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Abstract 

We characterize combinatorial representations of minimal 3-manifolds by 
means of edge-coloured graphs. This enables their recognition among 
existing crystallization catalogues, and contemporarily enables the 
automatic construction of efficient and exhaustive catalogues representing 
all minimal 3-manifolds up to a fixed genus. 

1. Introduction 

Edge-coloured graphs (and crystallizations, in particular) are a combinatorial 
tool for representing compact PL-manifolds of arbitrary dimension (see [1, 9] and 
their bibliography, or simply the second paragraph for a brief account about this 
theory). One of the main features of crystallization theory relies on the purely 
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combinatorial nature of the representing objects, which makes them particularly 
suitable for computer manipulation; this enables - among other things - the automatic 
production and analysis of complete crystallization catalogues satisfying suitable 
combinatorial conditions, which represent all PL manifolds with given topological 
features (see, for example, [4, 6, 14] and [2], devoted to classes of orientable or non-
orientable 3-manifolds admitting triangulations with a fixed number of tetrahedra). 

Especially in dimension three, where many well-known manifold representation 
theories have been developed, different notions of “complexity” have been defined, 
in order to “measure” how complicated a manifold M is, by minimizing suitable 
features of the combinatorial objects representing M: this happens - for instance - 

with Matveev’s notion of “complexity” ( ),3Mc  which computes the minimum 

number of true vertices of any spine of 3M  (see [15]), such as with the well-known 

Heegaard genus ( )3MH  of ,3M  which computes the minimum genus of a surface 

splitting 3M  as the union of two handlebodies (see [11]). 

Within crystallization theory, a quite obvious “parameter” showing how 

complicated a manifold nM  of arbitrary dimension n is, consists of the minimum 

order of an edge-coloured graph ( )γΓ,  representing ;nM  more precisely, the so- 

called gem-complexity of nM  is the non-negative integer defined as follows (see 
[4]): 

( ) ( ) ( ) .represents,12min
⎭
⎬
⎫

⎩
⎨
⎧ γΓ−Γ= nn MVMk #  

Naturally, to analyze the existing relationships between different notions of 
complexity, related to different representation theories, is an interesting and not 
trivial matter, to which many efforts have been devoted (see, for example, [3, 10, 15, 
16]. 

The present paper takes into account a specific problem inserted in this context, 
by dealing about the so-called minimal 3-manifolds (originally introduced in [7]), 
i.e., closed connected 3-manifolds admitting a strong relation between gem-
complexity and Heegaard genus1: 

                                                           
1Note that, as it will be pointed out at the beginning of the third paragraph, 

( ) ( )33 3 MMk H≥  holds for each 3-manifold .3M  
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( ) ( ).3minimal 333 MMkM H=⇔  

It is worth noting that each edge-coloured graph Γ representing 3M  has an 
associated “genus” (actually, an associated genus ( )Γρε  for each chosen 

permutation ε of the colour set: see the second paragraph for details), and that the 

Heegaard genus ( )3MH  of 3M  coincides with the minimum among all genera 

( )Γρε  associated to edge-coloured graphs representing .3M  As a matter of fact, a 

minimal 3-manifold 3M  admits a crystallization Γ  realizing both the minimum 

order and the minimum genus among all edge-coloured graphs representing ;3M  

moreover, the order of Γ  is the least possible associated to edge-coloured graphs 
representing manifolds with that genus (see the third paragraph, and in particular, 
Proposition 5). 

Now, it is very easy to check that the 3-sphere 3S  is a genus zero (actually, the 

only one) minimal 3-manifold: in fact, the standard crystallization of 3S  with two 
vertices has null associated genus. 

Moreover, as pointed out in [7], if 3M  is minimal with ( ) ,13 =MG  then 3M  

is PL-homeomorphic to either the real projective space ( ) 21,2 RP=L  or 1
~

2 SS ×  

(i.e., either the orientable or non-orientable 2S -bundle over ,1S  according to the 
orientability of the manifold). 

Hence, from the point of view of the comparison between different complexity 
notions, all minimal 3-manifolds, up to Heegaard genus one, turn out to have 
Matveev’s complexity zero, but at least one non-minimal 3-manifold exists with 
Matveev’s complexity zero (i.e., the lenticular space .))1,3(L  This simple fact 

shows that relationships between different representation theories is not trivial, and 
that suitable investigation is necessary. 

With this aim, the third paragraph of the present paper is devoted to characterize 
combinatorial representations of minimal 3-manifolds by means of edge-coloured 
graphs (Proposition 7 and Proposition 8), and to detect conditions yielding 
topological information about the represented manifolds (Proposition 11, Proposition 
12 and Corollary 13). 

Note that, in dimension four, a slightly different definition of minimality exists 
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(originally due to [7], too, but successively simplified in [5]). It involves a 

combinatorial invariant, called regular genus (defined for every PL-manifold nM  

and denoted by ( )),nMG  which extends to arbitrary dimension the notion of 

Heegaard genus: 

A closed connected 4-manifold 4M  is said to be minimal if ( ) ( ),44
1 MM G=μ  

where ( ) { ,,1min 4ˆ̂
4

1 Δ∈−=μ jigM ji  ( )γΓ,  represents },4M  jig ˆ̂  being the 

number of connected components of the subgraph obtained from Γ by deleting all     
i-coloured and j-coloured edges. 

