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Abstract 

Images have to be compressed in order to store and transmit them 
efficiently. In this paper, we propose a hybrid image compression 
technique which uses bandlet transform and type-2 fuzzy thresholding. 
Bandlet transform is used to efficiently represent the anisotropic regularity 
of edge structures in images and fuzzy thresholding retains the important 
coefficients based on the measure of ultrafuzziness. The thresholded 
bandlet transform coefficients are then compressed using a variable length 
coding technique, viz., arithmetic coding. The proposed method is applied 
to two-dimensional (2D) images. The results are compared with type-2 
fuzzy thresholded wavelet compression. Test results show that the 
proposed method using bandlet transform gives better results in terms of 
Peak-Signal-to-Noise Ratio (PSNR) and compression ratio compared to 
wavelet transform and type-2 fuzzy thresholding. 

I. Introduction 

Digital image compression is one of the important issues as there is a huge 
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increase in the volume of digital images generated by the use of digital technology in 
various fields like photography, medical imaging, video conferencing, remote 
sensing. The objective of image compression techniques is to reduce the redundancy 
of image data in order to reduce the requirements of memory and bandwidth for 
storage and transmission of data. Image compression techniques can be lossless or 
lossy depending on whether the data to be compressed is highly important or not. 
Using lossless image compression techniques we can reconstruct images without any 
information loss. On the other hand, using lossy image compression techniques we 
can reconstruct images with a varying degree of information loss. 

Transform coding is used to convert spatial image pixel values to transform 
coefficient values, which are then coded. Transform based image compression 
methods have been widely used in the state-of-art image compression. Transform 
methods like Discrete Cosine Transform (DCT) [1], Discrete Wavelet Transform 
(DWT) [2] can be used to represent the image as a set of coefficients. These 
transforms exploit correlation between pixels in the image data. They represent the 
image data as a set of less correlated coefficients and thus the coefficients are packed 
into a specific area of the transform domain. This property makes these transform 
techniques to be widely used in various image compression schemes [3-7]. Some of 
them are Joint Photographic Experts Group (JPEG) [8], JPEG-LS [9], JPEG2000 
[10], Embedded Zerotree Wavelet (EZW) coding [11], Set Partitioning in 
Hierarchical Trees (SPIHT) coding [12]. The coefficients can be encoded using 
Huffman coding [13] and arithmetic coding [14], which are popular variable length 
entropy coding techniques. 

Standard wavelet bases can efficiently represent local image regularity using a 
few coefficients. But, they cannot exploit the geometrical directional regularity 
efficiently. Several new bases have been developed to exploit this anisotropic 
regularity of image structures. Curvelets [15], contourlets [16], wedgelets [17] and 
bandlets [18-19] are some of them. In this work we have used bandlet transform 
which has the advantage of efficiently representing the regularity of edge structures. 
The bandlet decomposition [19-22] is computed with a geometric orthogonal 
transform that is applied on orthogonal wavelet coefficients. Moreover, type-2 fuzzy 
sets can handle uncertainty/vagueness much better than type-1 fuzzy sets. Hence in 
this paper we propose a compression scheme, which performs type-2 fuzzy 
thresholding of the bandlet coefficients to compress images. The thresholded 
coefficients are further compressed using arithmetic coding. 
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The rest of the paper is organized as follows. Section II gives an overview of 
bandlet transform. Section III provides a detailed description of the proposed 
compression scheme for compressing images. Section IV provides the result of 
compressing various 2D images using the proposed compression scheme. Section V 
discusses the conclusion. 

II. Review of Bandlet Transform 

In bandlet transform the geometry of the image is characterized using a 
geometric flow of vectors. These vectors give the directions of regions where the 
image has regular variations. Orthogonal bandlet bases are developed by partitioning 
the image support into regions inside which the geometric flow is parallel [18]. The 
bandlet decomposition [19-22] is computed with a geometric orthogonal transform 
that is applied on orthogonal wavelet coefficients. Wavelet transform, when applied 
to an image of N pixels, computes the set of N dot products 

s
jnf ψ,   for NjJ <≤ −− 22   and ,2,0 21

jnn −<≤  

s
Jnf φ,    for ,2,0 21

Jnn −<≤  (1) 

where the projection on s
Jnφ  functions produces a coarse approximation at scale .2J  

