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Abstract 

By using the variable-coefficient extended generalized hyperbolic 
function method, we present explicit solutions of a class of variable-
coefficient Korteweg-de Vries (vcKdV) equations. The main idea of this 
method is to express solutions of these equations as polynomials in the 
solution of the Riccati equation that the generalized hyperbolic functions 
(GHFs) and generalized triangular functions (GTFs) satisfy. 

1. Introduction 

In recent decades, the study of nonlinear problems has been greatly intensified 
in many areas of science and technology. The investigation of exact solutions to 
nonlinear evolution equations (NLEEs) plays an important role in the study of 
nonlinear phenomena. In the past several decades, great progress has been made on 
the construction of exact solutions of NLEEs and many significant methods have 
been established such as inverse scattering method [21], Darboux transformation,  
Cole-Hopf transformation, Hirota method [1], Bäcklund transformation [1, 6], 
Painlevé method [1, 43], homogeneous balance method [16, 17, 19, 41, 42], tanh 
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method [27, 34], the generalized hyperbolic function method [14, 20] and so on. Due 
to the availability of computer systems like Maple or Mathematica which allow us   
to perform some complicated and tedious algebraic calculations and differential 
calculations on a computer, at the same time, help us to find new exact solutions of 
NLEEs. 

One of the most efficient methods for finding exact solutions of NLEEs is the 
tanh method [27, 34]. Recently, Fan [14] has proposed an extended tanh-function 
method. Fan et al. [15, 18], Yan [45] and Chen et al. [5, 29-32] further developed 
this method for a class of NLEEs. More recently, Elwakil et al. [11-13] modified the 
extended tanh-function method and obtained some new exact solutions. Gao and 
Tian [20] have presented a generalized hyperbolic function method by introducing 
coefficient functions. The finding of a new mathematical algorithm to construct 
exact solutions of NLEEs is important and might have significant impact on future 
research. 

Recently, much attention has been paid to the vcKdV type models which are 
often used to describe various physical phenomena in the nature and actual physics 
and engineering [8, 10, 23, 25, 40]. The generalized vcKdV model with dissipative, 
perturbed and external-force terms can be written as 

 ( ) ( ) ( ) ( ) ( ),54321 tutututuutu xxxxxt μ=μ+μ+μ+μ+  (1) 

where the wave amplitude ( )txu ,  is a function of the scaled ‘space’ x and scaled 

‘time’ t, the real functions ( ),1 tμ  ( ),2 tμ  ( ),3 tμ  ( )t4μ  and ( )t5μ  represent the 

coefficients of the nonlinear, dispersive, dissipative, perturbed and external-force 
terms, respectively. Many authors have studied equation (1) [8, 10, 23-25, 40]. 

The generalized vcKdV [3, 4, 22, 26, 35, 38, 39], 

 ( ) ( ) ( )[ ] ( ) ( ) .032 =γ+γ−α+β+β+ xxxxxt utuutcutxtutu  (2) 

The generalized variable coefficient modified Korteweg-de Vries (vcmKdV) 
equation reads as 

 ( ) ( ) ( )[ ] ( ) ( ) ,064 2 =γ−γ+α−β+β+ xxxxxt utuututxtutu  (3) 

which is of importance in mathematical physics field. The mKdV and cylindrical 
mKdV equation, etc. are special cases of equation (3) [9, 37, 44, 46, 47]. 
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This paper is organized as follows: in the following section, we introduce the 
variable coefficient extended generalized hyperbolic function (vcEGHF) method to 
construct exact solutions for NLEEs. In Sections 3, 4 and 5, we apply this method to 
the vcKdV (1), the generalized vcKdV (2) and the generalized vcmKdV (3). Section 
6 is a short summery discussion. 

