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Abstract 

Using the relative entropy criterion, we present a wavelet-based feature 
extraction algorithm for classification and extend its applications to the 
projection pursuit technique. The proposed method is applicable to a 
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broad range of pattern recognition problems. In this paper, we apply it to 
the analysis of cylinder-head vibration data for engine fault detection and 
diagnosis. The usefulness of the singular value decomposition method in 
the study and the assessment of classification results is illustrated by 
analyzing the coefficient matrix, constructed from projecting the data onto 
the selected bases in determining the extent of correlation among 
coefficients. 

1. Introduction 

Condition monitoring for fault detection and prevention is now an integral part 
of the operation of many industrial processes and machinery [18]. It plays an 
important role in maintaining quality standards and safety, increasing productivity, 
and reducing cost. Unlike traditional reactive maintenance practices, condition 
monitoring and predictive maintenance attempt to prevent unnecessary plant 
shutdowns and thus reduce machine downtime and improve reliability. 

Two distinct approaches have been used to diagnose faults in machinery such as 
internal combustion engines. In the first approach, a mathematical model of the 
specific engine or its component under investigation is developed and based on the 
measurements made of system using the model a search for causes of change in 
engine performance is conducted. In the second approach, the given engine or a set 
of its components is considered as a black box. Then, through observations and 
processing of appropriate sensory data, such as cylinder pressure, cylinder block 
vibration, exhaust gas temperature, and acoustic emission fault(s) are traced and 
detected. For a large number of engines in operation in vehicles and industrial 
settings built-in technologies are not available, therefore external sensing is 
inevitable. This paper focuses on the latter approach in which vibration data is used 
for the detection of selected malfunctions in reciprocating internal combustion 
engines. 

The objective here is to develop effective data-driven methodologies for fault 
detection and diagnosis. The main application is the detection and characterization of 
combustion-related faults in reciprocating engines, such as knocks, improper ignition 
timing, loose intake and exhaust valves, and improper valve clearances. 

The use of vibration data has become popular in a wide range of fault diagnosis 
applications, including the detection of knock [3, 20, 23, 30], valve clearance, and 
gas leakage in both intake and exhaust valves [9], as well as the detection of drift in 
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ignition timings [25, 26]. In [27] we introduced a novel wavelet-based methodology 
in feature extraction for selecting best basis from a library of orthogonal bases that 
best discriminates one class of data from others. Then, using this method we 
modified a discriminatory algorithm referred to as local discriminant basis (LDB) 
[22]. This paper presents another variation of this method used in classification 
problems referred to as dictionary projection pursuit (DPP). The paper also 
compares the application results of LDB and DPP methods. 

The structure of the paper is as follows. After a brief description of pattern 
recognition and classification schemes we review relative entropy as a useful 
discriminant measure. Then, a particular multivariate analysis scheme and a well-
known technique known as the projection pursuit (PP) are described, followed by 
the description of DPP as a variation of PP. Description of a normalization scheme 
to improve DPP is followed by the introduction of cross-data entropy (CDP) 
approach. Using this approach, a modified form of DPP, referred to as mutual DPP, 
is used to analyze the vibration data. The classification results of the mutual DPP are 
compared with the original DPP, then further analyzed using the singular value 
decomposition approach. 

2. Pattern Recognition 

For pattern recognition and classification applications, it is highly desirable to 
identify as few features as possible while extracting as much information from the 
signal as possible. There is a pressing need to reduce the dimensionality of raw data 
by extracting a limited number of features that best preserve the useful information. 
There are many reasons why feature reduction is essential, including the reduction of 
computational cost, noise reduction, increased robustness, and the more rapid 
training of classifiers. There may also be a high mutual correlation among the 
selected features, which can increase computational complexity without any gain in 
the accuracy of the classification. Furthermore, such a correlation dilutes the 
information, which is detrimental to the classification results. 

In classification problems, not only do we look for features that contain non-
superfluous information but we also seek information that can separate classes from 
each other as distinctly as possible. This type of information is referred to as 
“discriminantal information”. One can justifiably state that it is the superfluous 
information that introduces complexity in classification tasks. The main objective in 
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feature extraction and classification problems is to find a suitable transformation or a 
coordinate system that by projecting the signal onto the coordinate directions, we 
obtain high discriminatory information that reside on a few axes while other axes 
contain insignificant information. 

A linear projection from nR  to mR  is a linear map B represented as an mn ×  
matrix: 

 lmlnT RZRXXBZ ×× ∈∈= ,,  (1) 

which transforms the n-dimensional data set X (consisting of l data in each column) 
into an m-dimensional space; Z is the m-dimensional transformed data set. Suppose 

ib  is the n-dimensional column vectors of matrix [ ].21 mbbbB =  If ib ’s are 

orthogonal to each other, the projection is orthogonal, and orthonormal if the vector 
norms are unity. When ,1=m  then B is a one-dimensional projection, and Z is a 
scalar, referred to as the projection score. 

