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Abstract 

The present paper investigates the steady laminar flow of a Herchel- 
Bulkley (H.B.) fluid in a curved tube of circular cross-section for the case 
of high Dean number region by using boundary layer approximation. The 
flow domain has been considered to be consisting of a central plug core 
formation region surrounded by a viscous dominated boundary layer 
region near the wall. The momentum integral approach has been used 
which reduces the governing equations to a system of nonlinear ordinary 
differential equations. These equations have been solved by Runge-Kutta 
techniques followed by an iterative procedure. 

1. Introduction 

The study of flow characteristics of a viscous fluid in a curved tube constitutes a 
problem of fundamental interest in the field of internal fluid mechanics. Owing to 
the frequent occurrence of the curved tube geometry in industries, heat engines, heat 
exchanges, chemical reactors and biophysical problems, an understanding of the 
complex flow field and secondary flow is very essential. 
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The flow of a Newtonian fluid in a curved tube has been studied extensively in 
the past and brief reviews have been given by Ghia and Sokhey [3] and Ito [4]. The 
flow of a Power – Law fluid in a curved tube was investigated by Raju and Rathna 
[7]. 

The purpose of the present study is to investigate the flow of a Herchel-Bulkley 
fluid through a curved tube of circular cross-section for large value of Dean number. 
Since for a H.B. fluid there is always a plug core formation region away from the 
walls, in the present analysis a central plug core formation region and viscous 
dominated flow region near the walls have been considered. 

The modified Navier-Stokes equations governing the flow of a H.B. fluid have 
been reduced to a system of ordinary differential equations under boundary layer 
approximations. These equations have been solved numerically to obtain velocity 
distributions, and boundary layer thickness for various values of yield number. 

2. Formulation of the Problem 

The geometry of the problem is shown in Figure 1. We consider the steady, 
laminar and fully developed flow of H.B. fluid in the curved tube of circular cross-
section under a constant pressure gradient along the axis of the tube. 

For convenience we use the co-ordinate system introduced by Dean [1] as 
shown in Figure 1. 

NS is the axis of the anchor ring formed by the tube wall, O is the center of the 
section of the tube by a plane through NS making an angle φ with the fixed axis 
plane NM. ON is drawn perpendicular to NS and is of length R. The position of any 
point Q at a distance r from O in the cross section is specified by the orthogonal 
co-ordinates ( ),,, φθr  where θ is the angle made by OQ with the extended line ON. 

The circumference of the cross-section of the tube is given by ,ar =  where a is the 

radius of cross-section. The element of arc length ds in this co-ordinate system can 
be written as 

 ( ) ( ) ( ) ( )( ) .sin 2222 φθ++θ+= drRrddrds  (1) 

The motion of the fluid is due to a fall in pressure p along the tube. The problem has 
been solved for tubes of small curvature, so that the curvature ratio RaL =  is 

small. 
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Under these conditions, the equations governing the flow can be written as: 

Equations of continuity: 
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Figure 1. Geometric of the problem. 

where ρ is the density of the fluid, φθ=τ ,,,, rjiij  represents the stress components 

and for a H.B. fluid is given by the relation 

 ( ) ,2 ijij eIμ=τ  (6) 

where ( ) [ ]11
0

−− +τ=μ nKIII  and ( )∑= 212 ijijeeI  is the second invariant of rate 

of strain tensor. 

The flow conditions are given by 
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The flow is induced by a pressure gradient Cp =
φ∂
∂−  in the axial direction. The 

above equations have to be solved with the boundary conditions. 

0=== wvu  at ,ar =  for all θ (no slip conditions at the wall), 

0=
θ∂

∂=
θ∂
∂=

θ∂
∂ wvu at 0=θ  and π (symmetry condition about the central axis). (8) 

 

Figure 2. Schematic representation of the flow model. 

3. Flow Model 

Experimental measurements show that for large values of the Dean number 

( ) .Re 21RaK =  There is a complete change in the velocity distribution in the tube 

due to the secondary flow caused by the centrifugal force, the maximum axial 
velocity being near the outside wall. In the region near the wall of the tube, the 
secondary flow appears in the form of a boundary layer. This relation is shown in 
Figure 2. The fluid enters the boundary layer in the outer part of the wall and is 
driven by a pressure gradient towards the inner part where it leaves the boundary 
layer. Since for a H.B. fluid, there is always a plug core formation region away from 
the walls, we have a central plug core formation region and viscosity dominated 
boundary layer region near the wall. 