2. The Variable Coefficient Extended Generalized 
Hyperbolic Function Method 

The main idea of this method is to express the solutions of NLEEs as a 
polynomials in the solution of the Riccati equation that the GHFs and GTFs satisfy. 
Consider a given variable-coefficient nonlinear partial differential equation 

 ( ) .0...,,,,,, =xxtxttxt uuuuuuH  (4) 

Suppose that ( )txu ,  can be expressed by a finite power series of ( ),ξF  

 ( ) ( ) ( )( ) ( ) ( ) ( )∑
=

+=ξ≡ξξ=
n

i

i
i tgxtftxtxFtatxu

0

,,,,,  (5) 

where n is the highest degree of the series, which can be determined by balancing 
the highest derivative term with the nonlinear term(s) in equation (4) and ( ),tai  

( )tf  and ( )tg  are arbitrary functions of t to be determined. The function ( )ξF  

satisfies the Riccati equation 

 ( ) ( ) ,',2
ξ

≡ξ+=ξ′ d
dBFAF  (6) 

where A and B are constants. Substituting (5) with (6) into (4), then the left-hand 
side of equation (4) can be converted into a polynomial in ( ).ξF  Setting each 

coefficient of the polynomial to zero yields system of PDEs for ( ) ( ) ( ),...,,, 10 tatata n  

( )tf  and ( ).tg  Solving this system, then ( ) ( ) ( ),...,,, 10 tatata n  ( )tf  and ( )tg  can be 

expressed by A and B. Substituting these results into (5), then a general formula 
solution of equation (4) can be obtained. Choose properly A and B in ODE (6) such 
that the corresponding solution ( )ξF  is one of the GHF and GTF given below. 

Some definitions and properties of the GHFs and GTFs are given in Appendix A. 
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Case 1. If kA =  and ,kB =  then (6) possesses a solution ( ).tan ξpqk  

Case 2. If kA =  and ,kB −=  then (6) possesses a solution ( ).cot ξpqk  

Case 3. If kA =  and ,kB −=  then (6) possesses solutions ( ),tanh ξpqk  

( ).coth ξpqk  

Case 4. If ,2
kA =  ,2

kB −=  ,lp =  ⎟
⎠
⎞⎜

⎝
⎛ = lp 1or  and ,1

lq =  ( ),or lq =  

then (6) possesses a solution 
( )
( ) .hsec1

tanh
ξ±

ξ

pqk

pqk  

Case 5. If ,2
kA =  ,2

kB =  ,lp =  ⎟
⎠
⎞⎜

⎝
⎛ = lp 1or  and ,1

lq =  ( ),or lq =  then 

(6) possesses a solution ( ) ( )
( )
( ) .sec1

tan
,sectan

ξ±
ξ

ξ±ξ
pqk

pqk
pqkpqk  

Case 6. If ,kA =  ,4kB =  ,lp =  ⎟
⎠
⎞⎜

⎝
⎛ = lp 1or  and ,1

lq =  ( ),or lq =  then (6) 

possesses a solution 
( )
( )

.
tan1

tan
2 ξ+

ξ

pqk

pqk  

Case 7. If ,kA =  ,4kB −=  ,lp =  ⎟
⎠
⎞⎜

⎝
⎛ = lp 1or  and ,1

lq =  ( ),or lq =  then (6) 

possesses a solution 
( )
( )

,
tanh1

tanh
2 ξ+

ξ

pqk

pqk  where l is an arbitrary constant. 

Now, we can apply the vcEGHF method to a class of vcKdV equations. 

3. Exact Analytic Solutions of the vcKdV Equation (1) 

Now, we can apply the vcEGHF method to the vcKdV equation (1), balancing 
the highest derivative term xxxu  with the nonlinear term ,xuu  gives .2=n  Therefore, 

the solution of equation (1) can be expressed as 

 ( ) ( ) ( ) ( ) ( ) ( ),, 2
210 ξ+ξ+= FtaFtatatxu  (7) 
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and we get 

( ) ( )[ ] ( )ξ+++++= FagxfAagxfAaau ttttttt 1210 2  

( )[ ] ( ) ( ) ( ),2 3
2

2
21 ξ++ξ+++ FgxfBaFagxfBa ttttt  (8) 

( ) ( ) ( ),22 3
2

2
121 ξ+ξ+ξ+= BfFaBfFaAfFaAfaux  (9) 

( ) ( ) ( ) ( )ξ++ξ++= 2
201

2
12010 32 fFAaBaaAfFaaaAfaauux  

[( ) ] ( ) ( ) ( ),2322 52
2

4
21

32
2

2
120 ξ+ξ+ξ+++ BfFaBfFaafFAaBaaa  (10) 