Figure 1 shows the main stages of classification in which X is the input signal, 
Y, its corresponding class label (e.g., faulty or healthy condition), and F, feature 
space, which is the discriminant subspace of the reduced dimension ( ).nm <  The 

maps FXf →:  and YFg →:  are called feature extractor and classifier, 

respectively. It is computationally more efficient to analyze the data in a 
discriminant subspace of the lower dimension. The classification goal is to determine 
which class a given data X belongs to by constructing a feature space F that provides 
the highest discriminant information among all classes. 

 

Figure 1. Main stages in classification. 

2.1. Analysis of vibration data using wavelets 

The vibration signals of a machine always carry information about the state of 
machine operation and the dynamic behavior of various machine events such as 
combustion. They can be used to identify faults in machine operation. Vibration 
signals in internal combustion engines are characterized by transient time behavior 
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and are often corrupted by significant noise content. Wavelets are considered to be 
highly suitable for the analysis of transient signals to extract features that are used in 
fault detection problems. 

In the next section a measure of distance between two or more classes of data 
referred to as discriminant measure is introduced. 

3. Discriminant Measure  

The principal objective in a classification problem is to develop measures that 
are capable of discriminating between different classes as distinctly as possible. The 
accuracy of the classification results is highly influenced by the extent of class 
separation in feature space generated by the chosen discriminating measure. A 
discriminant measure, in general, is designed to evaluate the statistical distance 
between different classes. The choice of discriminant measure depends on the 
application at hand. Different researchers have used different discriminant measures 
in various applications [16, 22, 28]. The approach used in this work is based on 
relative entropy as a measure for discriminating different classes as defined below. 

In a two-class case, suppose that ( ) { ( )}n
i

l
i

l s 1==s  for 2,1=l  are two non-

negative sequences satisfying: 

 ( ) ( )∑ ∑ ==
i i
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assume that 

 ( ) +∞=−∞= 0log,0log is   for ,0>is  and ( ) .0.0 =±∞  (4) 

Using only the first term in the right-hand side of (3) the relative entropy is then 
defined as: 
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Lemma. Equation (5) is always non-negative and will be zero if the sequences 
( )1s  and ( )2s  are identical. 

Proof [7]. Recalling the elementary inequality for real numbers 

 ,1log −≤ xx  (6) 

with equality if and only if .1=x  Then, considering conditions (2) we have 
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Therefore, ( )
( )

( )∑ ≥
i i
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i s

s
s .0log 2

1
1  The equality holds if and only if ( ) ( ),12

ii ss =  

for all i. 

Note. Conditions (2) need not be satisfied for a symmetric relative entropy in 
order to have a non-negative D because the right-hand side of Equation (7) in a 
symmetric case results in the cancellation of the terms: 
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As can be seen from the above lemma, if two random variables have the same 
distributions, discriminant measure D will be zero. In classification applications, we 
are interested in those features that can separate the distribution associated with each 
class; therefore, one should look for those features that maximize D. 

The aim is to find appropriate features that provide discriminant classification 
results. By projecting a set of data belonging to different classes (vibration signals in 
our application) onto a set of basis (coordinates) and using squared value of each 

coefficient as density values ( ),ls  in different classes, discriminant measure D is 
derived. In a classification problem, the objective is to identify those bases (from a 
dictionary of bases) that maximize D. In this manner, the distribution of each class 
can be transformed into a disjoint distribution with the least overlap with other 
distributions. 

In general, for a classification problem having L classes ( ) ,4usually ≤L  one 

can use a simple approach: 



ENTROPY MEASURE AND ENERGY MAP … 45 

 ({ ( )} ) ( ( ) ( ) )∑ ∑
−

= +=
= ≡

1

1 1
1 .,

L

i

L

ij

jiL
l

l DD sss  (9) 

For 4>L  the method introduced in [29] is often utilized. 

4. Multivariate Analysis 

To identify the underlying, though unspecified, structure of a given data set, 
often a visual representation such as a histogram or a scatterplot is utilized [8]. This 
can be easily done for low (one, two, or even three) dimensional data; however 
comprehensive visual tools for higher dimensions are not available. 

Classical multivariate analysis provides a powerful tool for gaining insight into 
the underlying features of the phenomenon or the system that produced the data. 
These tools include a set of useful summary statistics (such as mean and covariance) 
as well as correlational structure of the data. In the following section, projection 
pursuit algorithm used for revealing “interesting” structure of data is introduced after 
which an extension of PP as a fast version of PP is presented. 

