξ×Ξ nnn FFFF  

for all ,Ω∈ω  ....,,2,1, nkkk =∈Ξ F  The measurement ( )( [ ])ω=Ω Sk
n
kC ,1OM X  

is called the simultaneous measurement of { } .1
n
kk =O  
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For each ,...,,2,1 nk =  we consider an observable ( )kkkk FX ,,: F=O  in 

( ).kC Ω  An observable ( )FX k
n
kk

n
k ,,: 11 F=== XXO  in ( )k

n
kC Ω=1X  is called the 

parallel observable of { }nkk ...,,2,1: =O  and denoted by k
n
k O1=⊗  if it satisfies 

( )[ ]( ) ( )[ ]( ) ( )[ ]( ) ( )[ ]( ),...,,, 2221112121 nnnnn FFFF ωΞωΞ⋅ωΞ=ωωωΞ××Ξ×Ξ  

for all ( ) ....,,2,1,,...,,, 121 nkkkk
n
kn =∈ΞΩ∈ωωω = FX  

The measurement ( )( ( )[ ]),, ...,,1 11 nk
n
k

Sk
n
kC ωω=Ω

⊗
=

OM X  denoted by 

( )( [ ]),,1 kk SkC
n
k ωΩ=⊗ OM  is called the parallel measurement of 

{ ( )( [ ])} ., 1
n
kkC kk S =ωΩ OM  Moreover, the statistical measurement ( )k

n
kC Ω=1XM  

( ( )),, 11 k
n
kk

n
k S ρ⊗⊗ == O  denoted by ( ) ( )( ),,1 kkC

n
k Sk ρ⊗ Ω= OM  is called the 

parallel measurement of { ( ) ( )( )} ., 1
n
kkkC Sk =Ω ρOM  

Example 1 (Bell’s inequality) Let ( ) 2
21, R∈= aaa  such that =a  

,12
2

2
1 =+ aa  and let ( ) 2

21, R∈= bbb  such that .1=b  Put =X  

{ }.1,1−  Further, for any a, b such that ,1== ba  define the probability space 

( )ab
XX ν,2,

22  such that 

( )[ ]( )∫ +=ων⋅≡
2 221102121

X
abab babadxdxxxP  

and, for any ,Xx ∈  

{ }( ) { }( ) { }( ) { }( )

{ }( ) { }( ) { }( ) { }( )⎪⎩

⎪
⎨
⎧

×ν=×ν×ν=×ν

×ν=×ν×ν=×ν

.,

,,

22212212

12112111

xXxXXxXx

xXxXXxXx

babababa

babababa  

It is well known that the above abν  exists (see [18]). Let .0 Ω∈ω  Further, define 

the observable ( )ab
X

ab FX ,2,:~ 22=O  in ( )ΩC  such that { } { }( ) =×ν yxab  

{ } { }( )[ ] ( )0ω× yxFab  ( )., Xyx ∈∀  Now, putting ( ),, 1
2

1
1

1 aaa =  ( ),, 2
2

2
1

2 aaa =  

( )1
2

1
1

1 , bbb =  and ( ),, 2
2

2
1

2 bbb =  consider the following four measurements: 
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( )( [ ]),,~
011 ωΩ S

baC OM  ( )( [ ]),,~
021 ωΩ S

baC OM  

( )( [ ]),,~
012 ωΩ S

baC OM  ( )( [ ]).,~
022 ωΩ S

baC OM  

That is, consider the parallel measurement 

( ) ( )[ ] .,
~

0000 ,,,2,1,
⎟
⎠
⎞

⎜
⎝
⎛

ωωωω=Ω×Ω×Ω×Ω ⊗ SjibajiC OM  

If we put 

( ) ( ) ,
2

1,
2

1,0,1,
2

1,
2

1,1,0 2211 ⎟
⎠
⎞⎜

⎝
⎛ −==⎟

⎠
⎞⎜

⎝
⎛== baba  

then we easily calculate that 

 .2222122111 =++−
babababa

PPPP  (1) 

We may say that Bell’s inequality (cf. [1, 18]) is broken even in classical 
measurements (as well as in quantum measurements), though (1) is not Bell’s 
inequality. 

