Far East Journal of Mathematical Sciences (FJMS)

Volume 40, Number 2, 2010, Pages 293-299

Published Online: June 19, 2010

This paper is available online at http://pphmj.com/journals/fjms.htm

© 2010 Pushpa Publishing House

ONE-POINT EXTENSIONS OF λ-KOSZUL ALGEBRAS

WANG YUE-FENG¹, PAN YUAN², LU JIA-FENG³ and CHEN MIAO-SEN^{1,*}

^{1,3}Department of Mathematics

Zhejiang Normal University

Jinhua, Zhejiang, 321004, P. R. China

e-mail: yfwlyr@qq.com

mschen@zjnu.edu.cn

jiafenglv@zjnu.edu.cn

²Yiwu Industrial and Commercial College

Yiwu, Zhejiang, 322000, P. R. China

e-mail: mathpanyuan@126.com

Abstract

In this paper, we mainly discuss the one-point extensions of λ -Koszul algebras. More precisely, we mainly discuss the " λ -Koszulity" of the extension algebra of the forms $E_M^A:=\begin{pmatrix} A & M \\ 0 & \mathbb{k} \end{pmatrix}$, where \mathbb{k} is a fixed ground field, A is a positively graded algebra and M is a finitely generated graded A-module.

1. Preliminaries

 λ -Koszul algebra, another class of "Koszul-type" algebras possessing a lot of beautiful homological properties similar to Koszul algebras (see [5]), was first introduced by Lü in [3] in 2009. However, it is a pity that [3] does not provide enough examples of such algebras. Therefore, it is important, of course interesting to

2010 Mathematics Subject Classification: 16S37, 16W50, 16E30, 16E40.

Keywords and phrases: λ-Koszul algebras, one-point extension.

*Corresponding author

Received December 20, 2009

construct new λ -Koszul algebras from the given ones. In this paper, by using the matrix-construction method: "One-point extension", we mainly discuss how to construct new λ -Koszul algebras from the known ones. More precisely, we mainly discuss the conditions for the extension algebra

$$E_M^A := \begin{pmatrix} A & M \\ 0 & \mathbb{k} \end{pmatrix}$$

to be λ -Koszul, where A is a positively graded k-algebra and M is a finitely generated graded A-module.

The name of *positively graded algebra* will stand for a graded \mathbbm{k} -algebra $A=\oplus_{i\geq 0}A_i$ such that $A_0=\mathbbm{k}\times\cdots\times\mathbbm{k}$ is a finite product of the fixed ground field \mathbbm{k} and A_1 is of finite dimension as a \mathbbm{k} -space. A graded \mathbbm{k} -algebra $A=\oplus_{i\geq 0}A_i$ is called *locally finite* if for all $i\geq 0$, $\dim_{\mathbbm{k}}A_i<\infty$. If the graded \mathbbm{k} -algebra $A=\oplus_{i\geq 0}A_i$ is positively, locally finite and generated in degrees 0 and 1, i.e., $A_i\cdot A_j=A_{i+j}$ for all $0\leq i,\ j<\infty$, then A is called *standard*.

Let A be a k-algebra and M be an A-module (not necessary graded). In general, the *one-point extension of* A by M is defined to be the upper triangular matrix algebra $\begin{pmatrix} A & M \\ 0 & k \end{pmatrix}$, we call the upper triangular matrix algebra *one-point extension algebra*, denoted by E_M^A . It is obvious that the elements in the extension algebra E_M^A have the form: $\begin{pmatrix} a & m \\ 0 & k \end{pmatrix}$. Hence we have

$$E_{M}^{A} = \left\{ \begin{pmatrix} a & m \\ 0 & k \end{pmatrix} | a \in A, m \in M, k \in \mathbb{k} \right\}.$$

The addition and the multiplication in E_M^A are given by the matrix addition and matrix multiplication, that is,

$$\begin{pmatrix} a_1 & m_1 \\ 0 & k_1 \end{pmatrix} + \begin{pmatrix} a_2 & m_2 \\ 0 & k_2 \end{pmatrix} := \begin{pmatrix} a_1 + a_2 & m_1 + m_2 \\ 0 & k_1 + k_2 \end{pmatrix}$$

and

$$\begin{pmatrix} a_1 & m_1 \\ 0 & k_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 & m_2 \\ 0 & k_2 \end{pmatrix} \coloneqq \begin{pmatrix} a_1a_2 & a_1 \cdot m_2 + k_2 \cdot m_1 \\ 0 & k_1k_2 \end{pmatrix},$$

where all $a_i \in A$, $m_i \in M$, $k_i \in \mathbb{k}$, i = 1, 2.

