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Abstract 

Fuzzy set and the rough set theories turned out to be particularly adequate 
for the analysis of various types of data, especially, when dealing with 
inexact, uncertain or vague knowledge. In this paper, we propose a novel 
algorithm, which termed as rough-fuzzy C-regression model (RFCRM), 
that defines fuzzy subspaces in a fuzzy regression manner and also 
includes rough-set theory for function approximation with robust 
capability against outliers. 

1. Introduction 

In the last two decades, rough sets and fuzzy sets turned out to be two 
contemporary progresses in analyzing inexact, imprecise, uncertain, or vague 
knowledge. The former capture the distinct aspect of indiscernibility in knowledge, 
while the latter describe the inherent feature of vagueness in linguistics and decision-
making. The rough-set theory proposed by Pawlak [1, 2] is a mathematical theory 
dealing with uncertainty in data. Rough sets rely on the notion of lower and upper 
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approximations of a set and are applied to control applications, system identification 
and discovery of rules from experimental data [3-6]. 

The TSK type of fuzzy models proposed in [7, 8] has attracted a great attention 
of the fuzzy modeling community due to their good performances in various 
applications. To construct a TSK fuzzy model, the fuzzy subspaces required for 
defining fuzzy partitions in premise parts and the parameters required for defining 
functions in consequent parts must be both obtained. The fuzzy c-mean (FCM) [9] is 
suitable to define fuzzy subspaces for TSK fuzzy modeling. However, the resulting 
membership values do not always correspond well to the degrees of belonging of the 
data, and it may be inaccurate in a noisy environment [10]. In [11], Lingras and 
West introduced a new clustering method called rough c-mean (RCM), which 
describes a cluster by a center and a pair of lower and upper approximations. The 
lower and upper approximations are different weighted parameters that are used to 
compute the new centers. Recently, combining both rough and fuzzy sets are 
proposed in the literature such as [12-16]. Mitra et al. [12] proposed a new c-mean 
algorithm where each cluster is consist of a fuzzy lower approximation and a fuzzy 
boundary. However, the objects in lower approximation of a cluster should have a 
similar influence on the corresponding centroid and cluster, and their weights should 
be independent of other centroids and clusters. Moreover, it is sensitive to noise and 
outliers. In [13], Maji and Pal proposed a generalized hybrid algorithm based on 
rough and fuzzy sets. While the membership function of the fuzzy sets enables 
efficient handling of overlapping partitions, the concept of lower and upper 
approximations of rough sets deals with uncertainty in class definition. It avoids the 
problems of noise sensitivity of the FCM. 

In real-data analysis, noise and outliers are unavoidable. It is futile to do data 
based analysis when data are contaminated with outlier because outliers van lead to 
incorrect analysis results. FCRM clustering algorithm [17] finds a set of training data 
whose input-output relationship is somehow linear, and then, those training data can 
be clustered into one fuzzy subspace. Moreover, the model is further adjusted by 
supervised learning algorithms to improve the modeling accuracy and is easily 
affected by outliers. In [18, 19], the proposed clustering algorithms are modified 
from FCRM clustering algorithm by incorporating a robust mechanism and the 
obtained model will not be significantly affected by outliers. 

In this paper, the proposed approach is integrated two contemporary progresses 
in analyzing vague data. One is the fuzzy set and the other is rough set. The rough-
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fuzzy C-regression modeling algorithm for the TSK fuzzy modeling, it is employed 
to obtain the fuzzy subspaces and the parameters of functions in consequent parts for 
the TSK fuzzy models by viewing each rule as a rough set. The remaining part of the 
paper is outlined as follows. Section 2 describes the TSK fuzzy model and rough 
sets. In Section 3, the rough-fuzzy C-regression modeling algorithm (RFCRM) is 
proposed to meaningfully define a TSK fuzzy model. Simulation results are 
presented in Section 4. Concluding remarks are presented in Section 5. 