5. Projection Pursuit Approach 

The projection pursuit (PP) is a method for exploratory analysis of multivariate 
data sets, which extracts linear projections of data to view them in a lower 
dimension; often onto a plane or a line. Selection of projection directions is done in a 
manner that a certain criterion function or projection index is maximized. Friedman 
and Tukey [4] first used the term “projection pursuit”, but the main idea was initially 
introduced by Kruskal [13]. Projection pursuit seeks a set of projections that are 
“interesting”, in the sense of their deviation from Gaussian distribution [10]. PP is 
basically a method for revealing clusters among data. 

There are several projection indices, among them, Friedman [5] proposed an 
index which is the mean-squared difference between the projection score distribution 
and the Gaussian distribution. This is referred to as the least structured density and 
measures non-normality in the main body of the distribution (rather than in its 
entirety). Friedman’s projection index basically measures the departure from 
normality. Jones and Sibson [12] and Huber [10] set the PP idea in a more structured 
form and expanded it in a practical implementation. Their approach involves an 
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optimization process that starts at different random positions using the entropy 
concept from the information theory as the projection index to maximize the 
divergence of projected data from Gaussian distribution. 

By employing a suitable projection index, PP technique can reveal an inherent 
structure or clusters in a given data. This was then used in a supervised [1, 14, 15], 
and unsupervised classification scheme of high dimensional data [2, 11], in detecting 
and classifying images [19] and in feature extraction of acoustic spectra [21]. 

The use of PP has been limited due to its high computational complexity. 
Dictionary projection pursuit, described next, attempts to resolve this shortcoming 
by employing wavelet packet decomposition during the search process of PP as an 
extension of PP resulting in a computationally more efficient algorithm. 

6. Dictionary Projection Pursuit 

Rutledge [21] proposed a method that searches for a set of basis functions from 
a dictionary of redundant wavelet packets in accordance with an orthogonality 
criterion, in contrast to optimizing a criterion that is done in standard PP. The search 
is performed in m sets of iterations, where m is the required number of bases, and is 
decided upon empirically. In each iteration, they use a one-dimensional version of 
the projection pursuit method (which means 1=m  in Equation 1) to find the 
interesting features of acoustic waveforms. If A is a matrix consisting of all bases of 
a dictionary such as wavelet packets (Figure 2), then the first base is chosen from 
dictionary A according to a criterion described below. The dictionary is sometimes 
called redundant, since there are more than one set of basis functions which can span 
n-dimensional space. The one-dimensional version of projection pursuit is repeated 
m times where a procedure such as the one in matching pursuit [17] is applied until a 
set of bases [ ]mbbbB 21=  is selected. Then, the data are projected onto the 

selected basis functions to find an ‘interesting view’ of the data. This is done by the 

linear projection ,XBZ T=  where X is the data set and Z is the transformed data in 

the space of reduced dimension. The algorithm, so-called dictionary projection 
pursuit (DPP), is a greedy approach in the sense that in each iteration the structure 
chosen in the previous iteration is eliminated from the data to obtain high projection 
coefficient values. 
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Figure 2. Decomposition tree in a wavelet packet. 

To find a set of basis functions B that contain desired characteristic information, 
a weight w is assigned to each basis function in the wavelet packet dictionary. The 
weight ( )10 << ww  is a measure of linear independence of the selected basis from 

all of the previously selected basis functions. For the initial iteration, the weight is 
set as a vector of ones at the beginning of the procedure and updated in every 
iteration. The weight vector is then modified in such a way that each selected basis is 
orthogonal to the subspace of previously selected basis functions, resulting in a set 
of orthogonal basis at the final stage of the algorithm. Here is the complete 
algorithmic procedure: 

Step 1. Find wavelet packet coefficients of each training data set in different 
classes and record them as a set of matrices of size ( ),1log +× nn  where n is the 

signal dimension (call them map). 

Step 2. Calculate the density (energy) of each packet by squaring each element 
in the wavelet packet matrices 2.^(map  in Matlab notation) to obtain the energy 

map of each training data. 

Step 3. Sum all of the matrices in Step 2 for each class. Divide them by the 
number of training data in each class ( )lN  to determine normalized total energy of 

training data (energy map) in each class: 

 ( ) ( ( ) )∑
=

=⋅≡
lN

i
l

l
i

T
mkjl LlNmkjC

1

2
,, ...,,1for,,, xb  (10) 

where triple indices ( )mkj ,,  are scale, translation, and oscillation indices of 

wavelet packet decomposition, respectively. ,lC  the energy map of class l, is a table 

which can be rearranged in a matrix form (call it e-map). At this stage, there are L 
matrices. 

Step 4. Determine the relative entropy of e-map (call it ent_map) by applying 
Equation (5) or the symmetric version Equation (3). 
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Step 5. Repeat the following m times to find a set of orthogonal basis: 

- Find the basis b corresponding to wavelet packet indices associated with 
( ( )),:_*. mapentwmaxarg  which is the maximum of element-by-element 

multiplication of vector w and vector form of ent_map. 