Proposition 1.1. Using the above notations, we have the following statements:

- (1) E_M^A is a positively graded \mathbbm{k} -algebra under the grading: $(E_M^A)_0 = \begin{pmatrix} A_0 & 0 \\ 0 & \mathbbm{k} \end{pmatrix}$ and $(E_M^A)_i = \begin{pmatrix} A_i & M_i \\ 0 & 0 \end{pmatrix}$ for all integers $i \geq 1$ if and only if A is a positively graded \mathbbm{k} -algebra and M is a positively graded A-module with $\dim_{\mathbbm{k}} M_1 < \infty$.
 - (2) E_M^A is locally finite if and only if A is locally finite and each $\dim_k M_i < \infty$.
- (3) E_M^A is standard if and only if A is standard and M is a graded A-module generated in degree 1.

Proof. (1) is immediate from the definition of the multiplication of the extension algebra E_M^A . For all $i \geq 1$, it is obvious that $\dim_{\mathbb{K}}(E_M^A)_i < \infty$ if and only if $\dim_{\mathbb{K}}\begin{pmatrix} A_i & M_i \\ 0 & 0 \end{pmatrix} < \infty$ if and only if both $\dim_{\mathbb{K}} A_i < \infty$ and $\dim_{\mathbb{K}} M_i < \infty$. Now we complete the proof of (2) since degree 0 part is obvious. For the last statement, note that $(E_M^A)_i \cdot (E_M^A)_j = (E_M^A)_{i+j}$ if and only if

$$\begin{pmatrix} A_i & M_i \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} A_j & M_j \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A_i A_j & A_i M_j \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} A_{i+j} & M_{i+j} \\ 0 & 0 \end{pmatrix}$$

if and only if $A_iA_j = A_{i+j}$ and $A_iM_j = M_{i+j}$. Now (3) is proved by combining (1) and (2).

Proposition 1.2. Let E_M^A be defined as above (A and M are not necessary graded) and $\mathbf{I} := \begin{pmatrix} I_1 & N \\ 0 & I_2 \end{pmatrix}$. Then \mathbf{I} is an ideal of E_M^A if and only if I_1 and I_2 are ideals of A and \mathbb{k} , respectively; and N is a submodule of M such that $IM \subseteq N$. Moreover, the ideals of E_M^A only have two forms: $\begin{pmatrix} I & N \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} I & N \\ 0 & \mathbb{k} \end{pmatrix}$, where I is an ideal of A and N is a submodule of M such that $IM \subseteq N$.

Proof. The first assertion is a routine check by using the definition of an ideal. The last statement is immediate from the first assertion and by noting that k is a simple ring.

Now it is the time to recall the definition of λ -Koszul algebra.

Let $\lambda : \mathbb{N} \to \mathbb{N}$ be a periodic function; write the smallest positive period as $|\lambda|$. Assume that $\lambda(1) \ge 2$ and that λ is strictly increasing on the interval $[1, |\lambda|]$.

Introduce a function

$$\delta_{\lambda}: \mathbb{N} \to \mathbb{N}$$

with the following properties:

(a)
$$\delta_{\lambda}(0) = 0$$
, $\delta_{\lambda}(1) = 1$, $\delta_{\lambda}(2) = d$, where $d = \lambda(1) + 1$, a fixed integer;

(b)
$$\delta_{\lambda}(2n+1) - \delta_{\lambda}(2n) = 1$$
 for all $n \ge 0$;

(c)
$$\delta_{\lambda}(2n) - \delta_{\lambda}(2n-1) = \lambda(n)$$
 for all $n \ge 1$.

Definition 1.3. A positively graded algebra $A = \bigoplus_{i \geq 0} A_i$ is called a λ -Koszul algebra if the trivial A-module \mathbbm{k} admits a minimal graded projective resolution

$$\cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow A_0 \rightarrow 0$$

such that each P_n is generated in degree $\delta_{\lambda}(n)$ for all $n \geq 0$.

Throughout, let \mathbb{Z} , \mathbb{N} and \mathbb{N}^* denote the set of integers, natural numbers and positive integers, and \mathbb{k} denote an arbitrary ground field.

2. The λ -Koszulity of E_M^A

Define a functor

$$G: gr(A) \to gr(E_M^A)$$

by

$$G(X(A)) = (X(A), 0, 0)$$

and

$$G(X(A) \xrightarrow{f} Y(A)) = ((X(A), 0, 0) \xrightarrow{(f,0)} (Y(A), 0, 0)),$$

where X(A) and Y(A) are finitely generated A-modules. From the definition of G, it is clear that G is an exact faithful functor and if $P \in gr(A)$ is a graded A-projective module, then G(P) is a graded E_M^A -projective module.