In [5], it is proved that a closed connected 4-manifold 4M  is minimal if and 

only if ( ),1
~

34 SS ×≅ mM #  where 1
~

3 SS ×  denotes either the orientable or non-

orientable 3S -bundle over ,1S  according to the orientability of the manifold. This 
fact improves the results obtained in [7; Theorem 6.12], and gives positive answer to 
some conjectures (actually, to a stronger version of one of them) settled in [7; page 
133]. 

The present paper may be considered as a first step toward a similar, possible 
characterization of minimal 3-manifolds: 

Conjecture. A closed connected 3-manifold ( )333 S≠MM  is minimal if and 

only if ,21
3

hNNNM ### "=  where ( )3Mh G=  and, for each ,...,,1 hi =  

iN  is homeomorphic to either ( ) 31,2 RP=L  or .1
~

2 SS ×  

In fact, results obtained in the third paragraph prove the above conjecture to be 
true up to regular genus four and for each existing crystallization catalogue, and 
enable to construct efficient catalogues of rigid crystallizations, containing - if any - 
all prime minimal 3-manifolds up to a fixed genus. 

2. A Quick Trip through Crystallization Theory 

As already pointed out, representation theory via edge-coloured graphs is useful 
to deal with the whole class of piecewise linear (PL) manifolds, without assumptions 
about the dimension, the connectedness, the orientability or the boundary properties. 
In the present work, however, we restrict our attention to closed and connected PL-
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manifolds of dimension ;3=n  hence, we will briefly review only basic notions and 
results of the theory concerning this particular case. 

A 4-coloured graph (without boundary) is a pair ( ),, γΓ  where =Γ  

( ) ( )( )ΓΓ EV ,  is a regular multigraph (i.e., it may include multiple edges, but no 

loop) of degree four and ( ) { }3,2,1,0: 3 =Δ→Γγ E  is a proper edge-colouration 

(i.e., it is injective when restricted to edges incident to any vertex .))(Γ∈Vv  

The elements of the set { }3,2,1,03 =Δ  are said to be colours of Γ; thus, for 

every ,3Δ∈i  an i-coloured edge is an element ( )Γ∈ Ee  such that ( ) .ie =γ  For 

every 3, Δ∈ji  let îΓ  ( )ji,.resp Γ  be the subgraph obtained from ( )γΓ,  by 

deleting all the edges of colour i (resp. by deleting all the edges of colour 
{ }).,3 jic −Δ∈  The connected components of ji,Γ  ( )îresp. Γ  are said to be 

{ }ji, -coloured cycles (resp. î -residues) of Γ, and their number is denoted by jig ,  

( ).resp. îg  A 4-coloured graph ( )γΓ,  is called contracted iff for each ,3Δ∈i  the 

subgraph îΓ  is connected ( ).,1iffi.e., 3ˆ Δ∈∀= igi  

Every 4-coloured graph ( )γΓ,  may be thought of as the combinatorial 

visualization of a 3-dimensional labelled pseudocomplex (see [13]) ( ),ΓK  which is 

constructed according to the following instructions: 

• for each vertex ( ),Γ∈Vv  take a 3-simplex ( ),vσ  with its vertices labelled 0, 

1, 2, 3; 

• for each j-coloured edge between v and ( )( ),, Γ∈Vwvw  identify the 

bidimensional faces of ( )vσ  and ( )wσ  opposite to the vertex labelled j, so that 

equally labelled vertices coincide. 

In case ( )ΓK  triangulates a (closed) PL 3-manifold ,3M  then ( )γΓ,  is said to 

represent ,3M  or to be a ( )anifoldmncodederaphggem =gem  of .3M 2 

Finally, a 4-coloured graph representing a (closed) 3-manifold 3M  is said to be 

                                                           
2Construction of ( )ΓK  directly ensures that, if ( )γΓ,  is a gem of ,3M  then 3M  turns out 

to be orientable (resp. non-orientable) iff Γ is bipartite (resp. non-bipartite). 
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a crystallization of 3M  if it is also a contracted graph; by construction, it is not 
difficult to check that this is equivalent to require that the associated pseudocomplex 
( )ΓK  contains exactly one i-labelled vertex, for every .3Δ∈i  The representation 

theory of PL-manifolds by edge-coloured graphs is often called crystallization 

theory, since every PL-manifold nM  is proved to admit a crystallization: see 
Pezzana theorem and its subsequent improvements ([9] or [1]). 

Unlike greater dimensions, crystallizations of 3-manifolds may be easily 
recognized by means of convenient combinatorial conditions: 

Proposition 1. Let ( )γΓ,  be a contracted 4-coloured graph, with ( ) .pV =Γ#  

Then ( )γΓ,  is a crystallization of a 3-manifold 3M  iff: 

(a) ;22030201 pggg +=++  

(b) for every permutation ( )3210 ,,, εεεε  of ,3Δ  .3210 εεεε = gg  

Another important advantage of the assumption 3=n  consists of the possibility 
of representing all closed connected 3-manifolds by a restricted class of 
crystallizations, i.e., the so-called rigid ones. 

Definition 1. A pair ( )fe,  of distinct i-coloured edges in a 4-coloured graph 

( )γΓ,  is said to be a mρ -pair ( )3,2=m  if and only if e and f both belong to 

exactly m bicoloured cycles of Γ. By a ρ-pair, we mean a mρ -pair, for { }.3,2∈m  

A crystallization ( )γΓ,  of a 3-manifold 3M  is said to be rigid if it contains no 

ρ-pair. 