- Compute the part of basis b which is orthogonal to basis functions 
already selected (call it residual), and normalize it to unity. 

- Starting from left, enter and save the residual of b in a matrix as a new 
column vector. 

- Compute coef, wavelet packet coefficients of the new basis function (the 
residual), and accumulate the energy of coefficients: 

.2.^____ coefsumecoefsumecoef +=  

- Update w as .__1 sumecoefw −=  

In DPP, the projection index, which is the entropy of the normalized sum energy 
of wavelet packet coefficients of the data set, is found at the beginning of the 
algorithm only once, contrary to PP in which the projection index must be calculated 
in each iteration. This is the key feature of the algorithm, which makes it faster 
compared to the PP approach. 

The normalization in Step 3 will be inconsequential if the number of training 
data in each class is the same. In Step 5, if n bases are selected, then a complete 
orthogonal basis is found. Then, another method such as principal component 
analysis [8, 24] can be applied for further dimensional reduction. Step 5 is very 
similar to matching pursuit algorithm [17]. 

The above algorithm is a one-dimensional projection in the sense that matrix B 
is replaced by a single vector b. In each iteration, a basis function b is selected and 
added to the previously selected basis functions in the form of an expanding 

transpose matrix .TB  In this sense, the final projection is not one-dimensional, but a 
multi-dimensional projection. 

DPP is still a time-consuming algorithm even though is computationally less 
expensive than the original PP method. The computational cost is ( ) ,log nnmO  

where m and n are number of selected basis functions and signal size, respectively. If 
a complete set of basis functions is required, then the computational cost will be 

( ),log2 nnO  which is relatively high. 
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In the next section some drawbacks of DPP are highlighted. 

6.1. Shortcomings of DPP 

Recalling the definition of entropy in Equations (3) and (5), entropy calculations 
require that each entry to belong to a probability density function (pdf). However, 
DPP uses the relative entropy of normalized sum of the coefficient energies of all 
training data in L classes. It does not normalize the values of ent_map to unity; 
instead, normalization is done by the number of training data in each class. (It is 
worth noting that normalizing ent_map to unity resolves the above problem; 
however, it adds another technical glitch. Since we are comparing numbers rather 
than sequences, normalization to unity means that every element in the ent_map 
matrix must be one, which is trivial.) 

As a result, and in accordance with the proof of lemma discussed in Section 3, 
relative entropy will not necessarily be non-negative. Consequently, relative entropy 
as used in DPP, does not represent a theoretically acceptable measure for the 
separation of different distributions, nevertheless, it may still be considered as a 
viable measure (albeit not a robust one) for comparing different data and for the 
selection of wavelets for discriminatory classification. 

Because of its “symmetric” property, the relative entropy measure (Equation 3), 
results in a non-negative value regardless of the sum of the sequence being equal to 
unity or not. (Please refer to Note in Section 3). Still, the symmetric version cannot 
provide a robust measure. In Section 7 a method for resolving this problem is 
presented. 

Next, we introduce a modification to the normalization scheme used in DPP. 

6.2. Class-based normalization 

In DPP, coefficients are normalized as defined by Equation (10), where the 
normalization is basically the average of the sum of the squared coefficients in each 
class. Consequently, the total energy of coefficients in each class is divided by the 
number of training data in that class. Under this scheme, normalization is effectively 
scaling down the signal energy in each class. In the special case, where the number 
of training data is the same for all classes, energy values are scaled down by the 
same proportion which corresponds to a uniform scaling of the entropy map values, 
thus there will be no relative changes in the final outcome. In the proposed approach, 
normalization as used in Step 3 of the DPP algorithm, is modified. Under the new 
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approach, a class-based normalization is used in which each class is considered 
separately where the sum of squared coefficient values of different wavelet packet 
nodes, is adjusted by the sum squared values of all the training data in that class as: 

 ( ( ) ) ( )∑ ∑
= =

⋅
l lN

i

N

i

l
i

l
i

T
mkj

1 1

22
,, xxb , (11) 

where lN  is the number of training data in class l. Under normalization defined by 

Equation (11), different classes are normalized with respect to their own factors, 
resulting in further class differentiation during feature extraction stage and an 
improved accuracy in the classification stage. 

