ON THE HOLOMORPHIC MAPS OF C^{2} TO C^{2} WHICH PRESERVES A GENERAL TYPE POLYNOMIAL OF TWO VARIABLES

YUKINOBU ADACHI

2-12-29 Kurakuen
Nishinomiya, Hyogo 662-0082, Japan
e-mail: fwjh5864@nifty.com

Abstract

Every holomorphic map of \mathbf{C}^{2} to \mathbf{C}^{2} which preserves general two level curves of a general type polynomial preserves its polynomial and such holomorphic maps make a finite subgroup of algebraic automorphisms of C^{2}.

0. Introduction

It is well known that the rational function of a complex variable with same three values distributions is uniquely determined. Therefore, if $P(x)$ and $Q(x)$ are polynomials and $P(Q(x))$ is fixed two values distributions, $Q(x)$ is the identity. We study it in the two dimensional case.

Let $P(x, y)$ be a primitive general type polynomial (see Definitions 1.1 and 1.4 for its definition). Let $A_{i}(i=1,2)$ be a general level curve of $P(x, y)$ of (g, n) type such as $\left\{P=\alpha_{i}\right\}$, where α_{i} and α_{2} are distinct complex numbers. If F is a holomorphic map of \mathbf{C}^{2} to \mathbf{C}^{2} such as $\left\{P \circ F=\alpha_{i}\right\}=A_{i}$ for $i=1,2$, then $P \circ F$ 2010 Mathematics Subject Classification: 32H30, 32H02, 08A35.

Keywords and phrases: value distribution, general type polynomial, holomorphic map.
$=P$ and $F \in A u t_{\text {alg }}\left(\mathbf{C}^{2}\right)$. And such holomorphic maps F make a finite subgroup of $\operatorname{Aut}{ }_{\text {alg }}\left(\mathbf{C}^{2}\right)$ such as $\#\{F\} \leqq 12(g-1)+6 n$ (Theorem 2.6).

The condition that $P(x, y)$ is a primitive polynomial is not essential (see Theorem 3.1) but the condition that $P(x, y)$ is a general type polynomial is essential (see Theorem 3.2).

1. Preliminaries

Let $P(x, y)$ be a nonconstant polynomial and S be an irreducible component of a level curve of $P(x, y)$. If the normalization of S is holomorphically isomorphic to a finite Riemann surface of (g, n) type, that is, its genus $g<\infty$ and its boundary consists of n punctured points $(n<\infty)$, then we call S is an algebraic curve of (g, n) type.

It is well known that every irreducible components of every level curve of $P(x, y)$ are same type except for a finite number of them. So, if general irreducible components of level curves of $P(x, y)$ are of (g, n) type, then we call that $P(x, y)$ is a polynomial of (g, n) type.

Definition 1.1. If except for a finite number of level curves of $P(x, y)$ every level curve is irreducible, then we call that $P(x, y)$ is a primitive polynomial.

Proposition 1.2 (cf. [3, Proposition 1]). For every nonconstant polynomial $P(x, y)$, there are a primitive polynomial $P_{0}(x, y)$ and a polynomial of one complex variable π such that $P=\pi \circ P_{0}$.

Following proposition is well known owing to M. Suzuki and T. Yoshioka.
Proposition 1.3. Let $P(x, y)$ be a primitive polynomial of (g, n) type. Then except for a finite number of level curves every level curve is irreducible, nonsingular and of (g, n) type. If an irreducible component of exceptional level curves is of $\left(g^{\prime}, n^{\prime}\right)$ type, then $g^{\prime} \leq g$ and $g^{\prime}+n^{\prime} \leq g+n$.

Definition 1.4. When $P(x, y)$ is a polynomial of (g, n) type, we call that $P(x, y)$ is general type if $2 g-2+n>0$ and we call that it is exceptional type if else, that is, $g=0$ and $n=1$ or $n=2$.

Theorem 1.5 (Oikawa [4]). If R is a finite open Riemann surface of (g, n) type, where $2 g-2+n>0$, then $\#\{\operatorname{Aut}(R)\} \leqq 12(g-1)+6 n=l$, where $\operatorname{Aut}(R)$ is the automorphisms of R.

Proposition 1.6. Let R be the same as of Theorem 1.5. Then every nonconstant self holomorphic map φ of R is an automorphism of R.