Definition 2. We will say that a 3-manifold 3M  contains a handle if a 

decomposition ( )1
~

23 SS ×= #JM  holds, where 1
~

2 SS ×  denotes either the 

orientable or non-orientable 2S -bundle over 1S  and J is a suitable non-empty 3-

manifold (possibly homeomorphic to .)3S  In the opposite case, 3M  is said to be 

handle-free. 

Proposition 2 [4, 14]. Every closed connected 3-manifold 3M  admits a rigid 
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crystallization. Moreover, if 3M  is handle-free and ( )γΓ,  is any gem of ,3M  with 

( ) ,pV =Γ#  then a rigid crystallization ( )γΓ,  of 3M  exists, with ( ) .pV ≤Γ#  

The following result explains the topological meaning of a special configuration 
involving an edge for each colour, called quartet. 

Proposition 3 [14]. Let ( )γΓ,  be a gem of the closed connected 3-manifold 

.3M  Suppose there exist four edges { }3210 ,,, eeee  in ( )γΓ,  such that ( ) ,iei =γ  

for each ,3Δ∈i  and { }ji ee ,  belongs to the same { }ji, -coloured cycle, for each 

., 3Δ∈ji  If { }ii vu ,  denote the end-points of ,ie  for each ,3Δ∈i  with the 

assumption that an even number of edges connects iu  to 1+iu  along the { }1, +ii -

coloured cycle, for ,3Z∈i  let H be the graph obtained from ( )γΓ,  by deleting 

{ }3210 ,,, eeee  and by connecting vertices ,0u  ,1u  ,2u  3u  ( )3210 ,,,. vvvvresp  

to a new vertex x (resp. y). Then: 

• if H is connected, then it is a gem of a 3-manifold 3N  so that #33 NM =  

( );1
~

2 SS ×  

• if H has two connected components 1H  and ,2H  then 1H  ( )2. Hresp  is a 

gem of a 3-manifold 3
1N  ( )3

2. Nresp  so that .3
2

3
1

3 NNM #=  

Conversely, the topological notion of connected sum of PL-manifolds has an 
easy combinatorial realization on edge-coloured graphs (actually, in arbitrary 
dimension): 

Definition 3. Let ( )γ′Γ′,  and ( )γ ′′Γ ′′ ,  be two 4-coloured graphs. Let us 

consider two vertices ( )Γ′∈′ Vv  and ( )Γ ′′∈′′ Vv  and let { }Γ ′′Γ′ ′′′ vv ,#  be the       

4-coloured graph obtained from Γ′  and Γ ′′  by deleting { }vv ′′′,  and welding the 

“hanging” edges of the same colour .3Δ∈c  Then the process leading from ,Γ′  Γ ′′  

to { }Γ ′′Γ′ ′′′ vv ,#  is said to be a graph connected sum. 

Proposition 4 [9]. If Γ′ ( )Γ ′′.resp  is a gem of the 3-manifold 3
1M  ( ),. 3

2Mresp  
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then { }Γ ′′Γ′ ′′′ vv ,#  is a gem of the 3-manifold ,3
2

3
1 MM #  obtained by connected 

sum of 3-manifolds 3
1M  and .3

2M  

Among essential constructions and results of crystallization theory, let us recall 
the existence of a complete (finite) set of graph-moves - called dipole moves - which 
allow to translate the (PL)-homeomorphism problem for closed n-manifolds into an 
equivalence problem for edge-coloured graphs: for any dimension n, it has been 
proved that two edge-coloured graphs do represent the same PL n-manifold if and 
only if they can be obtained one each other by a finite sequence of dipole moves: see 
[8]. 

In dimension ,3=n  in particular, another combinatorial move on gems exists, 

not affecting the homeomorphism class of the represented manifold. 

Definition 4. Let ( )γΓ,  be a gem of a closed connected 3-manifold .3M  If 

there exists an { }ji, -coloured cycle of length 1+m  and a { }lk, -coloured cycle of 

length 1+n  in Γ { }( )3,,,with Δ=lkji  having exactly one common vertex ,v  

then ( )γΓ,  is said to contain a ( )nm, -generalized dipole of type { }ji,  at vertex .v  

To cancel a ( )nm, -generalized dipole from a gem ( )γΓ,  means to perform on 

( )γΓ,  the operation visualized in Figure 1 ( ).5;3casein == nm  

 

Figure 1 
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We refer to the cancellation of a ( )nm, -generalized dipole and to its inverse 

procedure as generalized dipole moves. They both connect different gems of the 
same 3-manifold, as proved in [8], too. 

Finally, we resume in dimension 3=n  the notion of regular genus.3 

If Γ is a bipartite (resp. non-bipartite) crystallization of a 3-manifold ,3M  then 

for any permutation ( )3210 ,,, εεεε=ε  of the colour set 3Δ  a regular embedding4 

εε →Γ Fi :  is proved to exist (see [9] or [1], together with their references), where 

εF  is the orientable (resp. non-orientable) surface of genus ( ) =−=Γρ εεε 120 ,g  

131, −εεg ( )( ).2genusofresp. Γρ⋅ ε  

The regular genus ( )Γρ  of ( )γΓ,  is, by definition, the minimum genus ( ),Γρε  

among all permutations ε of ,3Δ  while the regular genus of a 3-manifold 3M  is 

defined as: 

( ) { ( ) ( ) }.represents,min 33 MM γΓΓρ=G  

Note that, as already pointed out in the first paragraph, regular genus extends to 

arbitrary dimension, the well-known notion of Heegaard genus of a 3-manifold :3M  

in fact the equality ( ) ( )33 MM HG =  holds for any :3M  see again [9] or [1]. 