The scale J2  represents the level at which we stop the wavelet transform. Those 
values can be conveniently stored in an array of N pixels. A dyadic square is a 

square obtained by recursively splitting the original wavelet transformed image s
jf  

into four subsquares of equal sizes. Let the width of the squares be L pixels with 

.24 2jL −≤≤  For each dyadic square S at a given scale j2  and orientation s of the 
wavelet transform 1D reordering of the grid points is performed. The possible 
number of 1D reordering may be equal to the number of directions d joining pairs of 
points in square S of width L. 1D reordering is done by projecting the sampling 
location along d and sorting the resulting 1D points from left to right. To the 
resulting 1D discrete signal, ,df  1D wavelet discrete wavelet transform is 

performed. For a given threshold T, the direction d, which generated the less 
approximation error, is selected. Let kb  denote the coefficients of 1D wavelet 

transform of ,df  and BR  be the number of bits needed to code the quantized 

coefficients ( ).kbQT  To select the best geometry, the direction d that minimizes the 
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Lagrangian 

 ( ) ( ),, 2
2

BGdRdd RRTffRf −λ−−=ξ  (2) 

where dRf  is the signal recovered from the quantized coefficients and GR  is the 

number of bits needed to code the geometric parameter d with an entropy coder, λ is 
taken as 3/28 [23]. 

III. Proposed Compression Scheme 

A. Type-2 fuzzy thresholding in bandlet domain 

Fuzzy set theory and Fuzzy logic [24] offer us powerful tools to represent and 
process knowledge represented as fuzzy if-then rules. Type-2 fuzzy sets [25] 
overcome the disadvantages of type-1 fuzzy sets by efficiently representing 
uncertainties like the meaning of the words, the measurements which are noisy, etc., 
which could not be efficiently represented by type-1 fuzzy sets. One of the simple 
ways of creating type-2 fuzzy sets is by using linguistic hedges like dilation and 
concentration. 

Using fuzzy set theory, bandlet thresholding can be expressed as fuzzy bandlet 
thresholding. Let ( )jib ds ,,  be the absolute value of the bandlet coefficient, 

( ),,, jib ds  at location ( )ji,  for the scale s and direction d and T be the threshold 

value. Any one of the membership functions μ is selected and α is initialized. The 
upper and lower membership degrees Uμ  and Lμ  of the membership function are 

given by 

( ) ( )[ ] ,1 αμ=μ xxU  (3) 

( ) ( )[ ] .αμ=μ xxL  (4) 

We have taken the value of α as 2, i.e., 

( ) ( )[ ] ,5.0xxU μ=μ  (5) 

( ) ( )[ ] .2xxL μ=μ  (6) 

In [26], it is mentioned that ( )∞∈α ,1  and also that 2>>α  is usually not 

meaningful for image data. Any membership function can be selected. It is also 
mentioned in [26] that it is not possible to say which membership function is the best 
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one. We use a standard S-membership function and its type-2 fuzzy set is shown in 
Figure 1 where α is 2. The frequency histogram for the bandlet coefficients, 

( ) ,,, jib ds  is computed. The threshold is moved from 0 to ( ( ) )jib ds ,max ,  and 

in each position the amount of ultrafuzziness [26] is computed. The measure of 
ultrafuzziness is given by: 

 ( ) ( ) ( )( )
( ( ) )

∑
=

μ−μ=γ
jib

g
LUB

ds

gggh
MN

,max

0

,

,1,min1  (7) 

where M, N is the size of the 2D image, ( )gh  is the histogram value and ( )gμ  is the 

membership value of the bandlet coefficient g. The position where the amount of 
ultrafuzziness is maximum, is used as the threshold. Let this threshold value be 
denoted by T. The bandlet coefficients whose absolute values are greater than T will 
remain as such and the remaining coefficients will be set to 0. 

 
Figure 1. (a) S-membership function (smf in Matlab) with [ ]81=P  and (b) its 

linguistic hedges with .2=α  

B. Compression scheme 

The proposed compression scheme consists of three steps. In the first step the 
2D image  yxI ,  is forward bandlet transformed to obtain the bandlet coefficients. 