3. Psychological Tests 

In this section, we take a problem of tests of measuring intelligence, for example 
mathematical intelligence, of students. Through the measurement theory, we study 
the reliability of tests. 

3.1. Cases 1 and 2 

We shall start with a simple problem; the measurement-theoretical 
representation of tests for one student. Put RR =X  and .RR =Ω  

Case 1 (Tests for one student). Let { }nθθθ=Θ ...,,, 21  be a set of n students. 

The set Θ  will be regarded as a state space. We identify Θ  with ( )ΘpM  by the 

identification: ( ).Θ∈δ↔θΘ θ
p

i i M�  The mathematical intelligence of a student 

is generally depending on his/her health or psychological conditions at the test. 
Therefore, in our measurement theory, the intelligence of iθ  is assumed to be 

represented by a statistical state ( ) ( ),...,,2,1 nim
i =Ω∈δΦ θ

∗
RM  where :∗Φ  
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( ) ( )RΩ→Θ mm MM  is the dual Markov operator of ( ) ( ).: Θ→ΩΦ CC R  Let 

( )FX X ,, RR F=O  be an observable in ( ).RΩC  As seen in the previous section,            

a test for a student iθ  can be represented by a statistical measurement 

( )( ( ))., iSC θ
∗

Ω δΦOM R  Linguistic rule 1′  asserts that the probability that the              

score of iθ  by ( )( ( ))iSC θ
∗

Ω δΦ,OM R  belongs to a set RXF∈Ξ  is given by 

( ) ., ΞδΦ θ
∗ Fi  

For each ,...,,2,1 ni =  we consider a measurement ( )( ( ))iSC θ
∗

Ω δΦ,OM R  

defined in the above problem. We define the variance 2
iσ  of statistical state iθ

∗δΦ  

by 

 ( ) ( ) ( )∫Ω θ
∗ ωδΦμ−ω=σ

R
,22 diii  (2) 

where iμ  is the expectation of ,iθ
∗δΦ  that is, 

 ( ) ( )∫Ω θ
∗ ωδΦω=μ

R
.dii  (3) 

The positive constant iσ  is regarded as a kind of systematic errors (see [3]). 

We will next consider tests for a group of n students. 

Case 2 (Tests for n students). Let an observable ( )FX X ,, RR F=O  and a 

measurement ( )( ( ))iSC θ
∗

Ω δΦ,OM R  ( )ni ...,,2,1=  be as in Case 1. Here, we 

consider a parallel measurement ( )( ( )),ˆ,ˆ ρ
Ω

SnC
OM

R
 where OO n

i 1
ˆ

=⊗=  and 

.ˆ 1 i
n
i θ

∗
= δΦ⊗=ρ  The parallel measurement ( )( ( ))iSC

n
i θ

∗
Ω= δΦ⊗ ,1 OM R  denoted 

in the above is called a group test. Linguistic rule 1′  in Subsection 2.3 asserts           

that the probability that the score in nXR  obtained by a group test 

( )( ( ))iSC
n
i θ

∗
Ω= δΦ⊗ ,1 OM R  belongs to a set nXi

n
i

R
F∈Ξ=1X  is given by 

( ) ( ).ˆ:, 111 i
n
ii

n
i PFi Ξ=ΞδΦ =θ

∗
= XX  Here, note that ( )1̂,, PX nX

n
R

R F  is a probability 

space. 
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Let RR →nXW :1  be a statistics, i.e., a measurable function on the                    