3. Representing Minimal 3-manifolds 

By means of the notions summarized in the second paragraph, we are now able 
to state the original definition of minimal 3-manifold: 

Definition 5 [7]. A closed connected 3-manifold 3M  is said to be minimal if 

( ) ( ),62 33 MMp G=−∗  where ( ) { ( ) ( ) }.represents,min 33 MVMp γΓΓ=∗ #  

                                                           
3Actually, regular genus subsists for PL-manifolds of arbitrary dimension and plays a 

central role within crystallization theory, since it enables to obtain important classification 
results on PL-manifolds: see [1; Section 5]. 

4A cellular embedding i of a 4-coloured graph Γ into a surface is said to be regular if there 
exists a permutation ε of 3Δ  such that the regions of i are bounded by the images of 

{ }1, +εε jj -residues of Γ ( ).4Z∈j  
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Note that relation ( ) ( )33 62 MMp G≥−∗  ( ( ) ( ))33 3ly,equivalentor, MMk H≥  

holds for each 3-manifold ,3M  in virtue of the equality ( ) 120, −=Γρ εεε g  and of 

Proposition 1(a) and (b), together with the definition itself of regular genus of .3M  

The first result we are going to prove (Proposition 5) states that - as pointed out 

in the Introduction - a minimal 3-manifold 3M  admits a crystallization Γ  realizing 
both the minimum order and the minimum genus among all edge-coloured graphs 

representing ;3M  moreover, the order of Γ  is the least possible associated to edge-

coloured graphs representing manifolds with that genus and Γ  exactly realizes the 
minimum genus with respect to any permutation of the colour set. 

On the other hand, it is not difficult to check that, if 3M  is assumed to be a 
lenticular space ( ),, qpL  then the following facts occur: 

• In case 1=q  and ,2≠p  the standard genus one crystallization qp,Λ  of 

( )qpL ,  (with  4p vertices: see [5; Figure 1]) is minimal with respect to the number 

of vertices, but qp,Λ  contains at least one ( )3,3 -generalized dipole of type { },, 10 εε  

where ( )3210 ,,, εεεε=ε  is the permutation of 3Δ  so that ( ) ( ) .1,, =Λρ=Λρ ε qpqp  

Hence, by elimination of the generalized dipole, a gem qp,Λ′  of ( )qpL ,  is obtained, 

with ( ) ( ) ( ),,,, qpqpqp Λρ≠Λρ<Λ′ρ ε′ε′  where ( ).,,, 3120 εεεε=ε′  

• In case ,1≠q  the standard genus one crystallization qp,Λ  of ( )qpL ,  (with 

4p vertices, too) is minimal with respect to genus; however, qp,Λ  contains at least 

one cluster, i.e., a nine-vertex structure consisting in four bicoloured cycles of length 
four with a common vertex, which can be easily removed giving rise to a gem of 
( )qpL ,  with two less vertices (see Figure 2, or [14; paragraph 4.1.4] and [6; 

Proposition 6.1] for details). 

This is a confirmation of the known fact that ( )1,2L  is the only lenticular space 

which turns out to be a minimal 3-manifold. 
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Figure 2 

Proposition 5. Let 3M  be a minimal 3-manifold and let ( )γΓ,  be a 4-coloured 

graph representing 3M  with ( ) ( ).3MppV ∗==Γ#  Then: 

(a) ( )γΓ,  is a crystallization of ;3M  

(b) for every permutation ε of ,3Δ  ( ) ( );3MG=Γρε  

(c) for every ,, 3Δ∈ji  .
6

4+
=

pgij  

Proof. Property (a) is a direct consequence of the fact that Γ  realizes the 

minimal order among all edge-coloured graphs representing :3M  in fact, given any 

(non-contracted) edge-coloured graph Γ representing ,3M  a (non-void) finite 
sequence of dipole moves exists (more precisely: a finite sequence of 1-dipole 
eliminations exists: see [8] or [9] for details) giving rise to a crystallization Γ  of 

3M  with ( ) ( ).Γ<Γ VV ##  

Let now ( )3210 ,,, εεεε=ε  be a permutation of 3Δ  such that ( ) ( ).Γρ=Γρε  

Then from Proposition 1(a) and (b), the equality pggg +=++ εεεεεε 4222 202110  

follows. On the other hand, ( ) ( ) 120 −=Γρ=Γρ εεε g  implies ,20εε≥ ggij  ,, 3Δ∈∀ ji  

while the minimality of 3M  implies ( ) ( ) .26 33 +== ∗ MMpp G  Hence, 

20202110 62224 εεεεεεεε ≥++=+ ggggp  

( ( ) ) ( ( ) ) .41616 3 pM +=+≥+Γρ= ε G  
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As a consequence, ,20, εε= gg ji  3, Δ∈∀ ji  and ( ) ( )3MG=Γρε  follow. This 

proves that Γ  also realizes the minimal genus among all 4-coloured graphs 

representing 3M  (i.e., the Heegaard genus of ,)3M  for any permutation ε of 3Δ  

(property (b)), and that the equality 
6

4+
=

pgij  is satisfied 3, Δ∈∀ ji  (property 

(c)). 
 