4. Equations of Motion for the Plug Core Region 

In the plug core region, the axial velocity distribution is more uniform than in 
the boundary layer and the transverse velocity components may be taken small in 
comparison with the axial velocity [16, 17]. 
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Under the assumption that ,, Wvu  the equations governing the flow in the 

plug core region are obtained from the equations (3), (4), (5) with condition (6) and 
are given by 
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Eliminating the pressure terms from the equations (9) and (10), we get 

 .0cossin =
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rr
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Introducing the transformation ,cosθ= rx  ;sin θ= ry  The above equation becomes 

 0=
∂
∂

y
w   or  ( ),xFw =  (13) 

where F is an arbitrary function of x. We define the stream function ψ by 
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The continuity equation (2) is identically satisfied and the equation (11) takes form 
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Using the equation (13) in (15) and integrating the resulting expression, we get 

 ( ) ,0ψ+′ρ
=ψ

xFR
Cy  (16) 

where 
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θ

−=′ w
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and 0ψ  is a constant of integration. The function ( ),xF  which depends on the flow 

of in and out of the boundary layer, will be determined from the continuity of the 
secondary flow together with the momentum equations of the boundary layer. 
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5. Boundary Layer Momentum Equations 

Within the boundary layer, the axial velocity falls sharply to zero, therefore the 
magnitude of the transverse velocity v becomes comparable to that of w. Applying 
the boundary layer approximation by taking u of the order of boundary layer 

thickness δ; ( ),1~, owv  ( ),~ 1−δ=
∂
∂ o
r

 ( )1~ o=
ψ∂
∂

 and ( )1~ o=
φ∂
∂  and by 

neglecting the variation of r in thin boundary layer, we get 
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From the equation (19), we observe that the integrated value of 
r
p
∂
∂  across the 

boundary layer is of small magnitude and hence the variation of pressure across the 
boundary layer can be neglected. 

Let ( )xW1  be the value of ( )xW  at the edge of the boundary layer. Then taking 

into account the continuity of the pressure gradient, we have from the equation (10) 
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Substituting this value of 
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∂p  in (20), we get 
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Balancing the constant axial pressure gradient with the shear stress at the wall, we 
obtain 
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Expressing v and w in terms of the mean axial velocity ,mv  we can write 

 ,~ mvv ε    ,~ mvw  (25) 

where ε is an unknown parameter. With this definition, making an order of 
magnitude analysis of the equation (23), we can get 
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Using the equations (25) and (26) and the constitutive relation (6), the stress 
components can be written as 

 ,
11

r
v

r
wK

r
w n

Hyr ∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂+

∂
∂τ=τ

−−

θ  (27) 

 .
11

r
w

r
wK

r
w n

Hyr ∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂+

∂
∂τ=τ

−−

φ  (28) 

Substituting (27) in the equation (20), we obtain 
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On examining (29) in the view of (25) and (26), we obtain for the boundary layer 
thickness δ, 
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6. Derivation of Boundary Conditions 

Outside the boundary layer .1~ ⎟
⎠
⎞⎜

⎝
⎛

∂
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aor  Hence by using the velocity expressions 

(13) and (14) for v and W, and the relations (16) and (31) for ψ and C, applying the 
condition that ,1≤δ  the boundary conditions at the edge of the boundary layer 

δ−= ar  can be written as [8, 16, 17] 
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7. Momentum Integral Equations 

Integrating the equations (29) and (32) through boundary layer and making use 
of the relations (18) and (33), we obtain 
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Applying the no-slip condition 0== vu  at the tube wall and converting the 
variable ,ra −=ξ  we get 
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8. Continuity of Secondary Flow 

In Figure 2, we consider X and Y as the points on the outer edge of the boundary 
layer specified by 0=θ  and ,θ=θ  respectively. Neglecting the variation of r in 

the thin boundary layer and using the equation (16), the flux from left to right across 
the curve XZY drawn outside the boundary layer is given by 
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9. Solution of the Problem 

We use Phlhausen’s method of solution [17]. The boundary conditions for v and 
w reduce to 
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The unknown quantities δ, 1w  and Λ are to be determined by solving the above 

equations (49), (50) and (51). Taking into account the relation (30), the equations are 
reduced to the non-dimensional form 
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where 10w  is the characteristic axial velocity represents the value of 1w  at 0=θ  
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The dimensionless form of the equations (49), (50) and (51) then becomes 
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By carrying out the necessary differentiation and by substituting the derivative 
of 0A  obtained from the relation (54), the equations (56) and (57) take the form 
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In order to start the numerical integration of the system of nonlinear ordinary 
differential equations (60), (61), and (62), the values of ,0δ  0w  and 0Λ  as well as 
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form of infinite series given by 