Proof. Let \widetilde{R} be a compactification of R. Since R is hyperbolically imbedded in \widetilde{R}, φ is extended holomorphically to $\widetilde{\varphi}: \widetilde{R} \rightarrow \widetilde{R}$. The image $\widetilde{\varphi}(\widetilde{R})$ is a compact and open set because φ is a nonconstant holomorphic map. Therefore, $\widetilde{\varphi}(\widetilde{R})=\widetilde{R}$. Set $E=\widetilde{R}-R$. Since $\widetilde{\varphi}^{-1}(p) \in E$ for a point $p \in E, \widetilde{\varphi}$ permutes the points of E. So $\varphi: R \rightarrow R$ is an onto map and it is regarded as the covering surface of R without relative boundaries. Let m be a degree of φ. From the Hurwitz formula $2-n-2 g \leqq$ $m(2-n-2 g)$. Then we conclude $m=1$ because $2-n-2 g<0$.

2. Main Results

We denote that $F \in(E)$ if F is a nondegenerate holomorphic map of \mathbf{C}^{2} to \mathbf{C}^{2} and $F \in(P A)$ if $F \in(E)$ and F is a polynomial map. And we denote the automorphism group of \mathbf{C}^{2} by $\operatorname{Aut}\left(\mathbf{C}^{2}\right)$ and the algebraic one by $\operatorname{Aut}{ }_{\text {alg }}\left(\mathbf{C}^{2}\right)$.

Following proposition is easy to see from Theorem 4.9 in [1].
Proposition 2.1. Let $P(x, y)$ be a primitive general type polynomial of (g, n) type and $A_{i}(i=1,2)$ be a general level curve of $P(x, y)$ such as $\left\{P=\alpha_{i}\right\}$ with distinct α_{1}, α_{2}. If a map $F \in(E)$ satisfies $\left\{P \circ F=\alpha_{i}\right\}=A_{i}$ for $i=1,2$, then $F \in(P A)$.

Proposition 2.2. Let F be the same as of Proposition 2.1. Then $P \circ F=P$.
Proof. Let L be an arbitrary complex line which is not contained in a level curve of P. As $\left.P \circ F\right|_{L}$ is a polynomial on L and value distributions of α_{1} and α_{2} are the same of P_{L}, where $\left.P \circ F\right|_{L}=P_{L}$. Since almost L is not contained in a level of P, $P \circ F=P$.

Lemma 2.3. Let X and Y be Hausdorff spaces. A set \mathcal{F} is included in $C(X, Y)$, where $C(X, Y)$ is a space of the continuous maps from X onto Y. Assume that $N=\sup _{x \in X} \#\{f(x) ; f \in \mathcal{F}\}<\infty$. Then there is a domain U in X and $f_{1}, \ldots, f_{N} \in \mathcal{F}$ such that for every $f \in \mathcal{F},\left.f\right|_{U}=\left.f_{i}\right|_{U}$, where $i \in\{1, \ldots, N\}$.

Proof. From the assumption there is a point $x_{0} \in X$ and $f_{1}, \ldots, f_{N} \in \mathcal{F}$ such that $\left\{f\left(x_{0}\right) ; f \in \mathcal{F}\right\}=\left\{f_{1}\left(x_{0}\right), \ldots, f_{N}\left(x_{0}\right)\right\}$, where $f_{1}\left(x_{0}\right), \ldots, f_{N}\left(x_{0}\right)$ are mutually different points of Y. Let U be a sufficiently small neighborhood of x_{0} such that for every $x \in U, \quad\{f(x) ; f \in \mathcal{F}\} \subset\left\{f_{1}(U), \ldots, f_{N}(U)\right\}$ and $f_{i}(U)(i=1, \ldots, N)$ are mutually disjoint. If we fix $f \in \mathcal{F}$ arbitrary and we set $E_{i}=\left\{x \in U ; f(x)=f_{i}(x)\right\}$, then the set E_{i} is open one. Since $U=E_{1} \cup \cdots \cup E_{N}, E_{i} \cap E_{j}=\varnothing$ for $i \neq j$ and U is connected, there is an integer $i \in\{1, \ldots, N\}$ such as $U=E_{i}$.

Proposition 2.4. Let F be a map such as the same in Proposition 2.1. Then $\#\{F\} \leqq l$.