Proposition 6. Let 3
1M  and 3

2M  be two minimal 3-manifolds. Then 3
2

3
1 MM #  

is minimal, too. 

Proof. In virtue of Proposition 5, let ( )11, γΓ  ( ( ))22,.resp γΓ  be a 4-coloured 

graph representing 3
1M  ( )3

2.resp M  with ( ) ( ),3
111 MppV ∗==Γ#  ( ) ( ),3

11 MG=Γρε  

ε∀  and ( ) ( )3
1

3
1 62 MMp G=−∗  ( ) ( ),.resp( 3

222 MppV ∗==Γ#  ( ) ( ),3
22 MG=Γρε  

ε∀  and ( ) ( )).62 3
2

3
2 MMp G=−∗  By making use also of the additivity property of 

Heegaard genus (see [11]) and of the construction of graph connected sum (see 
Definition 3), it is easy to check that 

( ) ( ) ( ) ( ) 22121
3
2

3
1 −Γ+Γ=ΓΓ≤∗ VVVMMp #####  

( ) ( ) ( ) ( ) 2662 3
2

3
1

3
2

3
1 ++=−+= ∗∗ MMMpMp GG  

( ) .26 3
2

3
1 += MM #G  

Since ( ) ( ) 26 33 −≤ ∗ NpNG  holds for any 3-manifold ,3N  the equality 

( ) ( ) 26 3
2

3
1

3
2

3
1 +=∗ MMMMp ## G  follows; hence, 3

2
3
1 MM #  is a minimal 3-

manifold, too, and the edge-coloured graph 21 ΓΓ #  (in fact: a crystallization, like 

1Γ  and )2Γ  realizes its minimality. 
 

Proposition 7. Let 3M  be a minimal 3-manifold. Then: 

(a) if 3M  is handle-free, then a rigid crystallization exists realizing the 

minimality of ;3M  
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(b) if ( ( )),1
~

23 SS ×= hJM ##  ,1≥h  then a non-negative integer ,s  hs ≤≤0  

exists, so that ( ( ))1
~

2 SS ×sJ ##  is minimal and a rigid crystallization exists 

realizing the minimality of ( ( )).1
~

2 SS ×sJ ##  

Proof. As stated in Proposition 2, for each handle-free 3-manifold ,3M  the 

minimal order of an edge-coloured graph representing 3M  is realized by a rigid 
crystallization. Hence, in virtue of Proposition 5, statement (a) directly follows. 

Let us now assume ( ( )),1
~

23 SS ×= hJM ##  .1≥h  Then the minimality of 

3M  and the additivity of Heegaard genus easily yield: 

( ( ( ))) ( ( ( ))) 26 1
~

21
~

2 +×=×∗ SSSS hh JJp #### G  

( ) ( ( )) ( ) .266266 1
~

2 ++=+×+= hJJ h GGG SS#  

If ( )Npr
∗  denotes the minimum order of a rigid crystallization representing N, then 

[4; Proposition 8(b)] implies 

( ) { ( ( ( ))) ( ) { }}....,,1,06min 1
~

23 hsshJpMp sr ∈−+×= ∗∗ SS##  

Let { }hs ...,,1,0∈  be the non-negative integer so that 

( ) ( ( ( ))) ( ).61
~

23 shJpMp sr −+×= ∗∗ SS##  

Hence, ( ( ( ))) ( ) ( ) ,26661
~

2 ++=−+×∗ hJshJp sr GSS##  which yields 

( ( ( ))) ( ) ( ( ( ))) .26266 1
~

21
~

2 +×=++=×∗ SSSS ssr JsJJp #### GG  

The minimality of ( ( ))1
~

2 SS ×sJ ##  is so proved, together with the existence of a 

rigid crystallization realizing it, as item (b) states. 
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Remark. The standard order eight (non-rigid) crystallization of 1
~

2 SS ×  realizes 

the minimality of ( ) ( ).62628: 1
~

21
~

21
~

2 SSSSSS ×⋅+=+==×× ∗ Gp  

Proposition 8. Let 3M  be a minimal handle-free 3-manifold and ( )γΓ,  be a 

4-coloured graph representing 3M  with ( ) ( ).3MppV ∗==Γ#  Then: 

(a) ( )γΓ,  is a rigid crystallization of ;3M  

(b) ( ) ;6mod2≡Γ= pp  

(c) for every ,, 3Δ∈ji  ;
6

4+
=

pgij  

(d) Γ  lacks in generalized dipoles; 

(e) Γ  is cluster-less, i.e., no vertex ( )Γ∈Vv  exists, so that four bicoloured 

cycles containing v have length four and altogether involve exactly nine vertices. 

Proof. Item (a) directly follows from item (a) of Proposition 7; item (b) holds in 
virtue of the definition itself of minimal 3-manifold; item (c) directly follows from 
item (c) of Proposition 5. On the other hand, the existence of a generalized dipole in 

Γ  would imply the existence of a 4-coloured graph representing 3M  with lower 

genus than ,Γ  with respect to a suitable permutation, against the hypothesis ( ) =Γρε  

( )3MG  for any permutation ε (see Figure 1, or [8] for details): this proves item (d). 