n-dimensional space .nXR  Then 
( )( ( ))[ ],1,1

W
iC

n
i S θ

∗
Ω= δΦ⊗ OM R

E  the expectation of 

1W  concerning ,1̂P  is defined by 

( )( ( ))[ ] ( ) ( )∫ ∫=
θ

∗
Ω= δΦ⊗

R RR X X
nnS

dxdxdxPxxxWW
iC

n
i

.ˆ...,,, 2112111,1 OM
E  

Definition 1 (Expectation and variance). Let ( )( ( ))iSC
n
i θ

∗
Ω= δΦ⊗ ,1 OM R  be         

a group test. By ( )( ( )),,1 iSC
n
i θ

∗
Ω= δΦ⊗ OM R  we will obtain a measured                

value ( ) n
n Xxxx R∈...,,, 21  as in Case 1. We define the expectation 

[ ( )( ( ))]iSC
n
i θ

∗
Ω= δΦ⊗ ,Av 1 OM R  of ( )nxxxn +++ 21

1  and the variance 

[ ( )( ( ))]iSC
n
i θ

∗
Ω= δΦ⊗ ,Var 1 OM R  of ( )nxxx ...,,, 21  as follows: 

[ ( )( ( ))]
( )( ( ))[ ]∑

=
δΦ⊗θ

∗
Ω=

θ
∗

Ω=
=δΦ⊗

n

i
iSC

n
i xnS

iC
n
ii

1
,1

1

1:,Av
OM

OM
RR E  

 ( ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ω=

n

i X
ddxxFn i

1
,1

R R
 

[ ( )( ( ))]iSC
n
i θ

∗
Ω= δΦ⊗ ,Var 1 OM R  

( )( ( ))[( [ ( ) ( ( ))]) ]∑
=

θ
∗

Ω=δΦ⊗
δΦ⊗−=

θ
∗

Ω=

n

j
C

n
ijS iiC

n
i

Sx
n

1

2
1,

,Av1:
1

OM
OM RR

E  

( [ ( ) ( ( ))]) ( ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗

θ
∗

Ω= ωδΦ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ωδΦ⊗−=

n

j X
C

n
i ddxFSx

n ji
1

2
1 .,Av1

R R
R OM  

Let iμ  be an expectation of ,iθ
∗δΦ  i.e., ( ) ( )∫Ω θ

∗ ωδΦω=μ
R

.dii  Here, we 

define μ  by the mean of true values defined by 

 ( ) ( )∑ ∑∫
= = Ω

θ
∗ ωδΦω=μ=μ

n

i

n

i
i dnn i

1 1
.11:

R
 (4) 
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3.2. Reliability coefficients 

Definition 2 (Unbiased observable). We call ( )FX X ,, RR F=O  an unbiased 

observable in ( ),RΩC  if F satisfies the following condition: 

 ( ) ( ) ( )∫ Ω∈ω∀ω=ω
R

R
X

dxxF .  (5) 

Here, we have the following theorem. 

Theorem 1. Let ( )FX X ,, RR F=O  be an unbiased observable in ( ).RΩC  Let 

( )( ( ))iSC
n
i θ

∗
Ω= δΦ⊗ ,1 OM R  be a group test. Then, we see the following conditions 

1
1H  and .H2

1  

( ) ( ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ =ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω−

n

i X
ddxFxn i

1

1
1 ,01:H

R R
 

( ) ( ) ( ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ =ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω−μ−ω

n

i X
ddxFxn i

1

2
1 ,01:H

R R
 

where ∑ =
μ=μ n

i in 1
1  (see (4)). 

Proof. Since ( )FX X ,, RR F=O  is an unbiased observable, we see 

( ) ( ) ( ) ,0=ωω−∫ RX
dxFx  which results in 1

1H  and .H2
1  ~ 

From the condition ,H1
1  we see 

[ ( ) ( ( ))] ( ) ( ) ( ) ( )∑ ∫ ∫
= Ω

θ
∗

θ
∗

Ω= ωδΦ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ω=δΦ⊗

n

i X
C

n
i ddxxF

n
S ii

1
1

1,Av
R R

R OM  

( ) ( )∑ ∫
= Ω

θ
∗ ωδΦω=

n

i
d

n i
1

1
R

 

,μ=  (6) 

and we see the variance 2
EΔ  of students’ intelligence 
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 ( ) ( ) ( )∑∫
= Ω

θ
∗ ωδΦμ−ω=Δ

n

i
E dn i

1

22 .1
R

 (7) 

For ,Ω∈ω  we define the 2
ωΔ  by 

 ( ) ( ) ( )∫ ωω−=Δω
RX

dxFx ,22  (8) 

where 2
ωΔ  is a kind of measurement errors (see [3]). Put 

( ) ( )∑ ∫
= Ω

θ
∗

ω ωδΦΔ=Δ
n

i
GT d

n i
1

22 1:
R

 

 ( ) ( ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω−=

n

i X
ddxFxn i

1

2 .1
R R

 (9) 

From what we have seen, we can get the following theorem. 