2. TSK Fuzzy Modeling and Rough Sets 

2.1. TSK fuzzy modeling 

A TSK fuzzy model consists of IF-THEN rules that have the form 

:iR  If 1x  is ( )iiA 11 θ  and 2x  is ( ) n
ii xA ...,,22 θ  is ( )i
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 is the ith rule’s firing strength. In equation (1), both the 

parameters of the premise parts ( )i
lθ.,i.e  and of consequent parts ( )ia.,i.e  of a 

TSK fuzzy model are required to be identified. Moreover, the number of rules must 
be specified. The FCM algorithm is proposed in [9] and its cost function is defined 
as 
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where C and N are the numbers of fuzzy clusters and of the input training data, 
respectively. iju  is the membership of the ith cluster for the jth training pattern. The 

Euclidean distance measure is used, ijd  is the distance between the jth input data 

and the center of the ith cluster. The FCRM algorithm is a modified version of FCM. 
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The cost function in equation (2) is replaced 2
ijd  with ,2

ijr  and rewritten as 

 ( )∑∑
= =
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1
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where ijr  is the residual between the jth desired output of the modeled system and 

the output of the ith rule with the jth input data; i.e., ( ( ) ),; i
ijij ajxfyr −=  and the 

parameter vector ia  for the consequent part of the ith rule is obtained as 

 [ ] ,...,,2,1,1 CiYDXXDXa i
T

i
Ti == −  (4) 

where ( )1+×∈ nNRX  is matrix with kx  as its ( )1+k th row (entries in the first row 

of X are all 1), NRY ∈  is a vector with ky  as its kth element and NN
i RD ×∈  is a 

diagonal matrix with 2
iku  as its kth diagonal element. The Lagrange multiplier 

method is applied to minimize rJ  in equation (3). 

2.2. Rough sets 

The theory of rough sets [1, 2] has recently emerged as another major 
mathematical tool for managing uncertainty. The intention is to approximate a rough 
concept in the domain of discourse by a pair of exact concepts, called the lower and 
upper approximations. The lower approximation is the set of objects definitely 
belonging to the vague concept, whereas the upper approximation is the set of 
objects possibly belonging to the same. A rough set X is characterized by its lower 
and upper approximations XB  and ,XB  respectively, with the following properties: 

(1) An object kx  can be part of at most one lower approximation. 

(2) If XBk ∈x  of cluster X, then simultaneously .XBk ∈x  

(3) If kx  is not a part of any lower approximation, then it belongs to two or 

more upper approximations. 

That is, the lower approximation XB  is the union of all the elementary sets 

which are subsets of X, and the upper approximation XB  is the union of all the 
elementary sets which have a nonempty intersection with X. The XBXB −  is the 

representation of an ordinary set X in the approximation space called the rough set of 
X. 
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3. Rough-fuzzy C-regression Modeling Algorithm 

A novel approach, termed as rough-fuzzy C-regression modeling algorithm 
(RFCRM), is proposed, a modified version of FCRM. In the RFCRM algorithm, it is 
integrated fuzzy set and rough set. This includes two stages, first is data-clustering 
stage and the next is regression-clustering stage. 

In the data-clustering stage, it sets initial values for clustering by applying fuzzy 
c-means. Next, the regression-clustering stage is applied. In the RFCRM algorithm, 
the concept of FCRM is extended by viewing each rule as a rough set. Beside the 
condition under which an object may belong to the lower or upper bound of a rule. 
Let ( )jx  be an object at membership value iju  between the jth desired output of the 

modeled system and the output of the ith rule with the jth input data. The difference 
in membership value ,kjij uu −  ,ki ≠  can be used to determine whether ( )jx  

should belong to the lower or upper approximations of the rules. Assume that 

Gaussian membership functions are used in the premise parts, ( ) =θθ i
vl

i
cl

i
lA ,  

{ ( ) },2,exp 2 i
vl

i
cllx θθ−  where i

clθ  and i
vlθ  are two adjustable parameters of the lth 

membership function of the ith fuzzy rules. Then, we have two update equations as 
equation (5) and equation (6). Here, iRB  and iRB  indicate the lower and upper 

approximations of rule ,iR  respectively. ii RBRB −  is the rough boundary between 

the two approximations. The parameters w  and w  correspond to the relative 

importance of the lower and upper approximations, respectively. When a rule 
contains data objects in both its lower and upper approximations, these are weighted 
by ,w  w  and 1=+ ww  depending on their importance during modeling. The 

proposed RFCRM Algorithm is described in the following: 

[Step 1]. Assign initial means for the C clusters by FCM. 