( ) ( ) ( )ξ+ξ+ξ+= 332
2

232
1

32
2

32
1 408162 FfABaFfABaFBfAaBfAauxxx  

( ) ( ).246 533
2

433
1 ξ+ξ+ FfBaFfBa  (11) 

By substituting (7)-(11) into the vcKdV (1) yields a system of PDEs with respect to 
( ).ξF  Solving this system of equations for ( ) ( ) ( ),...,,, 10 tatata n  ( )tf  and ( ),tg  

we find that 

( ) ( ) [ ( ) ( ) ( ) ( ) ] ( )∫ =+μ−μ−μ−== ,0,8, 103
2

2
3

01 tacdtBtcABtctatctgctf  

( ) ( )
( ) ( )

( ) ( )
( ) ,12,

1

2
2

2
2150

44

t
Btctaecdtetta

dttdtt

μ
μ

−=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+μ=

⎟
⎠
⎞⎜

⎝
⎛ μ⎟

⎠
⎞⎜

⎝
⎛ μ ∫∫∫  (12) 

with constraint condition 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,05211221 =μμμ−μμ−μμ ttttttt tt  (13) 

where c, ,0c  1c  are constants of integration. Thus, we obtain the general formulae 

of the solutions of the generalized vcKdV equation (1): 

 ( )
( ) ( ) ( )

( ) ( )( ),12 2

1

2
2

2
15

44
tgcxFt

Btcecdtetu
dttdtt

+
μ
μ

−
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+μ=

⎟
⎠
⎞⎜

⎝
⎛ μ⎟

⎠
⎞⎜

⎝
⎛ μ ∫∫∫  (14) 

where ( )tg  is given in (12) and ( )5,2,1=μ ii  satisfies the constraint condition 

(13). By selecting the special values of the A, B and the corresponding function 
( ),ξF  we have the following solutions of the vcKdV equation (1): 

 ( ) ( )
( ) ( )( ),tan12 2

1

2
2

2
01 tgcxt

ktctau pqk +
μ
μ

−=  (15) 
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with ( ) [ ( ) ( ) ( ) ( ) ]∫ +μ−μ−μ−= 03
22

2
3

01 8 cdtktcktctatctg  and 

( ) ( )
( ) ( )( ),cot12 2

1

2
2

2
02 tgcxt

ktctau pqk +
μ
μ

−=  (16) 

( ) ( )
( ) ( )( ),tanh12 2

1

2
2

2
03 tgcxt

ktctau pqk +
μ
μ

−=  (17) 

( ) ( )
( ) ( )( ),coth12 2

1

2
2

2
04 tgcxt

ktctau pqk +
μ
μ

−=  (18) 

with ( ) [ ( ) ( ) ( ) ( ) ]∫ +μ+μ+μ−= 03
22

2
3

01 8 cdtktcktctatctg  and 

 ( ) ( )
( )

( )( )
( )( ) ,sech1

tanh3 2

1

2
2

2
05 ⎥⎦

⎤
⎢⎣

⎡
+±

+
μ
μ−= tgcx

tgcx
t

ktctau
pqk

pqk  (19) 

with ( ) ( ) ( ) ( ) ( )
∫ +⎥

⎦

⎤
⎢
⎣

⎡ μ
+μ+μ−= 0

3
2

2
2

3
01 22 cdtktcktctatctg  and 

( ) ( )
( ) [ ( )( ) ( )( )] ,sectan3 2

1

2
2

2
06 tgcxtgcxt

ktctau pqkpqk +±+
μ
μ

−=  (20) 

( ) ( )
( )

( )( )
( )( ) ,sec1

tan3 2

1

2
2

2
07 ⎥⎦

⎤
⎢⎣

⎡
+±

+
μ
μ−= tgcx

tgcx
t

ktctau
pqk

pqk  (21) 

with ( ) ( ) ( ) ( ) ( )
∫ +⎥

⎦

⎤
⎢
⎣

⎡ μ
−μ−μ−= 0

3
2

2
2

3
01 22 cdtktcktctatctg  and 

 ( ) ( )
( )