Lemma 2.1. Let $e_1 = \begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1_k \end{pmatrix}$ be a complete set of orthogonal idempotents of E_M^A . Then the category gr(A) can be viewed as a full subcategory of $gr(E_M^A)$ consisting of the E_M^A -modules such that $e_2 \cdot X = 0$, where $X \in gr(E_M^A)$.

Proof. It is trivial that for all $\begin{pmatrix} a & m \\ 0 & k \end{pmatrix} \in E_M^A$, we have $e_2 \begin{pmatrix} a & m \\ 0 & c \end{pmatrix} e_1 = 0$. That is to say, $e_2 E_M^A e_1 = 0$. Let $X = (X(A), V, \alpha) \in gr(E_M^A)$ such that $e_2 \cdot X = 0$. Since $e_2 \cdot X = \begin{pmatrix} 0 & 0 \\ 0 & 1_{\mathbb{K}} \end{pmatrix} \cdot \begin{pmatrix} x \\ v \end{pmatrix} = \begin{pmatrix} 0 \\ v \end{pmatrix} = 0$ for all $v \in V$, we get that V = 0 and $\alpha = 0$. It is easy to see that such an E_M^A -module X can be viewed as a graded A-module. That is $X \in gr(A)$. Conversely, for all $M \in gr(A)$, we have $(M, 0, 0) \in gr(E_M^A)$. Therefore we complete the proof.

Lemma 2.2. $\begin{pmatrix} A \\ 0 \end{pmatrix}$ and $\begin{pmatrix} M \\ \mathbb{k} \end{pmatrix}$ are the all non-isomorphic projective modules in the category $gr(E_M^A)$. $\begin{pmatrix} A_0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ \mathbb{k} \end{pmatrix}$ are the all non-isomorphic simple modules in the category $gr(E_M^A)$.

Proof. Note that $e_1 = \begin{pmatrix} 1_A & 0 \\ 0 & 0 \end{pmatrix}$ and $e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1_{\mathbb{k}} \end{pmatrix}$ are a complete set of orthogonal idempotents of E_M^A . The results are proved by

$$E_M^A e_1 = \begin{pmatrix} A \\ 0 \end{pmatrix}, \quad E_M^A e_2 = \begin{pmatrix} M \\ \mathbb{k} \end{pmatrix}, \quad (E_M^A)_0 e_1 = \begin{pmatrix} A_0 \\ 0 \end{pmatrix} \quad \text{and} \quad (E_M^A)_0 e_2 = \begin{pmatrix} 0 \\ \mathbb{k} \end{pmatrix}. \quad \Box$$

Lemma 2.3. We can get a minimal graded projective resolution of $(E_M^A)_0 = \begin{pmatrix} A_0 & 0 \\ 0 & \mathbb{k} \end{pmatrix}$ from the minimal graded projective resolutions of $\begin{pmatrix} A_0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ \mathbb{k} \end{pmatrix}$.

Proof. Let

$$\mathcal{P}: \cdots \to \begin{pmatrix} P_n \\ 0 \end{pmatrix} \to \cdots \to \begin{pmatrix} P_1 \\ 0 \end{pmatrix} \to \begin{pmatrix} P_0 \\ 0 \end{pmatrix} \to \begin{pmatrix} A_0 \\ 0 \end{pmatrix} \to 0$$

and

$$Q: \cdots \to \begin{pmatrix} Q_n \\ 0 \end{pmatrix} \to \cdots \to \begin{pmatrix} Q_1 \\ 0 \end{pmatrix} \to \begin{pmatrix} Q_0 \\ 0 \end{pmatrix} \to \begin{pmatrix} M \\ \mathbb{k} \end{pmatrix} \to \begin{pmatrix} 0 \\ \mathbb{k} \end{pmatrix} \to 0$$

be minimal graded projective resolutions of the related simple E_M^A -modules. Then it is easy to see that the following is the minimal graded projective resolutions of $(E_M^A)_0$:

$$\mathcal{L}: \cdots \to \begin{pmatrix} P_n \\ 0 \end{pmatrix} \oplus \begin{pmatrix} Q_{n-1} \\ 0 \end{pmatrix} \to \cdots \to \begin{pmatrix} P_0 \\ 0 \end{pmatrix} \oplus \begin{pmatrix} M \\ \mathbb{k} \end{pmatrix} \to (E_M^A)_0 \to 0.$$

Lemma 2.4. Using the notations of Lemma 2.3, for all $n \ge 1$,

$$L_n := \begin{pmatrix} P_n \\ 0 \end{pmatrix} \oplus \begin{pmatrix} Q_{n-1} \\ 0 \end{pmatrix}$$

is generated in degree s as a graded E_M^A -module if and only if P_n and Q_{n-1} are generated in degree s as graded A-modules.