[Step 2]. Compute iju  for the C rules and data objects. 

[Step 3]. Assign each data object ( )jx  to the lower approximation iRB  or 
upper approximation ,iRB  kRB  of rule pairs iR  and kR  by 
computing the difference in its difference kjij uu −  from the rule pairs 
ith rule and kth rule. 

[Step 4]. Let iju  be maximum, kju  be the next to maximum and ρ be a pre-
define threshold. 
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If ,ρ<− kjij uu  

then ( ) iRBjx ∈  and ( ) kRBjx ∈  and ( )jx  cannot be a member of 

any lower approximation, 

else ( ) iRBjx ∈  such that residual iju  is maximum over the C rules. 

[Step 5]. Compute new parameter vector for each rule using equation (4). 

[Step 6]. Update the center i
clθ  and variance i

vlθ  by equations (5), (6). 

[Step 7]. Repeat Steps 2-6 until convergence. 
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From above algorithm, the larger value of threshold ρ, the more likely is ( )jx  

to lie within the rough boundary of a rule. The small value of ρ implies that more 
patterns are allowed to belong to any of the lower approximations. In other words, ρ 
represents the size of granules of rough-fuzzy clustering, thus, if we set ,1=ρ  then 

,∅=iRB  which is equivalent to FCRM. Thereby, we can adjust the weighting 

parameter w  and/or lower approximation (or/and upper approximation) to weaken 

the outlier effect. It is reasonable to select .15.0 << w  

The TSK fuzzy model obtained by the RFCRM algorithm has been with a level 
of accuracy. Furthermore, to improve the modeling accuracy, a robust learning 
algorithm called ARBP [20] is employed to adjust these parameters of TSK fuzzy 
rules. In this algorithm, it is simply embedding an annealing process into the 

learning process, the robust cost function is defined as ( )( )∑
=

τβσ=
N

i
kARBP eE

1
,,  

where ( )⋅σ  is the loss function. Thus the parameters of premise parts are updated as 
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where ,ˆkkk yye −=  ( )⋅ϕ  is the derivative of ( ).⋅σ  The parameters of consequent 

parts are updated as 
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where ζ is the learning constant. 

4. Simulation Examples 

Two examples of using the proposed RFCRM approach are illustrated. Both of 
them are added gross error models as ( ) ,1 HGF ε+ε−=  where F is the added 

noise distribution and G and H are probability distributions that occur with 
probability ε−1  and ε, respectively. The values used in the gross error model are 

,05.0=ε  ( )05.0,0~ NG  and ( ).1,0~ NH  For Example 1, a function is considered 
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as ,32xy =  ,22 ≤≤− x  201 input-output data that added the gross error are used. 

In this example, the number of clusters is set as 3. For comparison, the FCRM 
clustering algorithm is considered in this study. The rough approximated results of 
each approach are presented in Figure 1. Furthermore, the final results of the TSK 
fuzzy models after fine-tuning process are also shown in Figure 2. It can show that 
the RFCRM with robust capability against outliers. 

Example 2 is the sinc function ( ) ,sin xxy =  ,1010 ≤≤− x  201 input-output 

data that added the gross error are also used. The rough approximated results of each 
approach are presented in Figure 3. After Fine-tuning, the simulated results are 
shown in Figure 4. It also shows that the RFCRM with better approximated result. 

5. Conclusions 

Fuzzy set and the rough set theories turned out to be particularly adequate for 
the analysis of various types of data with inexact, uncertain or vague knowledge. In 
this paper, we propose a novel algorithm, which termed as rough-fuzzy                        
C-regression model (RFCRM), that defines fuzzy subspaces in a fuzzy regression 
manner and also includes rough-set theory for function approximation with robust 
capability against outliers. In the simulated examples, it can show that the RFCRM 
with good approximated results. 
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Figure 1. The approximated results with outlier for Example 1. 
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Figure 2. The approximated results with outlier after fine-tuning for Example 1. 
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Figure 3. The approximated results with outlier for Example 2. 
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Figure 4. The approximated results with outlier after fine-tuning for Example 2.  
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