Theorem 2 (Variance of measured values). Let ( )( ( ))iSC
n
i θ

∗
Ω= δΦ⊗ ,1 OM R  be 

a group test, where ( )FX X ,, RR F=O  is an observable in ( ).RΩC  Under the 

assumption 1
1H  and 2

1H  in Theorem 1, it holds that 

 [ ( )( ( ))] .,Var 22
1 GTEC

n
i iS Δ+Δ=δΦ⊗ θ

∗
Ω= OM R  (10) 

Proof. The variance [ ( )( ( ))]iSC
n
i θ

∗
Ω= δΦ⊗ ,Var 1 OM R  is calculated as follows: 

[ ( )( ( ))]iSC
n
i θ

∗
Ω= δΦ⊗ ,Var 1 OM R  

( ) ( ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ ωωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωμ−=

n

i
ii

X
iii ddxFxn i

1

21
R R

 

( ) ( ) ( )∑ ∫
= Ω

θ
∗ ωδΦμ−ω=

n

i
d

n i
1

21
R

 

( ) ( ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω−+

n

i X
ddxFxn i

1

21
R R
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( ) ( ) ( ) ( ) ( ) ( )∑ ∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω−μ−ω+

n

i X
ddxFx

n i
1

.2
R R

 

On the condition ,H2
1  the third term is equal to 0. Thus, we get equality (10). ~ 

Now, we can define the reliability coefficient as follows. 

Definition 3 (Reliability coefficients). Let ( )( ( ))iSC
n
i θ

∗
Ω= δΦ⊗ ,1 OM R  be a 

group test, where ( )FX X ,, RR F=O  is an observable in ( ).RΩC  Under the 

assumption that the pair ({ } )O,1
n
ii =θ

∗δΦ  satisfies conditions 1
1H  and ,H2

1                       

the reliability coefficient [ ( )( ( ))]iSC
n
i θ

∗
Ω= δΦ⊗ ,RC 1 OM R  of a group test 

( )( ( ))iSC
n
i θ

∗
Ω= δΦ⊗ ,1 OM R  is defined by 

[ ( )( ( ))]
[ ( )( ( ))]

.
,Var

,RC
1

2

1
i

i S
S

C
n
i

E
C

n
i

θ
∗

Ω=
θ

∗
Ω=

δΦ⊗

Δ
=δΦ⊗

OM
OM

R
R  (11) 

From Theorem 2, we see the reliability coefficient [ ( )RΩ=⊗ C
n
i M1RC  

( ( ))]iS θ
∗δΦ,O  ranges from 0 to 1. 

3.3. Correlation coefficients 

Concerning Definition 3, we must note that we cannot directly get the variance 
2
EΔ  of mathematical intelligence of n students from the measured data in .nXR  Thus, 

we shall focus on the problem how to estimate the reliability coefficient. Here, we 
recall one typical method, say the split-half method. 

Split-half method. Divide the test into equivalent halves and measure the 
internal consistency of a test, that is, calculate the correlation coefficient between 
these two sets. With psychological tests, a usual procedure is to obtain scores on the 
odd and even items. 