Finally, the existence in Γ  of a so called cluster-type vertex (i.e., a vertex ( )Γ∈Vv  

so that ( )γΓ,  admits four bicoloured cycles containing v with length four, which 

altogether involve exactly nine vertices) would imply the existence of a 4-coloured 

graph representing 3M  with less vertices than ,Γ  against the hypothesis ( ) =ΓV#  

( )3Mp∗  (see Figure 2, or [14; Paragraph 4.1.4] and [6; Proposition 6.1] for details): 

this proves item (e). 
 

Corollary 9. Let 3M  be a minimal handle-free 3-manifold and ( )γΓ,  be a 4-

coloured graph realizing its minimality, with ( ) ( ).2>=Γ ppV#  Then, for every 
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,, 3Δ∈ji  a non-negative integer ijh  exists, so that Γ  admits: 

• { }jihij ,22 ≥+ -cycles of length four; 

• 0( =ijij rr  if ;0=ijh  ijij hr ≤≤1  otherwise) { }ji, -cycles of length ,...,,1 ijr
ijij ll  

with ,8≥s
ijl  ijrs ...,,1=∀  and ∑ =

+=ijr
s ijij

s
ij hrl1 ;26  

• all other 
( )

6
68 ijij rhp +−−

 { }ji, -cycles of length six. 

Proof. In virtue of Proposition 5(c), 
6

4+
=

pgij  for every ., 3Δ∈ji  On the 

other hand, the hypothesis of 3M  being handle-free implies Γ  to be a rigid 
crystallization (Proposition 7(a)), and this - under the hypothesis 2>p -prevents  

the existence of length two { }ji, -cycles. The statement now easily follows by direct 

calculation. 
 

Proposition 10. Let 3M  be a minimal 3-manifold and ( )γΓ,  be a 4-coloured 

graph realizing its minimality. If two 4-coloured graphs ( )11, γΓ  and ( )22 , γΓ    

exist, so that ,21 ΓΓ=Γ #  then ( )1
3
1 Γ= KM  ( ( ))2

3
2. Γ= KMresp  is a minimal 

3-manifold, and ( )11, γΓ  ( ))22,. γΓresp  realizes its minimality. 

Proof. By the hypothesis on ,Γ  
6

4+
=

pgij  for every 3, Δ∈ji  (Proposition 

5(c)). On the other hand, if ,21 ΓΓ=Γ #  then ( ) ( ) ( ) 221 −Γ+Γ=Γ VVV ###  

and 1−′′+′= ijijij ggg  (where, for every ,, 3Δ∈ji  ,ijg  ijg ′  and ,ijg ′′  respectively, 

denote the number of { }ji, -cycles in ,Γ  1Γ  and .)2Γ  Let us now assume 

( )
6

41 +Γ<′ Vgij
#  ( ) .6

4ly,equivalent or, 2 ⎟
⎠
⎞

⎜
⎝
⎛ +Γ<′′ Vgij

#  As a consequence, we have 

( ) ( ) ( ) ,6
416

1016
81 21 +=−+Γ=−+ΓΓ<−′′+′= pVVVggg ijijij

##+#  

which contradicts the hypothesis on .Γ  Hence, ( )
6

41 +Γ
=′ Vgij
#  and =′′ijg  
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( )
6

42 +ΓV#  hold for every ,, 3Δ∈ji  which, respectively, imply ( ) =Γρε 16  

( ) 21 −ΓV#  and ( ) ( ) 26 22 −Γ=Γρε V#  for any permutation ε of .3Δ  On the other 

hand, it is easy to check that both 3
1M  and 3

2M  cannot be represented by a 4-

coloured graph with less vertices (resp. with a strictly lower genus) than 1Γ  and ,2Γ  

since otherwise Γ  could not realize the minimality of .3M  This proves that 

( )11, γΓ  and ( ),, 22 γΓ  respectively, realize the minimality of 3
1M  and .3

2M  
 

Proposition 11. Let 3M  be a minimal (handle-free) 3-manifold with 

( ) 23 ≥MG  and ( )γΓ,  be a 4-coloured graph realizing its minimality. If ( )γΓ,  

admits a vertex v  so that both the { }ji, -cycle and the { }lk, -cycle containing v  

have length four (( )lkji ,,,  being a suitable permutation of ),3Δ  then two minimal 

3-manifolds 3
1M  and 3

2M  exist ( ),2,1,33 =∀≠ iMwith i S  so that .3
2

3
1

3 MMM #=  

Proof. Let { }3210 ,,, vvvvv =  be the vertex set of the { }ji, -cycle of ( )γΓ,  

containing ,v  with rv2  i-adjacent to 12 +rv  and j-adjacent to ,12 −rv  for 1,0=r  

(indices being assumed in ,)4Z  and let { }3210 ,,, uuuuv =  be the vertex set of the 

{ }lk, -cycle of ( )γΓ,  containing ,v  with ru2  k-adjacent to 12 +ru  and l-adjacent to 

,12 −ru  for 1,0=r  (indices being assumed in .)4Z  In virtue of Proposition 8, ( )γΓ,  

is a rigid crystallization lacking in generalized dipoles. Hence, 22 uv =  necessarily 

follows, together with { } { } ;,, 3131 ∅=uuvv ∩  moreover, 1v  and 3v  (resp. 1u  and 

)3u  belong to the same { }lk. -cycle (resp. { }ji, -cycle). 