( )( )
( )( )

,
tan1

tan192
2

21

2
2

2
08

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

+
μ
μ−=

tgcx

tgcx
t

ktctau
pqk

pqk  (22) 

with ( ) [ ( ) ( ) ( ) ( ) ]∫ +μ−μ−μ−= 03
22

2
3

01 432 cdtktcktctatctg  and 

 ( ) ( )
( )

( )( )
( )( )

,
tanh1

tanh192
2

21

2
2

2
09

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++

+
μ
μ−=

tgcx

tgcx
t

ktctau
pqk

pqk  (23) 
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with ( ) [ ( ) ( ) ( ) ( ) ]∫ +ν+μ+μ−= ,42 03
22

2
3

01 cdtktcktctatctg  ,lp =  ,1or ⎟
⎠
⎞⎜

⎝
⎛ = lp  

lq 1=  ( )lq =or  and ( ) ( )
( ) ( )

.
44

150
⎟
⎠
⎞⎜

⎝
⎛ μ⎟

⎠
⎞⎜

⎝
⎛ μ ∫∫

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+μ= ∫

dttdtt
ecdtetta  

4. Exact Analytic Solutions of the Generalized vcKdV Equation (2) 

In order to obtain the exact solution of the generalized vcKdV equation (2), we 
first assume that the form of solution to equation (2) is the same as equation (7). By 
substituting (7)-(11) into the vcKdV (1) yields a system of PDEs with respect to 
( ).ξF  Solving this system of equations for ( ) ( ) ( ),...,,, 10 tatata n  ( )tf  and ( ),tg  

we find that 

( ) ( )
( )

( ) ( ) ,4,,0
22

2
2

001 c
Btftaectata

dtt
−===

⎟
⎠
⎞⎜

⎝
⎛ β− ∫  

( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( )] ,38 10
3 cdttftatcABttftfttg +α+α−α−= ∫  

( )
( )

,2
⎟
⎠
⎞⎜

⎝
⎛ β−∫

=
dtt

ectf  (24) 

where ,0c  1c  and 2c  are constants of integration. Thus, we obtain the general 

formulae of the solutions of the generalized vcKdV equation (1): 

 
( ) ( ) ( ) ( )( ),2

4 2
222

0 tgxtfFBtfecu
dtt

+−=
⎟
⎠
⎞⎜

⎝
⎛ β− ∫  (25) 

where ( )tf  and ( )tg  are given in (24). By selecting the special values of the A, B 

and the corresponding function ( ),ξF  we have the following solutions of the 

generalized vcKdV equation (2): 

 
( ) ( ) ( ) ( )( ),tan4 2

222
01 tgxtfc

ktfecu pqk
dtt

+−=
⎟
⎠
⎞⎜

⎝
⎛ β− ∫  (26) 

with 

( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( )]∫ +α+α−α−= ,38 10
23 cdttftatckttftfttg  

( )
( ) ⎟

⎠
⎞⎜

⎝
⎛ β−∫

=
dtt

ectf 2  
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and 

 
( ) ( ) ( ) ( )( ),tanh2

4 2
222

02 tgxtfktfecu pqk
dtt

+−=
⎟
⎠
⎞⎜

⎝
⎛ β− ∫  (27) 

with 

( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( )]∫ +α+α+α−= ,38 10
23 cdttftatckttftfttg  

( )
( )

.2
⎟
⎠
⎞⎜

⎝
⎛ β−∫

=
dtt

ectf  

We omitted the remaining solutions for simplicity. 