To examine the effectiveness of this modification, numerous trial runs were 
carried out in which the signal-energy normalization scheme was applied to 
experimental data from a Ricardo Hydra internal combustion research engine. In 
order to ascertain and generalize the effectiveness of the proposed method, a wide 
range of data analysis using different wavelets was planned and performed. These 
included the use of 32 different analyzing wavelets from the family of orthogonal, 
biorthogonal, symmetric as well as selected wavelets from Battle-Lemarie spline 
functions as follows: 

1-Haar, 2-Beylkin, 3-Coiflet1, 4-Coiflet2, 5-Coiflet3, 6-Coiflet4, 7-Coiflet5, 8-
Daubechies2 (Db2), 9-Db3, 10-Db4, 11-Db5, 12-Db6, 13-Db7, 14-Db8, 15-Db9, 
16-Db10, 17-Db20, 18-Db40, 19-Db45, 20-Bior22, 21-Bior31, 22-Bior68, 23-
Symmlet4 (Sym4), 24-Sym5, 25-Sym6, 26-Sym7, 27-Sym8, 28-Sym9, 29-Sym10, 
30-Vaidyanathan, 31-Battle3, 32-Battle5. 

Figure 3 shows the classification results of DPP using the two normalization 
schemes, in which the horizontal axis indexed from 1 to 32 corresponds to the 
numbers used above to list the analyzing wavelets. For the majority of wavelets the 
proposed normalization scheme produced superior performance. For example, by 
applying Coiflet1 as the analyzing wavelet, misclassification rate was reduced from 
4% with the lN -normalization to 0.5% with the modified normalization scheme 

(analyzing wavelet number 3 in Figure 3 – “Average”). This is a considerable 
improvement. In fact, with class-based normalization of signals, additional 
separation of classes is induced. 
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Figure 3. Classification percentage error using DPP under two normalization 
schemes, with 32 different analyzing wavelets listed above. 

In the next section, a novel approach for using relative entropy in the 
construction of the energy map is proposed. 

7. The Cross-data Entropy Approach 

The use of entropy measure for feature extraction and classification requires 
that: 

(1) Entries to Equation (5) for the evaluation of relative entropy be all non-
negative, 

(2) Relative entropy among different classes in each node (in every base of the 
dictionary in the case of DPP), i.e., the outcome of Equation (5), be also non-
negative. 

By considering sum of energy of coefficients as the entries to the relative 
entropy measure, we satisfy the condition of having non-negative sequences as the 
first condition of using relative entropy. However, the use of relative entropy of the 
above sum in each class, as prescribed by DPP and LDB methods, does not 
guarantee condition (2) to be satisfied, i.e., we may not have non-negative relative 
entropies for each and every data at all times. (Refer to Subsection 6.1 and [27]). 

Another consideration for the use of relative entropy measure is the requirement 
that the sequence constitutes a pdf. On the contrary, in DPP approach, relative 
entropy is applied to single scalars in all levels of the decomposition process not to a 
pdf. 



R. TAFRESHI, F. SASSANI, H. AHMADI and G. DUMONT 52 

To resolve these shortcomings, an approach is proposed here, in which training 
data are used to generate the required sequence of numbers for proper application 
and evaluation of entropy. It is proposed that in constructing the entropy measure, 
instead of using the sum of coefficient energies of all training data in each class, and 
at each node, as used in DPP described in Section 6, we consider all of coefficients 
for the evaluation of the entropy measure. As a result, the role of every single data is 
taken into account in the sense that the relative entropies of each element in the 
wavelet packet matrix are used to determine the appropriate bases. Under this 
approach we deviate from the concept of “averaging of data” as is the case in DPP 
method. Two advantages are gained using the proposed scheme: 

(1) Averaging of all training data as used in DPP and LDB methods essentially 
utilizes the first order statistics only. By not involving a second order statistics, such 
as standards deviation, the dispersion of data is masked. This is considered a 
limitation of the DPP and LDB methods. The proposed scheme eliminates this 
limitation by using all training data where coefficients are obtained and used for 
each and every training data. 

(2) In the proposed algorithm, each coefficient is evaluated for all training data 
and thus at all nodes including the last level of wavelet packet tree, evaluation of 
entropy is carried-out on a sequence of scalars rather than on a single scalar. The 
scheme can then be interpreted as a cross-data entropy evaluation or cross-data 
energy map approach. Since we still use relative entropy, discriminatory bases will 
be derived as before. Under this scheme the relative entropy of distributions of the 
coefficients in different classes is taken into account, that is, discriminant 
information of every data (mutual discrimination among all data) is considered. For 
this reason, we refer to this method as a cross-data entropy or mutual-based 
approach. The cross-data entropy approach alleviates the shortcoming of standard 
relative entropy measure used in DPP and LDB methods. 

In the following sections, formalization of the extended versions of DPP 
method, hence referred to as mutual dictionary projection pursuit (MDPP), is given. 
We define the following notations before describing the methods. 

Let “map” as previously be the wavelet packet coefficients of each training data 
,ix  for ,...,,1 Ni =  which can be illustrated by a set of N matrices of size 

( ),1log2 +× nn  where n is the signal length and N is the number of training data. 