Note now that the i-coloured edge having an end-point in 3u  (resp. in ),1u  the  

j-coloured edge having an end-point in 1u  (resp. in ,)3u  the k-coloured edge having 

an end-point in 3v  (resp. in )1v  and the l-coloured edge having an end-point in 1v  

(resp. in )3v  form a quartet Q (resp. ,)Q′  since they pairwise belong to the same 

bicoloured cycle of ( )., γΓ  Moreover, note that if both the quartets Q and Q′  

consist in four incident edges, then ( )γΓ,  is the (order eight) standard crystallization 

of ( ),1,2L  against the hypothesis ( ) .23 ≥MG  
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The thesis is now a direct consequence of Proposition 3, applied to a quartet 

chosen between the above ones so that its edges are not incident: in fact, since 3M  

is assumed to be handle-free, ( )γΓ,  splits as a connected sum and the fact that 

( )γΓ,  realizes the minimality of 3M  prevents the case that one of the two 

components represents .3S  
 

Proposition 12. Let 3M  be a minimal (handle-free) 3-manifold and ( )γΓ,  be 

a 4-coloured graph realizing its minimality. Then for every pair ,, 3Δ∈ji  

( ) .13 −≤ Mhij G  

Moreover, in case ( ) :23 ≥MG  

• If a pair 3, Δ∈ji  exists, so that ( ) ,23 −≥ Mhij G  then two minimal 3-

manifolds 3
1M  and 3

2M  exist, so that .3
2

3
1

3 MMM #=  

• If a pair 3, Δ∈ji  exists, so that ( ) 33 −= Mhij G  and ,1≤ijr  then two 

minimal 3-manifolds 3
1M  and 3

2M  exist, so that .3
2

3
1

3 MMM #=  

Proof. In virtue of Corollary 9, Γ  admits 
6

68 ijhp ⋅−−
 { }ji, -cycles of 

length greater or equal to six. On the other hand, by Proposition 8(c), 

( ) .126
68 3

ijijij
ij hMhg

hp
−−=−−=

⋅−−
G  Hence, ( ) 13 −≤ Mhij G  directly 

follows, for each pair ., 3Δ∈ji  

Let us now assume the existence of a pair 3, Δ∈ji  so that ( ) .23 −≥ Mhij G  

Then the above calculation implies that Γ  contains at most one { }ji, -cycle of 

length greater or equal to six. Since Γ  contains at least two { }lk, -cycle of length 

four (where { } { }jilk ,, 3 −Δ=  is assumed), the rigidity of Γ  implies the existence 

of at least one { }ji, -cycle of length four and one { }lk, -cycle of length four having 

common vertices. Hence, the second point of the statement follows by Proposition 
11. 
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Let us now assume the existence of a pair 3, Δ∈ji  so that ( ) 33 −= Mhij G  

and .1≤ijr  Then the above calculation (by means of the hypothesis )3)( 3 −= Mhij G  

implies that Γ  contains exactly two { }ji, -cycle of length greater or equal to six; 

moreover, at least one of them turns out to have length six (since also 1≤ijr  is 

assumed). Note that, if Γ  contains an { }ji, -cycle of length four and a { }lk, -cycle 

of length four having common vertices, then the thesis follows by Proposition 11. 
So, we can restrict our attention to the case that each { }lk, -cycle of length four of 

Γ  has vertices in common only with { }ji, -cycles of length greater or equal to six. 

The fact that Γ  lacks in ρ-pairs and generalized dipoles implies that each { }ji, -

cycle of length six has exactly two pairs of vertices (each pair consisting of vertices 
of the same bipartition class, if Γ  is a bipartite graph) belonging to a { }lk, -cycle of 

length four. 

Now, let us recall a basic result of crystallization theory, which allows to 
directly obtain a presentation for the fundamental group of a PL n-manifold from 
any edge-coloured graph representing it (see [9] for details): in particular, if ( )γΓ,  

is a crystallization of a 3-manifold 3M  and if 3, Δ∈ji  are two arbitrarily chosen 

colours, then the generator set for ( )3
1 Mπ  is in bijection with the set of all { }ji, -

coloured cycles of Γ but one, while relators follow from all { }( )ji,3 −Δ -coloured 

cycles but one. 

So, if A (resp. B) denotes the generator of the { }ji, -presentation RX  of the 

fundamental group ( )3
1 Mπ  of 3M  corresponding to the { }ji, -cycle of Γ  of 

length six (resp. to the other { }ji, -cycle of Γ  of length greater or equal to six), 

then R surely contains relation ( ) 121 =−AB  (twice), and generator A appears only in 

one other relation .Rr ∈  By setting 1=B  and by deleting relation ,r  then a new 

presentation RX ′′  of ( )3
1 Mπ  is obtained, where R′  contains relation ,12 =A  

and no other relation of R′  contains generator A. Hence, ( )3
1 Mπ  splits into the free 

product between 2Z  and a suitable group G, and so the last point of the statement 

follows by Kneser’s theorem (see [12; Theorem 7.1]). 
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Corollary 13. Let 3M  be a minimal 3-manifold, .33 S≠M  If ( ) ,33 ≤MG  

then ,1
3

hNNM ##"=  where ( )3Mh G=  and, for each ,...,,1 hi =  iN  is 

homeomorphic to either ( ) 31,2 RP=L  or .1
~

2 SS ×  

Proof. First of all note that, if 3M  is not handle-free, then ,3 HMM r#=  

where { ( )},...,,1 3Mr G∈  Hr#  denotes the connected sum of r copies of 

1
~

2 SS ×  and M  is an handle-free minimal 3-manifold of genus ( ) rM −3G  

( 3S=M  in case ( )).3Mr G=  Hence, the attention may be restricted to the case of 

3M  being a minimal handle-free 3-manifold. 