5. Exact Analytic Solutions of the Generalized vcmKdV Equation (3) 

In this section, we apply the EGHF method to the vcmKdV equation (1), 

balancing the highest derivative term xxxu  with the nonlinear term ,2
xuu  gives 

.1=n  Therefore, the solution of equation (3) can be expressed as 

 ( ) ( ) ( ) ( )., 10 ξ+= Ftatatxu  (28) 

Also, we get 

( ) ( ) ( ) ( ),2
1110 ξ++ξ+++= FgxfBaFagxfAaau ttttttt  (29) 

( ),2
11 ξ+= BfFaAfaux  (30) 

( ) ( ) ( )ξ++ξ+= 2
10

2
1

2
101

2
0

2 22 fFAaBaaAfFaaAfaauu x  

( ) ( ),2 43
1

33
10 ξ+ξ+ BfFaBfFaa  (31) 

( ) ( ).682 433
1

232
1

32
1 ξ+ξ+= FfBaFfABaBfAauxxx  (32) 

By substituting (28)-(31) into the generalized vcmKdV (3) yields a system of PDEs 
with respect to ( ).ξF  Solving this system of equations for ( ) ( ) ( ),...,,, 10 tatata n  

( )tf  and ( ),tg  we find that 

( ) ( ) ( ) ( )
( )

,,,0 010
⎟
⎠
⎞⎜

⎝
⎛ β−∫

=±==
dtt

ectftBftata  

( ) [ ( ) ( ) ( ) ( ) ]∫ +γ+α= ,24 1
3 cdtABttftfttg  (33) 
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where 0c  and 1c  are constants of integration. Thus, we obtain the general formulae 
of the solutions of the generalized vcmKdV equation (2): 

( ) ( )
[ ( ) ( ) ( ) ( ) ] .24 1

3
00 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+γ+α+±= ∫

⎟
⎠
⎞⎜

⎝
⎛ β−⎟

⎠
⎞⎜

⎝
⎛ β− ∫∫ cdtABttftftxecFeBcu

dttdtt
 (34) 

By selecting the special values of the A, B and the corresponding function ( ),ξF  we 
have the following solutions of the generalized vcmKdV equation (3): 

( ) ⎟
⎠
⎞⎜

⎝
⎛ β−∫

±=
dtt

ekcu 0  

( )
[ ( ) ( ) ( ) ( ) ] ,24tan 1

23
0 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+γ+α+× ∫

⎟
⎠
⎞⎜

⎝
⎛ β−∫ cdtkttftftxec

dtt
pqk  (35) 

( ) ⎟
⎠
⎞⎜

⎝
⎛ β−∫

=
dtt

ekcu 02 ∓  

( )
[ ( ) ( ) ( ) ( ) ] .24tanh 1

23
0 ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+γ−α+× ∫

⎟
⎠
⎞⎜

⎝
⎛ β−∫ cdtkttftftxec

dtt
pqk  (36) 

We omitted the remaining solutions for simplicity. 

Remark 1. The method proposed is an extension of the methods of [14, 20, 27, 
34]. If setting 1=== kqp  and ( ) ( ) ( )tatata n...,,, 10  to be real constants, the tanh 
method and the generalized hyperbolic function method can be recovered. 

Remark 2. Because some arbitrary constants are included in the solutions (14), 
(25) and (34), we can obtain some special exact solutions of a class of vcKdV 
equations. We omitted here for simplicity. 

6. Summary and Discussion 

In this paper, using the variable-coefficient EGHF method, we present explicit 
solutions of a class of vcKdV equations. These solutions include solitary wave 
solution, soliton like solutions and trigonometric function solutions, among which 
some are found for the first time. The obtained solutions may be of important 
significance for the explanation of some practical physical problems. We can 
successfully recover the known solitary wave solutions that had been found by the 
tanh-function method and other methods. The EGHF method can be applied to other 
NLEEs. 
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7. Appendix A 

7.1. The generalized hyperbolic functions 

The generalized hyperbolic sine, the generalized hyperbolic cosine and the 
generalized hyperbolic tangent functions are 

( ) ( ) ,2cosh,2sinh
ξ−ξξ−ξ +=ξ−=ξ

kk
pqk

kk
pqk

qepeqepe  

( ) ,tanh ξ−ξ

ξ−ξ

+
−=ξ kk

kk
pqk

qepe
qepe  (37) 

where ξ is an independent variable, p, q and k are arbitrary constants greater than 
zero. The generalized hyperbolic cotangent function is ( ) ( ),tanh1coth ξ=ξ pqkpqk  

the generalized hyperbolic secant function is ( ) ( ),cosh1sech ξ=ξ pqkpqk  the 

generalized hyperbolic cosecant function is ( ) ( ),sinh1csch ξ=ξ pqkpqk  the above 

six kinds of functions are said GHFs. These functions satisfy the following relations 
[2, 28]: 