Let ( ) ( )2:1,,
:1 ,, Ni

T
mkj

Ni mkjC =
= ⋅≡ xb  be the energy map of each training data 
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derived by squaring each element of the map matrices, where NC :1  is used to denote 

N energy map matrices, each of the size of map. (Matrices  NC :1  can also be viewed 

as a 3D-array, e-map, of size ( ) ).1log2 Nnn ×+×  

Recall that lN  is the number of training data in class l, where ∑
=

=
L

l
lNN

1
 is the 

total number of training data in all classes. If lN
lC :1  are energy maps belonging to 

each training data in class l, then [ ( )]mkjC lN
l ,,:1  can be defined as a vector 

consisting of lN  number of element ( )mkj ,,  of [ ( )]mkjCC ll N
l

N
l ,,: :1:1  

[ ( ) ( )]TN
ll mkjCmkjC l ,,...,,,,1=  for ....,,1 Ll =  

Similarly, we can think of lN
lC :1  as a 3D-array .- lmape  

The process used in the MDDP is described next. 

7.1. Mutual dictionary projection pursuit 

Consider a time-frequency dictionary such as wavelet packet transform. For a 

training data set consisting of L classes of signals {{ ( )} } ,11
L
l

N
i

l
i

l
==x  MDPP can be 

implemented by induction on scale j, as follows: 

Step 1. Expand each training signal into a dictionary of orthogonal bases (map 
matrices) to obtain coefficients. 

Step 2. Calculate the energy map of the coefficients, ,:1 NC  composed of squared 
values of each element of map matrices. 

Step 3. Normalize matrices .:1 NC  

Step 4. Find the discriminant power (by applying Equation 3 or 5) amongst L 

vectors [ ( )] Ll
N

l mkjC l
:1

:1 ,, =  for ,...,,1,0 Jj =  ,12...,,1,0 −= jk  and ,0=m  

,12...,,1 0 −− jn  where 0n  is the maximum level of wavelet packet signal 

decomposition, with Jnn ≥= 20 log  and J is the number of the decomposition 

levels considered for signal analysis. 

Call the resultant matrix ent_map. 
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Step 5. Apply Step 5 as outlined in Section 6. 

It should be emphasized that the mutual-based approach is not founded on the 
“sum” of energy map of data in each class as the case is in DPP and LDB. Instead, 
by employing the energy maps of “every” data sequence in each class, it finds a set 
of values at every base of the wavelet packet dictionary that “truly” represents the 
discriminant power of each data. 

Computational efficiency of MDPP is similar to DPP. Expectedly, the new 
method has more data storage requirements than DPP since energy map of each 
training data must be saved for the evaluation of the entire relative entropy map. 

8. Experimental Setup 

To evaluate the effectiveness of the algorithm for the classification of different 
operating conditions in an engine, Ricardo Hydra, a single cylinder spark ignition 
research engine, was used for conducting a set of experiments and test runs. The 
engine operates on both gasoline and natural gas modes, but only natural gas mode 
operation with the compression ratio of 9.26:1 was used. The engine speed and 
throttling were set at 1500 RPM and 100% (wide open), respectively. Different 
machine operations with three relative air/fuel ratios namely stoichiometric ( ),1=λ  

fuel-lean ( ) ,5.1=λ  and fuel-rich ( )8.0=λ  mixtures, each with normal, advance, 

and retard spark timing were examined. One pressure sensor with 12.5 KHz and two 
accelerometers with 25 KHz and 12.5 KHz sampling rates were used to measure 
cylinder pressure and simultaneous vibrations at two positions on the cylinder head 
in vertical and horizontal directions. Analysis of horizontal vibration data indicated 
that they did not carry useful information about the combustion event; therefore, 
only vertical vibration data were used in the runs. A rotational encoder was used to 
monitor engine speed to determine the starting point of each cycle. In this paper, data 
belonging to 1=λ  were utilized. To examine the effect of combustion on cylinder 
head vibration and pressure signals, data were also collected with engine running on 
motoring mode, i.e., driven externally and with no ignition/combustion. More 
information about data preparation details can be found in [25]. 

The objective of the experiment was to collect acceleration data at the cylinder 
head position with three different ignition timings of –23 (normal), –33 (advance), 
and –10 (retard) degrees under stoichiometric conditions ( )1=λ  assimilating 
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healthy and faulty conditions. The numbers denote ignition timings measured as 
angles before top dead center. 

In the following, selected results using MDPP scheme and the analysis of its 
performance are presented. 

9. Experimental Setup  

To assess the effectiveness of the proposed MDPP algorithm and to compare it 
with MLDB, as well as against DPP and LDB, the algorithms are applied on Ricardo 
Hydra test data. The normalization method introduced in Subsection 6.2 is also 
utilized. 