Now, apart from the well-known case of genus one minimal 3-manifolds, the 

assumption ( ) 33 ≤MG  easily implies that each 4-coloured graph realizing the 

minimality of 3M  satisfies the hypothesis of one of the statements of Proposition 12 

concerning manifolds with ( ) ;23 ≥MG  the thesis now directly follows. 
 

4. Cataloguing Minimal 3-manifolds 

Proposition 12, together with Proposition 7 and Proposition 8, yield a list of 
conditions which have to be satisfied by any gem realizing the minimality of a 
minimal prime handle-free 3-manifold. 

These conditions - which are collected and simplified in the following statement 
- may be used either to examine existing crystallization catalogues, in order to 
recognize minimal 3-manifolds possibly represented in them, or to produce new 
reduced catalogues of gems with increasing order, representing all minimal prime 
handle-free 3-manifolds up to a given gem-complexity. 

Proposition 14. Let 3M  be a minimal 3-manifold with gem-complexity 3k, 

Z∈k  (i.e., with ( ) 263 +=∗ kMp  and ( ) ).3 kM =G  Then 3M  is represented 

(possibly by means of connected sums and/or adding of handles) by the catalogue of 
edge-coloured graphs ( )γΓ,  satisfying the following conditions: 

• ( ) 26 +=Γ hV#  with ;kh ≤  
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• ;,,1 3Δ∈∀+= jihgij  

• ( )γΓ,  is a rigid crystallization; 

• if ,2≥h  then ( )γΓ,  contains at least two { }ji, -cycles with length greater 

or equal to six, ;, 3Δ∈∀ ji  in particular, if ( )γΓ,  contains exactly two { }ji, -

cycles with length greater or equal to six ( ),, 3Δ∈ji  then they both have length 

greater or equal to eight; 

• if ,2≥h  then for any vertex v of ( )γΓ,  and for any permutation 

( )3210 ,,, εεεε=ε  of ,3Δ  at least one between the { }10 , εε -cycle of ( )γΓ,  

containing v and the { }32 , εε -cycle of ( )γΓ,  containing v have length greater or 

equal to six; 

• ( )γΓ,  lacks in generalized dipoles. 

Proof. First of all note that, if ,1≤h  then the first three conditions are satisfied 

only by the standard order two crystallization of 3S  and by the standard order eight 

crystallization of ( ) ,1,2 3RP=L  for which also the last condition holds. If 2≥h  is 

assumed, then the statement follows almost directly - as already pointed out - from 
Proposition 12, together with Proposition 7 and Proposition 8. Note, however, that 
the condition of ( )γΓ,  being cluster-less is not included in the above list: in fact, it 

is easy to check that the condition about bicoloured cycles of opposite colours 
containing the same vertex is actually stronger than cluster-less one (for details, see 
[6; Definitions 6.1-6.2 and Proposition 6.3] together with [14; Proposition 24]). 
 

Remark. Note that - apart from the well-known case of minimal 3-manifolds of 
genus zero and one - a gem ( )γΓ,  satisfying all conditions of Proposition 14 must 

have at least 26 vertices. In fact, if ( )γΓ,  contains no { }ji, -cycle with length six 

and exactly two { }ji, -cycles with length greater or equal to eight, 2=ijr  holds, 

and hence 2≥ijh  follows, i.e., ( )γΓ,  contains at least four { }ji, -cycles with 

length four. In this case, ( ) 324482 =⋅+⋅≥ΓV#  follows. On the other hand, if 

( )γΓ,  contains at least three { }ji, -cycle with length greater or equal to six, then 

( ) 264263 =⋅+⋅≥ΓV#  follows. 
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A direct analysis of the existing crystallization catalogue ( )30C ( ( ) )30~.resp C  

representing all orientable (resp. non-orientable) 3-manifolds admitting coloured 
triangulations up to 30 tetrahedra (see [6], together with previous work [14], for the 
orientable case and [2], together with previous work [4], for the non-orientable case) 

enables to check that the standard order two crystallization of 3S  and the standard 

order eight crystallization of ( ) 31,2 RP=L  are the only elements of the above 

catalogues satisfying all conditions of Proposition 14. This proves - without making 

use of the topological recognition of the manifolds involved in catalogues ( )30C  and 
( )30~
C -the validity of the conjecture stated in paragraph 1 up to regular genus four: 

Corollary 15. Let 3M  be a closed connected minimal 3-manifold, .33 S≠M  If 

( ) ,43 ≤= hMG  then ,21
3

hNNNM ### "=  where iN  is homeomorphic to 

either ( ) 31,2 RP=L  or ,1
~

2 SS ×  for each ....,,1 hi =  

In a forthcoming paper, conditions listed in Proposition 14 will be used to 
implement a computer program generating a catalogue of all prime handle-free 
minimal 3-manifolds (if any) with fixed gem-complexity. 
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