 ( ) ( ) ( ) .ln2
1sinhsinh,sinhcosh 22 ⎟

⎠
⎞⎜

⎝
⎛ −ξ=ξ=ξ−ξ p

qkpqpq pqkpqkpqk  (38) 

Also, from the above definition, we give the derivative formulas of GHFs as follows: 

( ( )) ( ) ( ( )) ( ),sinhcosh,coshsinh ξ=′ξξ=′ξ pqkpqkpqkpqk kk  

( ( )) ( ) ( ( )) ( ).csch coth,sech tanh 22 ξ−=′ξξ=′ξ pqkpqkpqkpqk kpqkpq  (39) 

We see that when 1=== kqp  in (37), the GHF ( ),sinh ξpqk  ( )ξpqkcosh  and 

( )ξpqktanh  degenerate as hyperbolic function ( ),sinh ξ  ( )ξcosh  and ( ),tanh ξ  

respectively. Also, when 1== kp  and q is an arbitrary parameter in (37), the   

GHF ( ),sinh ξpqk  ( )ξpqkcosh  and ( )ξpqktanh  degenerate as q-deformed hyperbolic 

function ( ),sinh ξq  ( )ξqcosh  and ( ),tanh ξq  respectively. If 1== kq  and p is an 

arbitrary parameter in (37), the GHF ( ),sinh ξpqk ( )ξpqkcosh  and ( )ξpqktanh  

degenerate as p-deformed hyperbolic function ( ),sinh ξp  ( )ξpcosh  and ( ),tanh ξp  

respectively, [2, 7, 28, 33, 36]. 
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7.2. The generalized triangular functions 

The generalized triangular sine, the generalized triangular cosine and the 
generalized triangular tangent functions are 

( ) ( ) ,2cos,2sin
ξ−ξξ−ξ +=ξ−=ξ

ikik
pqk

ikik
pqk

qepeqepe  

( ) ,tan ξ−ξ

ξ−ξ

+
−=ξ ikik

ikik
pqk

qepe
qepe  (40) 

where ξ is an independent variable, p, q and k are arbitrary constants greater than 
zero. The generalized triangular cotangent function is ( ) ( ),tan1cot ξ=ξ pqkpqk  the 

generalized triangular secant function is ( ) ( ),cos1sec ξ=ξ pqkpqk  the generalized 

triangular cosecant function is ( ) ( ),sin1csc ξ=ξ pqkpqk  the above six kinds of 

functions are said GTFs. These functions satisfy the following relations: 

 ( ) ( ) ( ) .ln2sinsin,sincos 22 ⎟
⎠
⎞⎜

⎝
⎛ +ξ=ξ=ξ+ξ p

qikpqpq pqkpqkpqk  (41) 

Also, from the above definition, we give the derivative formulas of GTFs as follows: 

( ( )) ( ) ( ( )) ( ),sincos,cossin ξ−=′ξξ=′ξ pqkpqkpqkpqk kk  

 ( ( )) ( ) ( ( )) ( ).csc coth,sec tan 22 ξ−=′ξξ=′ξ pqkpqkpqkpqk kpqkpq  (42) 

We see that when 1=== kqp  in (40), the GTF ( ),sin ξpqk  ( )ξpqkcos  and 

( )ξpqktan  degenerate as triangular function ( ),sin ξ  ( )ξcos  and ( ),tan ξ  respectively. 

Also, when 1== kp  and q is an arbitrary parameter in (40), the GTF ( ),sin ξpqk  

( )ξpqkcos  and ( )ξpqktan  degenerate as q-deformed triangular function ( ),sin ξq  

( )ξqcos  and ( ),tan ξq  respectively. If 1== kq  and p is an arbitrary parameter in 

(40), the GTF ( ),sin ξpqk  ( )ξpqkcos  and ( )ξpqktan  degenerate as p-deformed 

triangular function ( ),sin ξp  ( )ξpcos  and ( ),tan ξp  respectively. 
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