Proof. For every point $p \in \mathbf{C}^{2}$, we shall prove $\sup _{p \in \mathbf{C}^{2}} \#\{F(p)\} \leqq l=$ $12(g-1)+6 n$. Let p be a point of general level curve of $P(x, y)$ such as $\{P=\alpha\}$. Since $P \circ F=P$ from Proposition 2.2 and F is nonconstant on $\{P=\alpha\}, \#\{F(p)\}$ $\leqq l$ by Theorem 1.5. Let E be the set of exceptional level curves of $P(x, y)$. Since $\mathbf{C}^{2}-E$ is dense in $\mathbf{C}^{2}, \sup _{p \in \mathbf{C}^{2}} \#\{F(p)\} \leqq l$. Then we have the conclusion by Lemma 2.3.

Proposition 2.5. Let F be a map such as the same in Proposition 2.1. Then $F \in A u t_{a l g}\left(\mathbf{C}^{2}\right)$.

Proof. Since F^{k} satisfies the condition of Proposition 2.1, where F^{k} is a k-ply iteration of F, there is an integer $k_{0} \leqq l$ such as $F^{k_{0}}=i d$, by Proposition 2.4. Then we have the conclusion easily.

From the above discussion, following theorem is proved.
Theorem 2.6. Let $P(x, y)$ be a primitive general type polynomial of (g, n) type and $A_{i}(i=1,2)$ be a general level curve of $P(x, y)$ such as $\left\{P=\alpha_{i}\right\}$ with
distinct α_{1}, α_{2}. If a map $F \in(E)$ satisfies $\left\{P \circ F=\alpha_{i}\right\}=A_{i}$ for $i=1,2$, then $F \in$ Aut $_{\text {alg }}\left(\mathbf{C}^{2}\right)$ and $P \circ F=P$. And such F makes a subgroup of Aut ${ }_{\text {alg }}\left(\mathbf{C}^{2}\right)$ with $\#\{F\} \leqq l=12(g-1)+6 n$.

3. Some Remarks

Let $P(x, y)$ be a general type polynomial of (g, n) type. From Proposition 1.2, there is a primitive polynomial $P_{0}(x, y)$ and a polynomial π of one complex variable such that $P(x, y)=\pi \circ P_{0}(x, y)$. Let A_{1} and A_{2} be general level curves of $P_{0}(x, y)$ such as $A_{i}=\left\{P_{0}(x, y)=\alpha_{i}\right\}$ with distinct α_{1}, α_{2}.

Theorem 3.1. Let $P(x, y)$ and A_{i} be the same above and a map $F \in(E)$ satisfy $\left\{P_{0} \circ F=\alpha_{i}\right\}=A_{i}(i=1,2)$. Then such F makes a subgroup of Aut ${ }_{\text {alg }}\left(\mathbf{C}^{2}\right)$ such as $P \circ F=P$ with $\#\{F\} \leqq l$, where $l=12(g-1)+6 n$.

Proof. It is the direct consequence of Theorem 2.6 and $\pi \circ P_{0} \circ F=\pi \circ P_{0}$.
In the case of a polynomial of exceptional type, there is a following:
Theorem 3.2 ([5] and [2]). Let $P(x, y)$ be a polynomial of exceptional type and $T \in \operatorname{Aut}\left(\mathbf{C}^{2}\right)$ satisfy $P \circ T=P$. Then such T makes a transcendental infinite subgroup of $\operatorname{Aut}\left(\mathbf{C}^{2}\right)$.

References

[1] Y. Adachi, Nondegenerate entire maps of \mathbf{C}^{2} to \mathbf{C}^{2}, Far East J. Math. Sci. (FJMS) 10(2) (2003), 163-186.
[2] T. Kizuka, Analytic automorphisms and algebraic automorphisms of \mathbf{C}^{2}, Tôhoku Math. J. (2) 31(4) (1979), 553-565.
[3] T. Kizuka, Rational functions of \mathbf{C}^{*}-type on the two-dimensional complex projective space, Tôhoku Math. J. (2) 38(1) (1986), 123-178.
[4] K. Oikawa, Notes on conformal mappings of a Riemann surface onto itself, Kōdai Math. Sem. Rep. 8 (1956), 23-30.
[5] T. Yoshioka and Y. Takamoto, Quelques groupes d'automorphismes analytiques de C 2, Osaka J. Math. 14(2) (1977), 253-270 (in French).