In the next section, classification results of the algorithm on a set of machine 
data are presented. In the classification stage a neural network classifier is used. We 
examined 12 different backpropagation training algorithms each with one 5-node 
hidden layer, and Levenberg-Marquardt algorithm was found to provide the best 
results with respect to both high classification accuracy and computational 
efficiency. 

9.1. MDPP classification 

Applying MDPP algorithm on Ricardo Hydra test data with Coiflet1 wavelet 
resulted in selecting the bases that are plotted in Figure 4 (only the first 8 bases have 
been shown). The corresponding wavelet packet indices are shown below. The three 
rows correspond to scale, oscillation, and translation indices, respectively. 

4 5 5 5 4 5 4 3 
3 6 8 0 2 9 3 0 
3 0 0 3 6 0 4 2 

It is worth noting that not all of the bases selected by DPP belong to wavelet 
packet (WP) dictionary. DPP chooses the first base from WP dictionary (which is 
optimal according to the criterion described in Step 5). The bases selected during the 
rest of the iterations are components of WP bases that are orthogonal to the bases 
selected in the previous stages; they do not necessarily belong to the dictionary. 
Consequently, only the first base is certainly a wavelet packet base, the remaining 
bases are components of packet that are orthogonal to the previously selected bases. 
Further observation of the selected wavelets indicates similarity between the selected 
bases and corresponding wavelet packet bases that gradually decreases as we move 
to later iterations. In other words, as the number of selected basis increases (the 
number of columns in matrix B) the similarity of packet base and the corresponding 



R. TAFRESHI, F. SASSANI, H. AHMADI and G. DUMONT 56 

selected base is reduced. This can be explained noting the fact that during the 
evaluation of the residuals in Step 5, only a segment of packet basis that is 
orthogonal to the previously selected basis is chosen. 

 
Figure 4. The first 8 bases selected by MDPP using Coiflet1. 

Several runs showed that an increase in the number of iterations and bases 
yields a relatively moderate enhancement in the classification results but escalating 
the computational cost. 

The classification results using MDPP and DPP are found to be close with a 
maximum classification error of 6% for most of the analyzing wavelets. The 
proximity of classification results in DPP and MDPP shows that the relative entropy 
map does not play a significant role in DPP. As we can see from Step 5 of DPP 
algorithm, the main purpose of using relative entropy is to find the energy map 
matrix ent_map and to determine the weight w. In this context, first order statistics 
(mean) is considered to be sufficient and there is no need for involving probability 
density function of features. 

To assess the accuracy of the classification results we use the singular value 
decomposition of the coefficient matrix. 

9.2. Analysis of coefficient correlation using singular values 

Singular value decomposition (SVD) provides a useful technique in multivariate 
data analysis and statistical pattern recognition [8]. SVD technique is widely used 
for evaluating the correlation among experimental data composed of p sets where 
each set is a sequence of length q. Then, data can be expressed as a qp ×  matrix B. 

Singular values (SV) of matrix B are the eigenvalues of the correlation matrix BBT  
ranked from high to low. 
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We used SVD of the coefficient matrix that is derived by projecting data onto 
the selected bases to determine the extent to which the feature variables, i.e., the 
coefficients, are correlated. 

The rate of decline in SV (Figure 5), which is the rate of drop from first to 
second and second to third, and so on, is an important parameter in statistical 
analysis. For a matrix with large rank, usually the decay of the first few SVs is of 
interest; where rank is defined as the maximum number of linearly independent rows 
(columns) [6]. In our case, that the coefficient matrix is of size ,496 ×  there are four 
SVs (the rank is only four); therefore, the decay from first to second SV is of great 
importance. 

 

 
Figure 5. Singular values of coefficient matrix corresponding to the first 4 bases 
selected by MDPP for 32 analyzing wavelets, along with consequent classification 
results. 
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To obtain acceptable classification results, decay of SV of coefficient matrix 
must be neither too large nor too small. Large SV decay rate indicates that the useful 
information of coefficients is in one direction only (i.e., the direction of the 
eigenvector corresponding to that SV); therefore, the rest of selected directions, 
which are the bases found by the algorithm, contain redundant information, i.e., they 
are correlated with the first direction. On the other hand, choosing one direction to 
represent a multi-dimensional data is rarely a reasonable approach, specially noting 
that dimension reduction has already been implemented in the wavelet coefficient 
domain. Such cases show that selected bases used to derive the coefficients, do not 
contain all the essential information about the system performance. Under this 
condition, we conclude that the algorithm has found a set of bases where only one of 
them provides useful information, the rest of the bases are mostly redundant. As a 
result, a coefficient matrix with very high decline in SVI is not actually desirable. 
Similarly, having low SV decay means that all of bases (directions) carry more or 
less the same information content since there is a high correlation among them. 