Under the discussions of Case 2, we shall introduce a characterization of split-
half method through our measurement theory. We adopt the same notation as used 

before. Let { },...,,, 21 nθθθ=Θ  RRR =Ω=X  and ( ) ( )RΩ→ΘΦ∗ MM:  be 

as in Case 2. 
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Definition 4 (Group simultaneous tests). Let ( )11 ,, FX XRR F=O  and =2O  

( )2,, FX XRR F  be observables in ( )RΩC  and 21 OO ×  be the product observable 

of 1O  and .2O  Then the parallel simultaneous measurement 

( ) ( ( )),,211 iSC
n
i θ

∗
Ω= δΦ×⊗ OOM R  

is called a group simultaneous test of 1O  and .2O  

Linguistic rule 1′  asserts that the probability that a score in nX 2
R  obtained by         

a group simultaneous test ( )( ( ))iSC
n
i θ

∗
Ω= δΦ×⊗ ,211 OOM R  belongs to a set 

( ( ) ( ) ) nXii
n
i 2

21
1

R
F∈Ξ×Ξ=X  is given by 

( ) ( ( ) ( ) ) ( ( ( ) ( ) )).ˆ:, 21
12

21
21 ii

n
iii PFFii Ξ×Ξ=Ξ×Ξ×δΦ =θ

∗
Θ∈θ XX  

Here note that ( )2
2 ˆ,, 2 PX nX

n
R

R F  is a probability space. 

Let RR →nXW 2
2 :  be a statistics. Then 

( )( ( ))[ ],2,211
W

iC
n
i S θ

∗
Ω= δΦ×⊗ OOM R

E  

the expectation of 2W  concerning ,2̂P  is defined by 

( )( ( ))[ ]2,211
W

iC
n
i S θ

∗
Ω= δΦ×⊗ OOM R

E  

( ( ) ( ) ( ) ( ) ) ( ( ) ( ) ( ) ( ) )∫= nX
nnnn dxdxdxdxPxxxxW

2
.ˆ,...,,, 212

1
1

12
212

1
1

12
R

 

In the same manner as Definition 1, we use the following notations. 

Definition 5 (Expectation, variance and covariance). Let ( )RΩ=⊗ C
n
i M1  

( ( ))iS θ
∗δΦ× ,21 OO  be a group simultaneous test as in Definition 4. By the 

( )( ( )),,211 iSC
n
i θ

∗
Ω= δΦ×⊗ OOM R  we will obtain a measured value ( ( ) ( ),, 2

1
1

1 xx  

( ) ( ) ) ,,..., 221 n
nn Xxx R∈  and introduce the following notation: 

( )[ ( ) ( ( ))]iSC
n
i

k
θ

∗
Ω= δΦ×⊗ ,Av 211 OOM R  

( )( ( ))
( ) ( ),2,11:

1
,211

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=
δΦ×⊗ θ
∗

Ω=
kxn

n

i

k
iS iC

n
i OOM R

E  
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( )[ ( )( ( ))]iSC
n
i

k
θ

∗
Ω= δΦ×⊗ ,Var 211 OOM R  

( ) ( ( ))iC
n
i S θ

∗
Ω= δΦ×⊗

=
,211

:
OOM R

E  

( ( ) ( )[ ( )( ( ))]) ( ),2,1,Av1

1

2
211 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
δΦ×⊗−× ∑

=
θ

∗
Ω= kSxn

n

j
C

n
i

kk
j iOOM R  

[ ( ) ( ( ))]iSC
n
i θ

∗
Ω= δΦ×⊗ ,Cov 211 OOM R  

( )( ( ))iC
n
i S θ

∗
Ω= δΦ×⊗

=
,211

:
OOM R

E  

( ( ) ( )[ ( )( ( ))])
⎢
⎢
⎣

⎡
δΦ×⊗−× ∑

=
θ

∗
Ω=

n

j
C

n
ij iSx

n
1

211
11 ,Av1 OOM R  

( ( ) ( )[ ( ) ( ( ))]) .,Av 211
22

⎥
⎥
⎦

⎤
δΦ×⊗− θ
∗

Ω= iSx C
n
ii OOM R  

We see 

( )[ ( )( ( ))] [ ( )( ( ))]ii SS kC
n
iC

n
i

k
θ

∗
Ω=θ

∗
Ω= δΦ⊗=δΦ×⊗ ,Av,Av 1211 OMOOM RR  

and 

( )[ ( )( ( ))] [ ] ( ).2,1Var,Var 1211 =⊗=δΦ×⊗ θ
∗δΦ

=θ
∗

Ω= kS i
ki

n
iC

n
i

k
OMOOM R  

Here, recall that [ ( )( ( ))] μ=δΦ⊗ θ
∗

Ω= iSkC
n
i ,Av 1 OM R  ( ),2,1=k  under the 

assumption 1
1H  in Theorem 1. That is, we see 

( )[ ( )( ( ))]iSC
n
i

k
θ

∗
Ω= δΦ×⊗ ,Var 211 OOM R  

( )( ( )) ( ( ) ) ,1

1

2
,211 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
μ−= ∑

=
δΦ×⊗ θ
∗

Ω=

n

j

k
jS

x
niC

n
i OOM R

E  

[ ( ) ( ( ))]iSC
n
i θ

∗
Ω= δΦ×⊗ ,Cov 211 OOM R  

( )( ( )) ( ( ) ) ( ( ) ) .1

1

21
,211 ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
μ−μ−= ∑

=
δΦ×⊗ θ
∗

Ω=

n

i
iiS

xx
niC

n
i OOM R

E  
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In the similar way in Subsection 3.2, we assume that the pair ({ } )k
n
ii O,1=θ

∗δΦ  

( )2,1=k  satisfies conditions 1
1H  and .H2

1  

As in (9), we define 

( ) ( ) ( ) ( ) ( ) ( ) ( ).2,11
21

1

2 =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω−=Δ ∑∫ ∫

= Ω
θ

∗ kddxFxn

n

i X
k

k
GT i

R R
 

As we have seen in (10), we get 

 ( )[ ( )( ( ))] ( ( ) ) ( ).2,1,Var 22
211 =Δ+Δ=δΦ×⊗ θ

∗
Ω= kS k

GTEC
n
i

k
iOOM R  (12) 

Definition 6 (Equivalence condition of unbiased observables). Two unbiased 
observables ( )11 ,, FX XRR F=O  and ( )22 ,, FX XRR F=O  in ( )RΩC  are called 

to be equivalent if 

 ( ) ( ) ( ),21
RΩ∈ω∀Δ=Δ ωω  (13) 

where ( ) ( ) ( ) ( ) ( ).2,1
21

2 =⎟
⎠
⎞⎜

⎝
⎛ ωω−=Δ ∫ω kdxFx

X k
k

R
 

Equivalence condition of unbiased observables induces an equivalency of group 
averages of error variances. 

Theorem 3. Let ( )( ( ))iSC
n
i θ

∗
Ω= δΦ×⊗ ,211 OOM R  be a group simultaneous 

test as in Definition 4. Suppose two unbiased observables ( )11 ,, FX XRR F=O  and 

( )22 ,, FX XRR F=O  are equivalent. Then we see ( ) ( ) .21
GTGT Δ=Δ  

Proof. From definition (9) of group average of error variances, we see 

( ) ( ( ) ) ( ) ( ) ( ) ( ).2,11:H 2
21

1

21
2 =Δ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ωδΦΔ=Δ ∑∫

= Ω
θ

∗
ω kdn GT

n

i

k
GT i

R
 

That is, 
( )[ ( )( ( ))]iSC

n
i θ

∗
Ω= δΦ×⊗ ,Var 211

1 OOM R  

( )[ ( )( ( ))].,Var 211
2

iSC
n
i θ

∗
Ω= δΦ×⊗= OOM R  

Then we see ( ) ( ) .21
GTGT Δ=Δ  ~ 
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Under these assumptions, we shall calculate the correlation coefficient of the 

measured values by ( )( ( )).,211 iSC
n
i θ

∗
Ω= δΦ×⊗ OOM R  

Theorem 4 (Correlation coefficients). Let ( )( ( ))iSC
n
i θ

∗
Ω= δΦ×⊗ ,211 OOM R  

be a group simultaneous test in Definition 4 and assume that ({ } )k
n
ii O,1=θ

∗δΦ  

( )2,1=k  satisfies conditions ,H1
1  2

1H  and .H2  Then it holds that 

[ ( )( ( ))]iSkC
n
i θ

∗
Ω= δΦ⊗ ,RC 1 OM R  

[ ( )( ( ))]