[ ],1 2
210 +θδ+δ=δ  

[ ],1 2
210 +θΛ+Λ=Λ  

.1 2
20 +θ+= ww  (62) 

Substituting these expansions into (60) and (61), and retaining the terms independent 
of θ, we get the following algebraic equations to determine the new unknowns 1δ  

and 1Λ  as 

 012604104385303612 3
11

2
1

2
1

2
1

2
1

2
111

4
1

6
1 =Λ+δ−Λδ+Λδ+δ ffff  (63) 

and 

 ,0168014734 2
1

4
111

2
1 =−δ+Λδ ff  (64) 

where .32 11
nn

D
n Hf +δ=  
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These nonlinear equations have been solved by using Newton-Raphson method 

to determine 1δ  and .1Λ  Making use of these values, the derivatives ,0
θ
δ
d

d
 

θd
dw0  

and 
θ
Λ0
d

d
 are obtained from (62). The systems of equations (58), (60) and (61) have 

been solved by Range-Kutta fifth order technique following an iterative procedure. 
An initial value of α is assumed to start the integration. The numerical results ,0δ  

0w  and 0Λ  thus obtained are substituted in (59) within an error less than .10 7−  The 

above values of α and the corresponding values of ,0δ  0w  and 0Λ  have been 

calculated for different values of the yield number. 

Variation of dimensionless shape factor ,0Λ  boundary layer thickness 0δ  and 

the variation of axial velocity ( )0w  at 1=n  and .0=DH  

Table 1 

( )50πθ  0Λ  0δ  0w  

1 –0.22807 3.364289 0.999168 

2 –0.4179383 3.374019 0.9964439 

3 –0.6238825 3.392045 0.9919806 

4 –0.8046964 3.398309 0.9777644 

5 –0.9495977 3.405105 0.9680737 

10 –0.9918481 3.441314 0.9130184 

15 0.3519171 3.501525 0.8117503 

20 2.846617 3.559993 0.6829094 

25 5.578194 3.584061 0.537304 

30 7.340095 3.534242 0.3865756 

40 5.962785 3.25291 0.1201479 

48 2.07689 6.651795 0.00845406 

50 0.3477815 12.68648 0.00541737 
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Pressure drop and volumetric flow relationship. The volumetric flow rate 

.
4

3sin2
0 0

1
2

1
2

⎥
⎦

⎤
⎢
⎣

⎡
θθ

π
−θ

π
π= ∫ ∫

π π
dw

a
waQ  

From the above relation the mean velocity ⎟
⎠
⎞

⎜
⎝
⎛

π
= 2a

QVV mm  is expressed in the non-

dimensional form as 

 ,
21

10

21

10
⎟
⎠
⎞

⎜
⎝
⎛γ−β= −

w
Vkw

V mm  (65) 

where β and γ are constants and are expressed by 

∫
π

θθ
π

=β
0

2
0 ,sin2 dw  

∫
π

− θδ
π

=γ
0

00
23 .23 dw  

The values of β and γ have been calculated for 1=n  and .0=DH  The equation 

(65) is a quadratic equation in 
21

10
⎟
⎠
⎞

⎜
⎝
⎛

w
Vm  and the only physically feasible solution is 

given by 

2212212

10 44
1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
β
γ−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β
γ+β=

KKw
Vm  (66) 

value of dimensionless mean velocity 
10w

Vm  for different values of Dean number for 

1=n  and .0=DH  

Table 2 

10w
Vm  

K 100 500 1000 

 0.407798006 0.471500722 0.48805766 
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10. Conclusion 

The flow characteristic of a H.B. fluid through a curved tube of circular cross- 
section have been investigated in the high Dean number region for the dean number 

.100≥K  Considering a central plug core formation region and viscous dominated 
boundary layer region near the wall, the corresponding equations for each region 
have been obtained from the modified Navier-Stokes equations for a H.B. fluids. 
The momentum integral equations together with the equations obtained by 
considering the continuity of the secondary flow at the edge of the boundary layer, 
give rise to a system of nonlinear ordinary differential equations. These equations 
have been solved numerically by using Runge-Kutta technique followed by iterative 
procedure. 

The effect of H.B. number and the power - law index on the variation of the 
dimensionless boundary layer thickness along the angular co-ordinate has been 
analyzed. 
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