To support the above argument, in Figure 5 we have shown four singular values 
of coefficient matrix corresponding to the first four bases selected by MDPP when 
applied on Ricardo Hydra test data. The figure demonstrates the SVs in each class 
and the average for all classes, along with the corresponding classification results. 
The horizontal axis numbered from 1 to 32 corresponds to the same analyzing 
wavelets given in Subsection 6.2. Db2 analyzing wavelet (number 8 in Figure 5) 
maintains a coefficient matrix with large SV decay in all of the classes, which leads 
to a relatively large classification error of over 10%. Conversely, Bior 3.1 wavelet 
(number 21) produces a very low SV decay with mutually very close values, but still 
attains a high classification error of over 25%. Haar wavelet is also in the same 
category. Wavelets other than these three extreme cases have almost the same SV 
pattern with favourable decay rate and produce an acceptable classification result-
typically with less than 7% error. With highly variable data and the performance 
errors observed with other classification methods, 7% is considered to be a relatively 
low and acceptable error. 

Another interesting observation made is that SVs in different classes, as shown 
in Figure 5, follows a discernible pattern in which SVs of different classes are quite 
distinct from each other. For instance, the first singular values in each class 
associated with Coiflet1 (wavelet number 3) are 4.5, 3.6, and 2.2 for classes 1, 2, and 
3, respectively, which show a difference of at least 20% among different classes. 
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This is considered an important aspect of the algorithm, which extracts the 
information that is discriminatory and makes different classes distinguishable from 
one another. 

9.3. Application of different analyzing wavelets 

To attain a comprehensive view of the effect of using different analyzing 
wavelets in classification results, several wavelets from various wavelet families, 
such as Daubechies, Coiflet, Symlet, and biorthogonal were used and tested in 
multiple runs. By examining Figure 5 and our experience on other SVD graphs 
related to various data sets, we conclude that the use of different wavelets has no 
significant influence on the correlation structure of the coefficients. For this reason, 
the classification errors for most of the wavelets are almost the same with only minor 
differences. We can then postulate that the improved classification is due to the 
algorithm is achieved. 

9.4. LDB versus DPP 

DPP and LDB methods were introduced and examined in the previous sections. 
During numerous simulations conducted while developing and examining MDPP 
and MLDB algorithms, a closer observation of the performance of LDB and DPP 
algorithms revealed that often the outcome of LDB and DPP methods were the same. 
For instance, three out of four of the selected bases in these two algorithms were the 
same when Coiflet1 was used as an analyzing wavelet on Ricardo Hydra data set. 
This can be traced to rather similar process that LDB and DPP use in searching for 
the best set of basis. Both search methods are based on the first order statistics, in 
which the sum-squared coefficients in each class are used for the construction of the 
relative entropy measure. However, there are some differences the details of which 
were explained in the present paper. Classification results with different analyzing 
wavelets are also very similar for DPP and LDB, and the differences are within a 
few percentage points. 

10. Conclusions 

The goal of projection pursuit for multivariate data analysis is to find low-
dimensional projections, such as one or two dimensions, that provide the most 
revealing views of the full-dimensional data. In each iteration, DPP finds the 
component of the selected basis that is orthogonal to the hyper-plane spanned by the 
previously selected basis functions. In this manner, an orthogonal set of basis is 
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obtained. In this paper, the usefulness of DPP in classification applications was 
shown. 

It was also shown that standard DPP suffers from a technical deficiency in 
applying relative entropy on coefficients. To overcome this shortcoming, MDPP 
algorithm was developed as a new method for fault classification. 

The classification results were influenced by the selection of appropriate bases. 
The question dealt here was how one could associate the accuracy of classification to 
the selected bases. In this respect, the accuracy of the classification results was 
related to the correlation of coefficient matrix, constructed from projecting the data 
onto the selected bases, by using singular value decomposition. In the assessment 
process the relevance and the meaning of various rates of decay of SVs were 
interpreted. It was shown that a feature matrix (here the coefficient matrix) with 
neither very high SV decay (where except the very few first SVs, the rest of selected 
SVs do not carry much information) nor very low SV decay (where there is high 
correlation among SVs) is desirable. 

This paper dealt with the analysis of cylinder-head vibration data for engine 
fault detection and diagnosis. A novel method, referred to as mutual or cross-data 
entropy approach, was then presented. Using this approach, two wavelet-based 
methods namely DPP and LDB for feature selection and classification were 
modified. DPP and LDB were then, compared with each other and against the cross-
data entropy approach. As stated, a close examination of the DPP and LDB methods 
reveals that their interpretation of entropy is non-standard and this poses certain 
technical glitches. In both methods, relative entropy is applied on the sequences of 
numbers that do not constitute a probability density function (pdf). The proposed 
method overcomes these shortcomings. 
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