[ ( )( ( ))] [ ( )( ( ))]ii

i

SS

S

C
n
iC

n
i

C
n
i

θ
∗

Ω=θ
∗

Ω=

θ
∗

Ω=

δΦ⊗⋅δΦ⊗

δΦ×⊗
=

,Var,Var

,Cov

2111

211

OMOM

OOM

RR

R  

( ),2,1=k  (14) 
where 

[ ( )( ( ))]iSkC
n
i θ

∗
Ω= δΦ⊗ ,RC 1 OM R  

( )[ ( )( ( ))] ( ).2,1,Var 211
2 =δΦ×⊗Δ= θ

∗
Ω= kS iC

n
i

k
E OOM R  

Proof. Using ( ) ( ),ω−+μ−ω=μ− ii xx  we see 

[ ( ) ( ( ))]iSC
n
i θ

∗
Ω= δΦ×⊗ ,Cov 211 OOM R  

( )( ( ))[(
( ) ) ( ( ) )]∑

=
δΦ×⊗

μ−μ−=
θ

∗
Ω=

n

i
iiS

xx
n iC

n
i1

21
,211

1
OOM R

E  

( ( ) ) ( ( ) ) ( ( ( ) ) ( ( ) )) ( ) ( ) ( )∑∫ ∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ω⋅μ−μ−=

n

i X X
iiii ddxFdxFxx

n i
1

2
2

1
1

211
R R R

 

( ) ( ) ( )∑∫
= Ω

θ
∗ ωδΦμ−ω=

n

i
d

n i
1

21

R
 

( ( ) )( ( ) )( ( ( ) ) ( ( ) ))( ) ( )( )∑∫ ∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ω⋅ω−ω−+

n

i X X
ddxFdxFxx

n i
1

2
2

1
1

211

R R R
 

( ( ) ) ( ) ( ( ) ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωμ−ωω−+

n

i X
ddxFx

n i
1

1
1

11

R R
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( ) ( ( ) ) ( ( ) ) ( ) ( ) ( )∑∫ ∫
= Ω

θ
∗ ωδΦ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ωω−μ−ω+

n

i X
ddxFx

n i
1

2
2

2 .1

R R
 

The second term is equal to 0 by ,H2  and the third and the fourth terms are also 0          

by .H2
1  Thus, we see [ ( )( ( ))] ,,Cov 2

211 EC
n
i iS Δ=δΦ×⊗ θ

∗
Ω= OOM R  which 

completes the proof. ~ 

4. Conclusions 

In this paper, we proposed a measurement-theoretical understanding of 
psychological tests and a split-half method and found the following 
correspondences: 

      
( )( ( ))iC

n
i S θ

∗
Ω= δΦ⊗

↔
,1

 test,Group testUsual
OM R

 

( )( ( ))iC
n
i S θ

∗
Ω= δΦ×⊗

↔
,211

 test.ussimultaneo Groupmethod half-Split
OOM R

 

In Theorem 4 (in Subsection 3.3), we clarified the well-known theorem: “reliability 
coefficient” = “correlation coefficient” in terms of measurement theory. 

We have to take good care of the concept of “errors” when we treat 
psychological tests. Though we generally classify these errors as either random or 
systematic, we may have some difficulties to make a strict distinction of two 
differences in conventional statistical approaches. By contrast, our approach 
characterizes tests as an observable, the ability of students as a statistical state and 
the score of tests as a measured value. Also, the measurement errors and the 
systematic ones are, respectively, characterized in (8) and in (2). Therefore, we can 
avoid confusing the two errors in the measurement theory. It is reasonable to 
consider that the psychological test is a kind of measurement. Thus, we assert that 
the measurement-theoretical approach has some advantage of formulating the 
methods of psychological tests. 
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