Let the coefficients of 2D discrete bandlet transform of image yxI ,  be represented 

as ., yxF  Orthogonal bandlets use an adaptive segmentation and a local geometric 

flow and are thus able to capture the anisotropic regularity of edge structures. The 
second step is to perform type-2 fuzzy bandlet thresholding as discussed in the 
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previous section. The histogram of the bandlet coefficients is computed. The 
threshold is moved and in each position the measure of ultrafuzziness is computed. 
The threshold T where the measure of ultrafuzziness is maximum is used as the 
threshold. The bandlet coefficients which are greater than T remain as such and the 
remaining coefficients are set as zero. Let yxFT ,  be the fuzzy bandlet thresholded 

image. The third step is to perform lossless arithmetic entropy coding of the 
thresholded coefficients. This step can use any of the variable length coding 
techniques such as Huffman coding or arithmetic coding. We have used arithmetic 
coding. 

Decompression is the inverse of the compression stage. Arithmetic decoding is 
done to extract the fuzzy thresholded bandlet coefficients, ., yxF  Next step is to 

perform inverse bandlet transform to obtain the reconstructed image ., yxIR  The 

block diagram of this scheme is given in Figure 2. 

 

Figure 2. Block diagram of the proposed compression scheme with bandlet 
transform and type-2 fuzzy thresholding. 

IV. Experiments and Results 

We have used three 2D images whose dimension is 512∗512. Type-2 fuzzy 
thresholding of bandlet coefficients and type-2 fuzzy thresholding of wavelet 
coefficients are performed and the results are compared. Both the wavelet transform 
and bandlet transform are based on the ‘CDF’ biorthogonal filter. Mean-Squared 
Error (MSE) and Peak-Signal-to-Noise Ratio (PSNR) are calculated for various 
compression ratios (CR). Various compression ratios can be obtained by adjusting 
the extremes of the sloped portion of S-membership function. 
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The results of the compression of 2D images using the proposed compression 
scheme are shown in Table 1. The results for PSNR values versus compression ratio 
are plotted in Figures 3, 4 and 5 respectively, for Lena, Barbara and fingerprint 
images. 

It can be seen that the proposed scheme using bandlet and type-2 fuzzy 
thresholding technique is better than the wavelet and type-2 thresholding in terms of 
PSNR and compression ratio. 

 

 
Figure 3. Compression ratio and PSNR for Lena. 

 

 

 
Figure 4. Compression ratio and PSNR for Barbara. 
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Figure 5. Compression ratio and PSNR for fingerprint. 

Table 1. PSNR, MSE and compression ratio for 2D images using bandlet transform 
and type-2 fuzzy thresholding 

Image  Wavelet Transform+
Type-2 Fuzzy 
Thresholding 

Bandlet Transform+ 
Type-2 Fuzzy 
Thresholding 

CR 1.66 1.66 
MSE 0.12 0.09 
PSNR 57.51 58.70 

CR 2.25 2.24 
MSE 1.50 1.34 
PSNR 46.37 46.85 

CR 3.02 3.26 
MSE 4.10 4.99 

Lena 

PSNR 42.00 41.15 
CR 1.46 1.47 

MSE  0 .12 0.09 
PSNR 57.45 58.68 

CR 2.17 2.20 
MSE 3.36 3.21 
PSNR 42.86 43.07 

CR 3.19 3.19 
MSE 14.71 12.79 

Barbara 

PSNR 36.45 37.06 
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CR 1.22 1.24 
MSE 0.11 0.09 
PSNR 57.54 58.71 

CR 1.45 1.48 
MSE 2.73 2.65 
PSNR 43.77 43.90 

CR 1.67 1.72 
MSE 8.09 7.98 

Fingerprint 

PSNR 39.05 39.11 

V. Conclusion 

This paper presents type-2 fuzzy thresholded bandlet transform for image 
compression. The power of bandlet transform to capture the geometric regularity 
along edges and the ability of type-2 fuzzy sets to handle uncertainty/vagueness 
makes the compression better. The proposed scheme gives better results for 2D 
images in terms of PSNR and compression ratio compared to wavelet transform and 
type-2 fuzzy thresholding. 
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