Proof. Let $s \in \mathbb{N}$. Then $\binom{P_n}{0} \oplus \binom{Q_{n-1}}{0}$ is generated in degree s if and only if $\binom{P_n}{0}$ and $\binom{Q_{n-1}}{0}$ are generated in degree s as graded E_M^A -modules, which is equivalent to

$$\begin{pmatrix} P_n \\ 0 \end{pmatrix}_{s+1} = \begin{pmatrix} A & M \\ 0 & \mathbb{k} \end{pmatrix}_1 \cdot \begin{pmatrix} P_n \\ 0 \end{pmatrix}_s = \begin{pmatrix} A_1 & M_1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} (P_n)_s \\ 0 \end{pmatrix} = \begin{pmatrix} A_1 \cdot (P_n)_s \\ 0 \end{pmatrix}$$

and

$$\begin{pmatrix} Q_{n-1} \\ 0 \end{pmatrix}_{s+1} = \begin{pmatrix} A & M \\ 0 & \mathbb{k} \end{pmatrix}_1 \cdot \begin{pmatrix} Q_{n-1} \\ 0 \end{pmatrix}_s = \begin{pmatrix} A_1 & M_1 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} (Q_{n-1})_s \\ 0 \end{pmatrix} = \begin{pmatrix} A_1 \cdot (Q_{n-1})_s \\ 0 \end{pmatrix}.$$

Theorem 2.5. Let A be a standard graded algebra and M be a graded A-module generated in degree 1. Let E_M^A be the one-point extension algebra. Then using the notations of Lemma 2.3, the following are equivalent:

- (1) E_M^A is a λ -Koszul algebra;
- (2) A is a λ -Koszul algebra, $\Omega^{2|\lambda|-1}(M)[-\delta_{\lambda}(2|\lambda|)]$ is a λ -Koszul module and Q_i is generated in degree $\delta_{\lambda}(i+1)$ for all $(i=1, 2, ..., 2|\lambda|-2)$;
 - (3) For all $i \ge 0$, P_{i+1} and Q_i are generated in degree $\delta_{\lambda}(i+1)$.

Proof. E_M^A is a λ -Koszul algebra if and only if $(E_M^A)_0$ possesses a minimal graded projective resolution

$$\mathcal{L}: \cdots \to \begin{pmatrix} P_n \\ 0 \end{pmatrix} \oplus \begin{pmatrix} Q_{n-1} \\ 0 \end{pmatrix} \to \cdots \to \begin{pmatrix} P_0 \\ 0 \end{pmatrix} \oplus \begin{pmatrix} M \\ \mathbb{k} \end{pmatrix} \to (E_M^A)_0 \to 0$$

such that for all $n \geq 0$, $L_{n+1} := \binom{P_{n+1}}{0} \oplus \binom{Q_n}{0}$ is generated in degree $\delta_{\lambda}(n+1)$,

which is equivalent to that of P_{n+1} and Q_n are generated in degree $\delta_{\lambda}(n+1)$ as graded A-modules by Lemma 2.4. Hence $(1) \Leftrightarrow (3)$. But (2) is obviously equivalent to that of P_{n+1} and Q_n are generated in degree $\delta_{\lambda}(n+1)$ as graded A-modules for all $n \geq 0$, which implies that $(2) \Leftrightarrow (3)$.

References

- [1] Z. Chen and Y. Ye, One-point extensions of *t*-Koszul algebras, Acta Math. Sin. (Engl. Ser.) 23(6) (2007), 965-972.
- [2] J.-F. Lü, On modules with *d*-Koszul-type submodules, Acta Math. Sin. (Engl. Ser.) 25(6) (2009), 1015-1030.
- [3] J.-F. Lü, Algebras with periodic shifts of Ext degrees, Math. Notes 86(5) (2009), 705-724.
- [4] J.-F. Lü, J.-W. He and D.-M. Lu, Piecewise-Koszul algebras, Sci. China 50(12) (2007), 1795-1804.
- [5] S. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60.
- [6] C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge Univ. Press, 1995.